


“Who says you can’t bottle experience? Between the covers is a wealth of information that
clearly demonstrates how to take a logical approach to finding and eliminating bugs. This
is an absolute must-have book for anyone who develops, tests, or supports software for
Microsoft Windows.”

—Bob Wilton, Escalation Engineer, Critical Problem Resolution Team, Microsoft
Corporation

“I have been fortunate enough to personally work with the authors on extremely demand-
ing systems projects for more than eight years. This volume contains the kind of stuff we
all wish we had known back at the beginning of those projects—the kind of stuff that the
debugging guru tells you over a coffee-spilled keyboard on February 29 only because an
extra day showed up and he has the afternoon free; the kind of stuff that only comes
from actually building and then debugging complex systems projects instead of just read-
ing about somebody else doing it.

“Most books leave the advanced cases as ‘exercises to the reader’ or to ‘other, more
advanced books,’ and those never seem to materialize. This book is one of those very rare
‘other’ books. Get two copies. You will always be lending the other one out.”

—Raymond McCollum, Architect, Microsoft Forefront Security Products

“This book by Microsoft authors Mario and Daniel is an excellent reference for both
intermediate and advanced debuggers. In-depth examples showing how to debug intri-
cate problems, such as stack and heap corruptions, make this book stand out among cur-
rent available literature on debugging Win32 software on Windows. The book is highly
practical and is filled with numerous debugging tricks and strategies.”

—Kinshuman, Development Lead, Windows Core OS Division

“I am pleased to see this guided tour through a comprehensive set of clever debugging
techniques. It does not only tell how to deal with tough diagnosis problems, but it also
explains the mechanisms behind the techniques used. The pragmatic approach taken in
Advanced Windows Debugging makes it a good resource to understand several key
Windows areas.”

—Adrian Marinescu, Software Architect, Microsoft Corporation



“Advanced Windows Debugging fills the need for good documentation about debugging
and fixing software defects. The book is based on the authors’ valuable experience of
tracking down the cause of various classes of software bugs. It includes representative
examples of typical defects, the tools used to investigate these defects, and step-by-step
instructions for using these tools. Software developers and testers will greatly benefit
from becoming familiar with these examples.”

—Daniel Mihai, Software Design Engineer, Developer Productivity Tools, Microsoft

“I wrote the WinDbg symbol handler, Symbol Server, and Source Server. Even so, I can’t
get my own wife to use WinDbg. She thinks it is hard to use, and, consequently, she 
hasn’t learned of the potential of this toolset. I am buying a copy of this book, so she can
learn it. The chapters on postmortem debugging and memory corruption are essential
reading that provide real insight into the internals of the runtime and OS in the context
of a program fault. Mario and Daniel’s understanding of debugging comes from being
asked to resolve completely unexplained bugs in unfamiliar target programs. This is what
industrial strength debugging is all about.”

—Pat Styles, Microsoft 
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FOREWORD

Software has one goal: simplify. If there’s a workflow that can be optimized or auto-
mated, data that can be stored or processed more efficiently, software steps in to fill
the job. While simplifying, software must not introduce undo complexity, and there-
fore should install with minimal user interaction, seamlessly integrate services and data
from other applications and multiple sources, and be resilient to changes in its soft-
ware and hardware environment. For the most part, software magically just works.

However, while software strives to simplify the experiences of end users and
administrators, it has become more and more complex. Whether it’s the amount of
the data they work with, the number of applications with which they communicate,
their degree of internal parallelism, or the APIs they import directly and indirectly
from the software stack upon which they run, most of software’s apparent simplicity
hides a world of subtle timings, dependencies, and assumptions that run between lay-
ers of software, often across different applications and even computers. Just deter-
mining which component is at fault—much less why, for a problem that surfaces as a
crash in a library, a meaningless error message, or a hang—is often daunting. 

The reason you’re reading this book is that you develop, test, or support software,
and therefore face breakdowns in software’s myriad moving parts that you are
charged with investigating through to a root cause and maybe fixing. Success in this
endeavor means identifying the source of a problem as quickly and efficiently as pos-
sible, which requires knowing what to look with, where to look, and how to look. In
other words, succeeding means knowing what tools are at your disposal, which ones
are the most effective for a class of failures, and how to apply the tool’s features and
functionality to quickly narrow in on the source of a problem. 

Learning how to troubleshoot and debug Windows applications on the job has,
for the most part, been the only option, but when you debug an application failure,
knowing about that one obscure tool or scenario-specific debugger command can
mean the difference between instantly understanding a problem and spending hours
or even days hunting it without success. That’s why a book like this pays for itself
many times over. 

Advanced Windows Debugging takes the combined knowledge and years of
hands-on experience of not just Mario and Daniel, but also the Microsoft Customer



Support Services and the Windows product and tools development teams and puts it
at your fingertips. There’s no more authoritative place to learn about how the Windows
heap manager influences the behavior of buffer overflows or what debugger extension
command you should use to troubleshoot DCOM hangs, for example. I’ve been
debugging my own Windows applications and device drivers for over 10 years, but
when I reviewed the manuscript, I learned about new techniques, tools, and debugger
commands that I’d never come across and that I’ve already found use for. 

We all earn our pay and reputations not by how we debug, but by how quickly and
accurately we do it. Whether you’ve been debugging Windows applications for years
or are just getting started, Mario and Daniel equip you well for your bug hunting
expeditions. Happy hunting!

Mark Russinovich
Technical Fellow, Platform and Services Division
Microsoft Corporation
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PREFACE

Not long ago, we were reminiscing about a really tough problem we faced at work.
The Quality Assurance team was running stress tests on our product, and every four
or five days, a crash would rear its ugly head. Sure, we had debugged the crash as far
as we thought possible, and we had done extensive code reviews to try to figure it out,
but alas, not enough information could be gained to get to the bottom of it. After sev-
eral weeks of unfruitful attempts, we started looking for alternative approaches.
During a random hallway conversation, someone happened to casually mention a tool
called gflags. Having never heard of this tool before, we set out to do some research
to find out how it could help us get to the bottom of our crash. Unfortunately, the
learning process proved to be somewhat difficult. First, finding information about the
tool proved to be a real challenge. There was a ton of great information in the refer-
ence documentation that came with the tools, but it was hard to figure out how to
actually get started. We quickly realized that without some basic guidance, there was
little hope for us to be able to utilize the tool. Naturally, we decided to ask the per-
son who had happened to mention the tool if he knew of any documentation or point-
ers. He gave us some brief descriptions of the tool and, perhaps more importantly, the
names of other people who had worked with the tool extensively. What followed was
a series of long and instructive conversations, and bit by bit the basic idea behind the
tool started falling into place. 

Did we ever get to the bottom of the crash? Yes—we did. As a matter of fact,
enabling the correct tool while running our stress tests pinpointed the problem to
such accuracy that it only took an hour of code reviewing to locate and fix the misbe-
having code. Had we known about this tool and how to use it from the start, we would
have saved several weeks of work. From that point on, we dedicated quite a lot of
time to furthering our understanding of the tools and how they can help while trying
to troubleshoot misbehaving code. 

Over the years, the Windows debuggers and tools have matured and grown and
become increasingly powerful. The amount of timesaving features now available is
truly mind-boggling. What is equally mind-boggling is that after several years, the
native debuggers and tools are still relatively unknown to developers. The few devel-
opers who do find out that these tools exist have to go through a similarly painful learn-
ing process as we did years ago. We were fortunate to have the luxury of working with



engineers at Microsoft (some of whom wrote the tools), but without this luxury, many
hopeful developers end up at a dead end and are never able to reap the benefits of the
tools. This unfortunate problem of a lack of learning material also turned out to be a
great opportunity for a solution, and thus the idea for this book was born. The key to
enable developers to gain the knowledge required is to provide a central repository of
concise information that fully explains the ins and outs of the debugging tools and
processes. The book you are holding serves as that key and is the net result of three
years of writing and over 15 years of collective debugging experience. 

We hope that you will enjoy reading this book as much as we enjoyed authoring
it and that it will open up the door to a truly amazing world of highly efficient soft-
ware troubleshooting and debugging. Knowing how to use the tools and techniques
described in this book is a critical part of a computer scientist’s work and can teach
you how to very efficiently troubleshoot some of the toughest problems in software.

Who Is This Book For?

The short answer to this question is anyone who is involved in any facet of software
development and has a strong desire to learn what is actually happening deep inside
Windows. Although the technical nature of the book might make you believe that its
content is only intended for advanced system engineers, this is absolutely not true. One
of the key points of this book is the removing of the magic. For various reasons, a lot of
software engineers believe that there is a magical relationship between the software
they are working on and the operating system. When a problem surfaces that requires
the analysis of operating system components (such as RPC/COM or the Windows heap
manager), this preconceived notion of magic prevents them from venturing inside
Windows to gain more information that can potentially help them solve the problem.
To make effective use of this book, you will have to learn how to remove this precon-
ceived notion and truly be of the mind-set that there is no magic behind-the-scenes.
The core Windows components should be viewed as an extension of your product and
not as a separate and magical layer. After all, it’s all just code—some of which just hap-
pened to be written by other people. If you can adjust your mind-set to accept this, you
will have taken your first steps to mastering the art of Windows debugging.

Software Developers
Anyone from a low-level system developer to a high-level RAD developer will benefit
from reading this book. Whether your preference is writing Windows-based software
in assembly language or by using the .NET framework, there is a ton of useful infor-
mation to be learned about the tools and techniques behind Windows debugging.

xvi Preface



Over the years, we’ve had several discussions with higher-level RAD developers who
claim that they really don’t see the need to learn about these low-level topics. After all,
the beauty of writing code at a higher level is that all of the low-level intricacies are
abstracted and hidden away from the developer. We couldn’t agree more. However,
our claim is that although abstractive programming allows the developer not to have
to focus on low-level details, it does not negate the need to know how the abstraction
really works. The substance behind this claim is simple. What you are working with is
really just that—an abstraction. Usage of this abstraction in a design that it was not
suited for can cause serious problems in your software; and, in such a case, without a
solid understanding of how the abstraction works, it can mean the difference between
shipping your product on time and slipping the release date by several months. 

Another key factor when considering mastering the Windows debuggers and tools
is related to the debugging of live production servers. While every attempt should be
made to fix bugs before shipping a product, we all know that some bugs might slip
through the cracks. When these bugs do surface post release, it can be a real
headache tracking them down. Customers who encounter the bugs on live produc-
tion servers are typically very sensitive to downtime and configuration changes, mak-
ing it impossible to install a complex debugger package. The Debugging Tools for
Windows, on the other hand, enables live debugging with no server configuration
change and no installation requirements. In short, it enables customers to keep a pris-
tine server during the troubleshooting process.

Quality Assurance Engineers
Just as software developers will find the information in this book useful in their day-to-
day tasks, so will quality assurance engineers. Quality assurance typically runs a battery
of tests on any given component being tested. During this time, any number of bugs
can surface. Whether they are memory corruptions, resource leaks, or hangs, knowing
what extended instrumentation to enable during the test run can dramatically reduce
the time it takes for root cause analysis. For instance, imagine that quality assurance is
tasked with stress testing a credit card authorization service. One of the goals is that
the service must be capable of surviving one week of continuous and simultaneous
hammering by client requests. On day six, the service starts reporting errors for all
client requests. At this point, the developers responsible for the service are called in to
analyze the problem. It doesn’t take long for them to figure out that the server has run
out of memory, presumably due to a small memory leak that accumulates over time.
After six days of accumulated leaks, figuring out the source of the leak, however, is a
much bigger challenge that can take days of debugging and code reviewing. Had the
correct extended instrumentation been enabled while running these tests, the time it
would have taken to analyze the leak could have been greatly reduced. 
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Product Support Engineers
In much the same way that quality assurance uses the Windows debuggers and tools
to make root cause analysis more efficient, so can the product support engineers.
Product support faces many of the same problems that quality assurance and software
developers face on a day by day basis. The key difference, however, is the environ-
mental constraints that they work under. The constraints can include not having full
access to the server exhibiting the problems, having a limited amount of time avail-
able for troubleshooting the server, having limited access to customer source code,
and other issues. 

The information presented in this book will give product support engineers a
great deal of ammunition when tackling these tough problems. Knowing how to
debug customer problems with minimal downtime and minimal system configuration
changes enables product support engineers to much more efficiently and nonintru-
sively gather the required data to get to the bottom of the problem.

Where There Is a Will, There Is a Way

It should come as no surprise that the material presented in this book is highly tech-
nical in nature. We are not going to try and convince you that you don’t need to know
anything about Windows internals to benefit from the book because the simple truth
is that you do. As with any technically oriented book, a certain amount of knowledge
is assumed.

Curiosity and a Will to Learn
While writing this book, we came to the realization that some of the areas of Windows
we were writing about had been taken for granted. Sure, most of the time we knew
that those areas worked a certain way, but we did not know exactly what made them
work that way. We could have simply accepted the fact that they just work, but curios-
ity got the best of us (as it usually does). We spent quite a lot of time researching the
topics and trying to connect the dots. The net result was a more in-depth under-
standing of Windows, which, in turn, allowed us to more efficiently debug problems.

The basic principle behind learning anything is that there must be a will to learn.
Depending on your background, some of the high-level material in the book might
feel intimidating. Embrace this intimidation, and you will be in a stronger position to
fully grasp and understand the contents of this book. 

If you possess the will to learn and have a great deal of curiosity, you will be well
on your way to becoming an expert in Windows debugging. 
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C/C++
All the sample code throughout the book is written in C/C++, and as such a good
understanding of the language as well as its object layout is required. If some of the
language concepts in the book are unfamiliar to you and you want to brush up on your
C/C++ skills, we recommend the following books:

The C++ Programming Language (3rd Edition), by Bjarne Stroustrup,
Boston: Addison-Wesley, 2000.
Inside the C/C++ Object Model, by Stanley B. Lippman, Reading, MA:
Addison-Wesley, 1996.

Windows Internals
This book is about advanced Windows debugging, and as such parts of the book are
dedicated to describing the internals of several integral Windows components (for
example, heap manager, RPC, security subsystem). Our intentions are not to fully
explain all aspects of these components but rather to give a brief but in-depth sum-
mary of how the component functions in relationship to the debugging scenarios
being illustrated. If you want to take your knowledge of the internals of Windows
even further, we strongly recommend reading

Microsoft Windows Internals, Fourth Edition: Microsoft Windows Server
2003, Windows XP, and Windows 2000, by Mark E. Russinovich and David
A. Solomon. Redmond, WA: Microsoft Press, 2004.

Organization

The book consists of three major parts. In this section, we provide a short description
of the contents of each chapter.

Part I: Overview
Part I lays the groundwork. It provides an overview of the tools and debuggers and
lets you familiarize yourself with the fundamentals of the debuggers. Even if you are
already familiar with the Windows debuggers, we strongly encourage you to, at the
very least, skim through these chapters, as they contain a ton of valuable information. 
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Chapter 1, “Introduction to the Tools,” provides a high-level introduction to the
tools used throughout the book. Topics such as download locations, installation
instructions, and usage scenarios are detailed. 

Chapter 2, “Introduction to the Debuggers,” introduces the reader to the funda-
mentals of the Windows debuggers. Basic concepts such as what debuggers are avail-
able, how to use them, and how to configure them are covered.

Chapter 3, “Debuggers Uncovered,” provides a more in-depth examination of user
mode debuggers. A minimalist implementation of a debugger is provided, as well as
looking at more advanced topics such as how the exception dispatch mechanism works.

Chapter 4, “Managing Symbol and Source Files,” discusses how to maintain two
of the most critical pieces of information during debugging: symbol files and source
files. It gives a brief description of what symbol and source servers are, how to use
them in association with the debuggers, and how to effectively manage them by set-
ting up symbol servers and maintaining source servers for your organization.

Part II: Applied Debugging
The focus of Part II is to provide the reader with the opportunity to analyze common
programming mistakes using the Windows debuggers. Each of the chapters in this
section is focused on a particular category of problems, such as memory corruption,
memory leaks, and RPC/COM. Each chapter begins with an overview of the
Windows component(s) involved followed by one or more scenarios that illustrate
common programming mistakes in that area. 

With the exception of Chapters 5 and 6, the chapters in Part II are standalone and
can be read in any order. 

Chapter 5, “Memory Corruption Part I—Stacks,” and 6,” Memory Corruption
Part II—Heaps,” take a close look at a very common problem that plagues develop-
ers on a daily basis: memory corruptions. Chapter 5 focuses on stack corruptions, and
Chapter 6 on heap corruptions. Each chapter begins by explaining the overall con-
cept behind the type of memory being examined (stack and heap) and is followed by
a number of common scenarios under which the corruption can occur. Each scenario
has associated sample code and a walk-through of the process that is used during
debugging and root cause analysis. 

Chapter 7, “Security,” discusses common security-related problems that often
surface during development. Quite often, developers face situations in which an API
returns an access denied error code without any more in-depth information, making
it hard to understand or track down where the error is coming from. This chapter will
show several security-related examples of code and how to use the debuggers and
appropriate tools to get to the bottom of the issue. 
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Chapter 8, “Interprocess Communication,” focuses solely on interprocess com-
munication debugging. Arguably perhaps the most used interprocess communication
protocol in Windows but also the most magical is RPC/LPC. Knowing how to trou-
bleshoot this important component is paramount when working with most applica-
tions. Using the debuggers, this chapter will show how you can track identity, analyze
RPC failures, and much more.

Chapter 9, “Resource Leaks,” details a very common problem with software
today: resource leaks. The most common form of resource leaks is related to memo-
ry but not limited to it. Other examples includes registry keys, file handles, and so on.
This chapter takes a look at the resource leak problem by showing a number of sce-
narios and associated sample code, as well as how to use the debuggers and tools to
efficiently track them down.

Chapter 10, “Synchronization,” discusses the topic of application hangs and how
to most efficiently make use of the debuggers to track down synchronization prob-
lems such as deadlocks and lock contentions. A number of different synchronization
scenarios are examined with associated debug sessions that give an in-depth view of
the analysis process.

Part III: Advanced Topics
Part III is an advanced section that consists of chapters that discuss topics such as
postmortem debugging 64-bit debugging, Windows Vista fundamentals, and much
more. The goal of these chapters is not to provide an exhaustive examination of each
area, but rather provide just enough fundamentals for the reader to get started in the
topic explained.

Chapter 11, “Writing Custom Debugger Extensions,” talks about custom debug-
ger extensions. Even though the Windows debuggers pack an extremely powerful set
of commands and tools, there are times when you want to automate certain aspects
of your own application debugging sessions. This chapter details how the extensibili-
ty model of the debuggers works and describes an example of a sample custom
debugger extension.

Chapter 12, “64-Bit Debugging,” introduces the basic concepts of debugging 64-
bit architectures. Basic concepts such as stack traces, function calls, and parameter
passing are discussed to enable the reader to get started on debugging these power-
ful architectures. 

Chapter 13, “Postmortem Debugging,” discusses postmortem debugging, which
is an incredibly useful way of troubleshooting problems when there is no means of
debugging a problem at the point of occurrence. This is a very common form of
debugging once the product has shipped and problems surface on the customer site. 
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Chapter 14, “Power Tools,” discusses two powerful tools that can be used to auto-
mate the debugging process. The first tool is called DebugDiag, and it provides an
excellent way of automating resource leak debugging. The other tool is a command
called analyze, which automates the initial fault analysis process.

Chapter 15, “Windows Vista Fundamentals,” details some of the fundamentals
behind Windows Vista. With the introduction of the new generation Windows plat-
form, certain aspects of the operating system have changed dramatically, and some of
the key changes are outlined in this chapter.

Required Tools

All the tools required to make full use of this book are available as downloads free of
charge. The new Windows Drivers Kit contains a complete command-line C/C++
development environment and a great set of associated development tools. 

Sample Code

As software engineers, we spend a great deal of our time hunting for the ultimate
treasure of writing perfect code. While writing this book, we were faced with quite
the opposite chore—the need to write not-so-perfect code to illustrate common pro-
gramming mistakes. 

The sample code is structured to achieve one goal: present examples of common
programming mistakes in the shortest and most concise fashion as to not pollute the
basic principle of the programming mistake being examined. To satisfy the goal of
short and concise examples, we had to, at times, concoct examples rather than use
real-life examples. Even though the sample code is “made up,” it serves to simulate
real-life examples, and every effort was made to ensure that the example stays true to
the problem being examined.

All sample code is written in C/C++. We chose this language for two simple reasons: 

■ C/C++ is predominantly used in Windows development.
■ In order not to obscure the debugging concepts discussed with higher-level

abstractions, we chose the language that is most commonly used and also clos-
est to the core. 
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All sample code is compiled and tested using the Windows Drivers Kit. The WDK
was chosen so that readers would be able to enjoy learning the art of Windows debug-
ging without being required to purchase a complete developer suite. 

The source code assumes a Unicode environment, and as such Win32 API calls,
as seen in the debugger, will be illustrated using the Unicode version of the API. For
example, the sample code might show a call to the CreateProcess API, but when
working in the debugger, the CreateProcessW API will be utilized. The API shown
in the debugger is prefixed by the module name implementing the API. One exam-
ple is the CreateProcessW API, which is implemented in kernel32.dll. It is often
required to specify both the module name and the API name separated by the (!)
character (kernel32!CreateProcessW).

All sample code and binaries are available on the book’s Web site
(http://www.advancedwindowsdebugging.com). In addition to source code and bina-
ries being available, the site acts as a symbol and source code server for the book’s
binaries. When you try out the debugging sessions illustrated in the book, there is no
need to download all the symbols for the binaries; rather, point your debuggers sym-
bol path directly to the book’s symbol server, and you can debug with remote symbols.
The sources are also retrieved by the source servers from the book’s Web site.

To provide a consistent learning experience, the binaries on the book’s Web site
have been built as nonoptimized and checked releases for the x86 architecture using
the Windows XP platform. We chose to use Windows XP as the common denomina-
tor due to its widespread usage. If you choose to build the samples on your own using
a different target platform, there might be minor variations in the debug output. 

To build the samples on your own, simply open a WDK build window and type
build /ZCc from the directory containing the makefile. If the source code being
compiled requires additional steps, those steps will be spelled out in the chapter dis-
cussing the sample code.

Throughout the book, it is assumed that all binaries have been downloaded from
the Web site and copied to the local hard drive (keeping the folder structure intact)
to the following location: C:\AWDBIN, and the sources have been downloaded to the
C:\AWD folder. 

Conventions

Code, command-line activity, and syntax descriptions appear in the book in a mono-
spaced font. Many of the examples and walk-throughs in this book show a great deal
of what is known as debug spew. Debug spew simply refers to the output that the
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debugger displays as a result of some action that the user takes. Typically, this debug
spew consists of information shown in a very compact and concise form. In order to
effectively reference bits and pieces of this data and make it easy for you to follow,
the boldface and italic types are used. Additionally, anything with the boldface type
in the debug spew indicates commands that you will be entering. The following exam-
ple illustrates the mechanism.

0:000> ~*kb

.  0  Id: 924.a18 Suspend: 1 Teb: 7ffdf000 Unfrozen

ChildEBP RetAddr  Args to Child

0007fb1c 7c93edc0 7ffdf000 7ffd4000 00000000 ntdll!DbgBreakPoint

0007fc94 7c921639 0007fd30 7c900000 0007fce0 ntdll!LdrpInitializeProcess+0xffa

0007fd1c 7c90eac7 0007fd30 7c900000 00000000 ntdll!_LdrpInitialize+0x183

00000000 00000000 00000000 00000000 00000000 ntdll!KiUserApcDispatcher+0x7

0:000> dd 0007fd30

0007fd30  00010017 00000000 00000000 00000000

0007fd40  00000000 00000000 00000000 ffffffff

0007fd50  ffffffff f735533e f7368528 ffffffff

0007fd60  f73754c8 804eddf9 8674f020 85252550

0007fd70  86770f38 f73f4459 b2f3fad0 804eddf9

0007fd80  b30dccd1 852526bc b30e81c1 855be944

0007fd90  85252560 85668400 85116538 852526bc

0007fda0  852526bc 00000000 00000000 00000000

In this example, you are expected to type ~*kb in the debug session. The result of
entering that command shows several lines, with the most critical piece of informa-
tion being 0007fd30. Next, you should enter the dd 0007fd30 command illustrat-
ed to glean more information about the previously highlighted number 0007fd30. 

All tools used in this book are assumed to be launched from their installation fold-
er. For example, if the Windows debuggers are installed in the C:\Program Files\
Debugging Tools for Windows folder, the command line for launching windbg.exe
will be shown as

C:\>windbg 
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Supported Windows Versions

Windows XP or higher is required to fully make use of this book. All sample code and
debugging scenarios have been run on Windows XP SP2 or Windows Server 2003
SP1, depending on the requirements of the specific scenario. Please note that service
packs or even specific patches can change the result of various commands, although
these changes will not affect the overall outcome of what is being illustrated with the
debug session. 

Chapter 15, “Windows Vista Fundamentals,” covers the most important changes
made in Windows Vista and includes debug sessions that must be run on a machine
running Windows Vista.

Furthermore, all samples and debug sessions were run using the 32-bit version of
Windows. Samples used in Chapter 12, “64-Bit Debugging,” were run using the 64-
bit version of Windows XP.

Support

While every attempt has been made to make this book 100% accurate, without a
doubt errors will be found. If you encounter an error in this book, feel free to contact
us using any of the following resources:

Email: marioh@advancedwindowsdebugging.com or 
daniel@advancedwindowsdebugging.com.

Alternatively, the book discussion forum at http://www.advancedwindowsdebugging.com
is monitored and can be used to report erroneous information. As corrections are made,
they will be posted to the errata section of the Web site. 
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3

C H A P T E R  1

INTRODUCTION TO THE TOOLS

Many books and articles have been written about the importance of proper software
design and engineering principles. Some of the publications take a very balanced
approach between methodology and practice, whereas others focus mostly on
methodology. Books written about the importance of object-oriented design and pro-
gramming, design patterns, or modular programming are all great examples of
methodologies that help us write better software. Without a doubt, proper software
methodologies are the precursors to all successful software projects. However, they
are not the sole contributors to the success of the software. Regardless of how well
we think that we can design software and regardless of how accurate we believe our
scheduling to be, mysterious problems always plague us during the development
process. Hectic schedules, complex component interactions, and legacy code are just
some of the reasons why we cannot practically anticipate and solve all the problems
by simply employing good development methodologies. In addition to the method-
ologies, we have to know how to troubleshoot complex problems in a cost- and time-
efficient manner. 

This chapter introduces you to invaluable tools that will be of great aid in the trou-
bleshooting process, as well as help reduce the time and money spent on handling a
wide range of common problems. A lot of the problems that we discuss in this book
leave developers feeling frustrated because of their complex nature. Even if a devel-
oper has an idea of how to manually approach a particular problem, the effort of track-
ing it down is typically very costly. Unbeknownst to many developers, help is out there;
the help comes in the form of incredible tool sets that aid developers in tracking down
and solving a lot of these types of problems. Not only does it help with the problem
solving, but it does so in a very efficient manner. 

This chapter provides an introduction to the tools used throughout the book. Each
tool is discussed in detail, and the coverage includes important information, such as
common usage scenarios, install points, and background information on how the tools
do their work The tool descriptions are not exhaustive sources for all the various usage
scenarios; rather, they serve as high-level overviews of the tools. Each of the tools list-
ed is used in other parts of the book to illustrate the usage of the tool to solve a real



problem. This chapter can be viewed as an introduction to the tool set that comple-
ments its practical usage scenario in subsequent chapters in the book. 

Note that the tools this chapter describes are the latest versions of each tool avail-
able at the time of writing. Newer versions might have been published by the time
you read this chapter. This does not constitute a problem, as the general tool behav-
ior generally stays the same. 

Leak Diagnosis Tool

Usage Scenarios Memory leak detection
Current Version 1.25
Download Point ftp://ftp.microsoft.com/PSS/Tools/Developer

Support Tools/LeakDiag
Analysis Mechanism Log Files

The Leak Diagnosis tool (LeakDiag) is a tool used during the memory leak detection
process. It goes well beyond the basic capabilities of showing how much memory a
process has leaked to detailed information, such as the exact stack trace that resulted
in the allocation and allocation statistics. 

The installation process for LeakDiag is trivial. Download leakdiag125.msi from
the download point and use the default settings during the install process. The appli-
cation is, by default, installed into C:\LEAKDIAG and can run in two modes.
Specifically, it has a command-line version and a graphical user interface (GUI) ver-
sion. The command-line version is called ldcmd.exe, and the GUI version is called
leakdiag.exe. Both can be executed from the command line or by going to the Start
button and selecting All Programs, LeakDiag. 

Diag includes a superset of the capabilities of UMDH.exe (see the later section
“UMDH”) in the sense that UMDH is only capable of showing allocations coming from
the standard heap manager. LeakDiag extends this functionality to include not only the
standard heap allocations, but also COM allocations (external and internal), virtual mem-
ory allocations, and much more. All in all, the current version of LeakDiag supports six
different allocators:

■ Virtual Allocator 
■ Heap Allocator [DEFAULT]
■ MPHeap Allocator 
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■ COM AllocatorCoTaskMem 
■ COM Private Allocator 
■ C Runtime Allocator 

The capability of LeakDiag to support all these allocators makes it a very flexible tool
to be used for memory leak detection. Another significant difference from most other
memory leak detection tools is the way in which LeakDiag collects memory-related
activity. Rather than relying on the operating system support for recording memory
allocation stack traces, LeakDiag uses Microsoft’s Detours technology to intercept
calls to the memory allocators. By doing so, LeakDiag eliminates the need to enable
stack tracing support in the operating system.

Figure 1.1 shows the start screen of the GUI version of LeakDiag. The LeakDiag
interface has two main sections: the list of all running processes and the available
memory allocators with associated action buttons. To start memory allocation tracking,
simply select one of the running processes followed by the memory allocator that you
want to track. Click the Start button, followed by the Log button. Reproduce the
memory leak and click the Log button once again. When you are finished tracking,
click the Stop button. LeakDiag outputs all the information into log files in XML for-
mat. By default, the log files are written to C:\LeakDiag\logs and the log files are
named by LeakDiag itself to guarantee a unique filename for each run. 
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As with most memory leak detection tools, LeakDiag works on the basis of snapshot
comparisons. By taking snapshots of all the memory allocations at regular intervals,
LeakDiag is capable of taking a delta between snapshots to describe allocations that
have not yet been freed (potential leaks). The Log button is the mechanism by which
you take the snapshots. 

LeakdDiag has a few options that allow you to customize the default behavior. By
selecting the Options menu item on the Tools menu, you are presented with the
Options dialog, as shown in Figure 1.2.  
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In the Options dialog, you can change the location of the log files, as well as specify
the symbol path. As with most stack tracing tools, proper symbols are required for
LeakDiag to be capable of producing useful stack traces. If you incorrectly specify the
symbol path or the symbols are wrong, you will see only the addresses for each frame
in the stack trace. Having said that, stack trace recording is an expensive operation
that can dramatically alter the speed of execution. As a matter of fact, at times, the
speed of execution can be altered  to the point where the memory leak will not even
surface (if it is because of concurrency and/or timing related issues). Fortunately, a
check box also exists that allows you to disable the symbol resolution while logging.
The Allocation size filter enables you to specify the range of allocation sizes that you
want to track. Finally, stack depth enables you to specify the number of frames per
stack trace that will be outputted to the log file. 

For a detailed description of the command-line mode of LeakDiag, as well as the
log file format, see Chapter 9, “Resource Leaks,” where we use LeakDiag to analyze
and nail down a real memory leak. 



The Microsoft Detours Library

Microsoft Detours is an innovative solution to the problem of instrumenting and/or improving
existing code at the binary level. Historically, instrumenting and/or improving code involved
simply changing the source code and recompiling. However, in today’s world of commercial
development, you will rarely (if ever) have access to the source code for a component or
product. Microsoft Detours allows you to intercept binary functions and provide your own
detour function that can either completely replace the original function or add some code
and then call the original function (via a trampoline). It does this seeming magic by replacing
the first few instructions of the original function with an unconditional jump to the new func-
tion. It is important to understand that this process happens at runtime and is not persisted,
which in essence means that you can detour different instances of the same application inde-
pendent of one another.

For more information on Microsoft Detours, please see http://research.microsoft.com/
sn/detours.

Debugging Tools for Windows

Usage Scenarios Collection of debuggers and tools
Current Version 6.6.0007.5
Download Point http://www.microsoft.com/whdc/ddk/debugging/

Debugging Tools for Windows is a comprehensive, freely available package that con-
tains powerful debuggers and tools to aid developers in becoming more efficient in
their day-to-day jobs. 

The download point allows you to choose between the 32- and 64-bit (Itanium
and x64) versions. Setup is straightforward, and the express setup is sufficient to get
all the necessary tools installed. One caveat exists; if you plan on developing custom
debugger extensions (as we will show in Chapter 11, “Writing Custom Debugger
Extensions”), you must do a custom install and elect to install the SDK as well. Table
1.1 shows all the tools that come as part of this package.
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Table 1.1 

Image Description

agestore.exe Handy file deletion utility that deletes files based on last access date.
cdb.exe Console-based user mode debugger. Virtually identical to NTSD.
dbengprx.exe Lightweight proxy server that relays data between two different

machines.
dbgrpc.exe Tool used to query and display Microsoft Remote Procedure Call

(RPC) information.
dbgrpc.exe Process server used for remote debugging.
dumpchk.exe Tool used to validate a memory dump file.
gflags.exe Configuration tool used to enable and disable system instrumentation.
kd.exe Kernel mode debugger.
kdbgctrl.exe Tool used to control and configure a kernel mode debug connection.
kdsrv.exe Connection server used during kernel mode debugging.
kill.exe Console-based tool to terminate processes.
logger.exe Tool that logs the activity of a process (such as function calls).
logviewer.exe Tool used to view log files generated by logger.exe.
ntsd.exe Console-based user mode debugger. Virtually identical to CDB.
remote.exe Tool used to remotely control console programs.
rtlist.exe Remote process list viewer.
symchk.exe Tool used to validate symbol files or download symbol files from a sym-

bol server.
symstore.exe Tool used to create and maintain a symbol store.
tlist.exe Tool to list all running processes.
umdh.exe Tool used for memory leak detection.
windbg.exe User mode and kernel mode debugger with a graphical user interface.

Not surprisingly, the most important tool is the debugger itself. Chapter 2,
“Introduction to the Debuggers,” and Chapter 3, “Debuggers Uncovered,” are dedi-
cated to explaining how the debuggers work, how to set them up, and how to most
effectively use them. 

The tools introduction in this chapter details the most interesting tools we use
throughout the book. When the download point specifies ‘Part of Debugging tools for
Windows’ for each tool, it is required that Debugging Tools for Windows be installed.

8 Chapter 1 Introduction to the Tools



Please note that at the time of writing, the most recent version was 6.6.0007.5. It is
quite possible that a new version of the Windows debuggers will be released by the
time you read this book. Even so, there should be relatively minor changes in the
debugger output, and all the material in the book should still apply and be easily fol-
lowed. The debugger download URL also keeps a history of debug versions (going
back two to three releases) that can be downloaded. If you want to follow the same
version, you can download the Debugging Tools for Windows corresponding to ver-
sion 6.6.0007.5.

UMDH

Usage Scenarios Memory leak detection
Current Version 6.0.5457.0
Download Point Part of Debugging Tools for Windows
Analysis Mechanism Log files

UMDH is another form of memory leak detection tool that includes a subset of the
functionality of LeakDiag. Whereas LeakDiag is able to track memory from a variety
of allocators, UMDH is only capable of tracking memory that originates from the
heap manager. In addition, it requires that user mode stack tracing is enabled in the
operating system (see the “Global Flags” section of this chapter) to work properly. 

Chapter 9 shows examples of how to use UMDH to track down memory leaks.

Microsoft Application Verifier

Usage Scenarios General application troubleshooting
Current Version 3.3
Download Point http://www.microsoft.com/downloads/details.aspx?

FamilyID=bd02c19c-1250-433c-8c1b-2619bd
93b3a2&DisplayLang=en

Analysis Mechanism Log files and debugger
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Every serious developer needs to be aware of the Application Verifier tool. Enabling
Application Verifier for your process allows you to catch a whole range of common
programming mistakes. Examples include invalid handle usage, lock usage, file paths,
and much more. It is good practice to always have Application Verifier enabled for all
the processes involved during development time. Having said that, some test settings
in Application Verifier can dramatically alter the speed of execution in your applica-
tion and, as such, can cause timing-related issues not to surface. One common solu-
tion to this problem is to always have Application Verifier enabled, and at select
milestones turn it off and run the entire test suite again to make sure that timing
issues are not a problem. Another good time for Application Verifier to be enabled is
when the product is in bug fixing mode. By running with Application Verifier
enabled, you can make sure that regressions are not introduced when fixing bugs.

Installation of Application Verifier is straightforward using the default install set-
tings. After the installation completes, you can start Application Verifier by going to
the Start button and then selecting All Programs, Application Verifier. Figure 1.3
shows the start screen presented when launching Application Verifier.
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The Applications pane shows all applications currently enabled for verification. You
can add applications by selecting the Add Application option from the File menu.
Reciprocally, you can also remove applications by selecting the application and select-
ing the Delete Application menu item from the File menu. 

To change the settings for a particular application, select the application in the
left pane and choose the Property Window on the View menu. This adds a property
section to the bottom of the start window that allows you to control the following
behaviors:

■ Propagate: Controls whether the test settings of this image will be propagated
to child processes. Enabling this property causes the test settings to propagate. 

■ AutoClr: If enabled, causes Application Verifier to disable all test settings of
this image once it starts running.

■ AutoDisableStop: If enabled, causes Application Verifier to report a given
problem only once. 

■ LoggingWithLocksHeld: If enabled, causes Application Verifier to log the
DLL load and unload events. Note that this might cause problems in the appli-
cation since logging requires I/O that is performed during the execution of the
DllMain code path. 

To get a brief description of each test setting, you can hover over the test setting to
open up a balloon tip. The balloon tip will also tell you whether a debugger is
required to see the results of the tests. 

To get more details or for configuration settings for each test setting, you can
right-click on the test setting and choose from one of two options.

■ Properties: Allows you to control the properties of the selected test. For exam-
ple, choosing properties on the Handles test allows you to control the number
of traces that will be recorded for handle tracking. Note that the Properties
selection is not available for all test settings.

■ Verifier Stop Options: Allows you to control the options for the selected test.
Figure 1.4 illustrates the verifier stop options menu selection when used on the
Handles test setting.
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Figure 1.4

The Application Verifier Stop options are further divided into several sections:

■ The Verifier Stop Section contains a list of all the verifier stops that the test set-
ting is capable of performing. In Figure 1.4, the Verifier Stop section shows that
six stops are available when verifying handles. All other sections in this window
work on the basis of a selected stop code.

■ The Description section gives a detailed description of the selected verifier
stop. 

■ The Inactive check box controls whether the selected verifier stop is active or
inactive, enabling you to control the granularity of the test setting.

■ The Severity section allows you to control how severe you consider the stop
code to be. Depending on what choice is made, it will have a direct impact on
how the stop is surfaced. For example, setting the verifier stop 00000300 to
Ignore causes the stop, when triggered, not to break into the debugger.

■ The Error Reporting section allows you to control in more detail what should
happen when a verifier stop occurs. The check boxes control the logging
actions taken (such as whether it should be logged to a file) as well as whether
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it should log the stack trace for the stop. The radio buttons control the debug-
ger behavior when the stop occurs. You can set it to execute a breakpoint,
throw an exception, or not break at all.

■ The Miscellaneous section controls the frequency of the stop. If the Stop Once
check box is selected, the stop will only occur the first time it is encountered.
If the Non Continuable check box is selected, the debugger will break in when
a stop occurs, and you will not be able to recover from the stop—in essence,
preventing you from continuing process execution. 

The next section of the start screen (refer to Figure 1.3), the Tests pane, shows all
available test settings. Selecting the check box enables that particular test setting for
the selected process. Right below the Tests pane is a short description of the test set-
ting itself.

After an application has been enabled for verification, you can simply run the
application, and Application Verifier will work in the background. Depending on how
each test setting is configured, there are two primary ways to see the results of an
Application Verifier run. The first way is to view the associated log file by selecting
the Logs menu item from the View menu and then selecting the application log you
are interested in. It is important to note that not all test settings report their results
using log files. Some of the test settings require a debugger to get the desired results.
To see which test settings require a debugger, simply hover over the test setting to get
the context-sensitive help. If a test setting requires a debugger, you must run the
application under the debugger to see the results. 

When Application Verifier requires a debugger to be attached, the output of a
violation observes the following general outline:

VERIFIER STOP <stop-code>: <process-PID>: <message>

parameter-1: <description>

parameter-2: <description>

parameter-3: <description>

parameter-4: <description>

The stop-code indicates the particular violation that occurred, the PID shows the
process ID of the faulting process, and the message gives a brief textual description
of the fault. The parameter list is dependent on the type of test being performed. 

For example, the following output shows the violation as reported by the
Application Verifier when trying to close an invalid handle:
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=======================================

VERIFIER STOP 00000300 : pid 0xFF0: Invalid handle exception for current stack trace.

C0000008 : Exception code.

0007FBD4 : Exception record. Use .exr to display it.

0007FBE8 : Context record. Use .cxr to display it.

00000000 : Not used.

=======================================

This verifier stop is continuable.

After debugging it use `go’ to continue.

=======================================

Using the GUI mode to enable tests for an application is quite convenient, but some-
times it is necessary to enable tests in an automated fashion. Let’s say that the prod-
uct you are working on is built every night, and automated tests are launched right
after the build completes. As part of this test suite, the quality assurance team has
requested that Application Verifier be enabled during testing. Rather than having an
engineer manually use the GUI mode version of Application Verifier and enable the
tests each night, he can simply write a script that uses the console mode version to
enable the tests. The default installation path for application verifier is

C:\windows\system32\appverif.exe

When you launch the appverif.exe executable with the /? switch, you will see the 
following:

Application Verifier 3.3.0045

Copyright (c) Microsoft Corporation. All rights reserved.

Application Verifier Command-Line Usage:

-enable TEST ... -for TARGET ... [-with [TEST.]PROPERTY=VALUE ...]

-disable TEST ... -for TARGET ...

-query TEST ... -for TARGET ...

-configure STOP ... -for TARGET ... -with PROPERTY=VALUE...

-verify TARGET [-faults [PROBABILITY [TIMEOUT [DLL ...]]]]

-export log -for TARGET -with To=XML_FILE [Symbols=SYMBOL_PATH]

[StampFrom=LOG_STAMP] [StampTo=LOG_STAMP] [Log=RELATIVE_TO_LAST_INDEX]

-delete [logs|settings] -for TARGET ...

-stamp log -for TARGET -with Stamp=LOG_STAMP [Log=RELATIVE_TO_LAST_INDEX]
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-logtoxml LOGFILE XMLFILE

-installprovider PROVIDERBINARY

Available Tests:

Heaps

Handles

Locks

Memory

TLS

Exceptions

DirtyStacks

LowRes

DangerousAPIs

TimeRollOver

Threadpool

LuaPriv

HighVersionLie

FilePaths

KernelModeDriverInstall

InteractiveServices

PrintAPI

PrintDriver

(For descriptions of tests, run appverif.exe in GUI mode.)

Examples:

appverif -enable handles locks -for foo.exe bar.exe

(turn on handles locks for foo.exe & bar.exe)

appverif -enable heaps handles -for foo.exe -with heaps.full=false

(turn on handles and normal pageheap for foo.exe)

appverif -enable heaps -for foo.exe -with full=true dlls=mydll.dll

(turn on full pageheap for the module of mydll.dll in the foo.exe

appverif -enable * -for foo.exe

(turn on all tests for foo.exe)

appverif -disable * -for foo.exe bar.exe

(turn off all tests for foo.exe & bar.exe)

appverif -disable * -for *

(wipe out all the settings in the system)

appverif -export log -for foo.exe -with to=c:\sample.xml

(export the most recent log associated with foo.exe to c:\sample.xml)

appverif /verify notepad.exe /faults 5 1000 kernel32.dll advapi32.dll

(enable fault injection for notepad.exe. Faults should happen with

probability 5%, only 1000 msecs after process got launched and only

for operations initiated from kernel32.dll and advapi32.dll)
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To enable all Application Verifier tests for a given executable, you could use the fol-
lowing command line:

appverif.exe –enable * -for myexecutable.exe

In addition to enabling tests for a given application, it is also possible to control
Application Verifier from the debugger. The extension command used to control
Application Verifier from the debugger is !avrf. For a complete listing of all the
available test settings, see Appendix A, “Application Verifier Test Settings.” 

Global Flags

Usage Scenarios Configuration
Current Version 6.6.0007.5
Download Point Part of Debugging Tools for Windows
Executable gflags.exe

The Global Flags application (gflags) is installed as part of the Debugging Tools for
Windows, and the executable (gflags.exe) can be launched from the default installa-
tion path. For example, on my system, I would use the following command line to
start gflags:

c:\>gflags.exe

Many of the tools we use in this book rely on support from Windows to function prop-
erly. For example, UMDH requires that the Create user mode stack trace database
option be enabled. Global Flags (or gflags) is the one-stop configuration tool for all
the various options available. 

GUI Mode
Most of the available options can be enabled for the entire system (that is, all process-
es running) or on a per-process basis. Figure 1.5 shows the main screen of gflags.
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The System Registry tab shows the options available on a systemwide basis, and the
Image File tab shows the options available on a per-process basis. If you change any
of the systemwide settings, a reboot is generally required. The Kernel Flags tab shows
the options that affect the running kernel only. For a per-process setting, the process
must be restarted before the settings will take effect. 

Because the options available in gflags configure various aspects of the operating
system, where are the settings stored, and how are they interpreted? The answer: the
Registry. Depending on whether you change systemwide settings or per-process set-
tings, they are stored in different locations in the Registry:

■ Systemwide settings: HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Control\SessionManager\GlobalFlag

■ Per-process settings: HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\Windows NT\Current Version\Image File Execution
Options\<Image File Name>\GlobalFlag



The per-process Registry path has some interesting properties associated with it. In
addition to storing the global flags in the GlobalFlag value, other useful settings can
be stored there. For example, if you are trying to debug a process not directly start-
ed by yourself (such as a service started by the service control manager), you can
enable debugging of that process by specifying the following registry value:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\Current Version\Image File Execution

Options\<Image File Name>\Debugger

You can specify the debugger of choice that you want launched when the process
starts. We will see how this feature can be used in more detail in Chapter 2.

The Image File tab allows you to enable instrumentation on a per-process basis.
Figure 1.6 shows the available options. 

When you first navigate to this tab, all the options will be grayed out until you
specify an image name in the Image text field and press the Tab key.
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Command-Line Mode
In addition to the GUI mode, gflags can be run on the command line. The options
available on the command line mimic the options in GUI mode:

usage: GFLAGS [-r [<Flags>]] |

[-r +spp TAG | -r +spp SIZE | -r -spp |

[-k [<Flags>]] |

[-i <ImageFileName> [<Flags>]] |

[-i <ImageFileName> -tracedb <SizeInMb>] |

[-p <PageHeapOptions>] (use `-p ?’ for help)  |

Each of the options is explained a bit more in the following list:

■ -r controls the persistent options for the entire system (analogous to the
System Registry tab in GUI mode).

■ -k controls current kernel options (analogous to the Kernel Flags tab in GUI
mode).

■ -i controls options on a per-image basis (analogous to the Image File tab in
GUI mode).

■ -p controls pageheap options (analogous to the Verifier tab in GUI mode).

Each of the preceding switches can either display the current settings for the particu-
lar switch or modify the settings according to the flags specified. If you simply want to
see what the settings are, specify the switch (such as –i notepad.exe) without the
flags. If you want to enable the settings, the flags can be specified as either a hexadeci-
mal number or an abbreviation that represents the gflags option. Table 1.2 shows the
available abbreviations.

Table 1.2

Abbreviation Description

soe Stop On Exception
sls Show Loader Snaps
dic Debug Initial Command
shg Stop on Hung GUI
htc Enable heap tail checking
hfc Enable heap free checking
hpc Enable heap parameter checking
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hvc Enable heap validation on call
vrf Enable application verifier
ptg Enable pool tagging
htg Enable heap tagging
ust Create user mode stack trace database
kst Create kernel mode stack trace database
otl Maintain a list of objects for each type
htd Enable heap tagging by DLL
dse Disable stack extensions
d32 Enable debugging of Win32 Subsystem
ksl Enable loading of kernel debugger symbols
dps Disable paging of kernel stacks
scb Enable system-critical breaks
dhc Disable Heap Coalesce on Free
ece Enable close exception
eel Enable exception logging
eot Enable object handle type tagging
hpa Enable page heap
dwl Debug WINLOGON
ddp Disable kernel mode DbgPrint output
cse Early critical section event creation
ltd Load DLLs top-down
bhd Enable bad handles detection
dpd Disable protected DLL verification
lpg Load image using large pages if possible

To set a specific option, use +<abbreviation>; to deselect a specific option, use 
-<abbreviation>. For example, if you wanted to enable the user mode stack trace
database for notepad.exe, you would use the following command line:
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C:\> gflags /i notepad.exe +ust

Current Registry Settings for notepad.exe executable are: 00001000

ust - Create user mode stack trace database

Reciprocally, if you wanted to disable the same option, you would use

C:\> gflags /i notepad.exe -ust

Current Registry Settings for notepad.exe executable are: 00000000

If you simply wanted to find out what the settings are for a particular image, you
would use the following:

C:\> gflags /i notepad.exe

Current Registry Settings for notepad.exe executable are: 00000000

To see what options are available for pageheap and Application Verifier, you can use

C:> gflags.exe /p /?

and 

C:> gflags.exe /v /?

The final switch of importance is the –tracedb switch, which allows you to specify the
size of the stack trace database. If enough activity exists in the system, the max size can
easily be reached. This switch allows you to customize the size of the database.

We will not discuss the meaning behind all the different gflags options in this
chapter, as this discussion is intended to merely serve as an introduction to the tool.
Throughout Part II, “Applied Debugging,” we will use the various settings exported
by gflags to show how they can be leveraged to track down some really interesting and
tough problems.

Process Explorer

Usage Scenarios Analyze overall system and process health
Current Version 10.2
Download Point http://www.microsoft.com/technet/sysinternals/

ProcessesAndThreads/ProcessExplorer.mspx
Executable procexp.exe
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Process Explorer is a tool originally developed by the team over at SysInternals that
is now part of Microsoft TechNet. Process Explorer is most easily described as a pow-
erful alternative to the Windows Task Manager. It gives detailed information about all
the processes currently running on the system. Features include

■ Detailed handle usage, which includes the handle type as well as its name. It
also provides detailed information per handle, which includes reference count,
signal state, and more.

■ Powerful search capabilities allow you to search for handles by name or type
across all processes or, alternatively, search for any process that has a particu-
lar file loaded.

■ Detailed process information, such as thread utilization, performance history,
security, and much more.

The tool is so powerful that most users who use it end up never going back to the tra-
ditional Windows Task Manager. As a matter of fact, one of the Process Explorer
options is Replace Task Manager. 

Installation of the tool comes in the form of a zip file from which you simply extract
the contents to a location of choice. The executable name is procexp.exe. Figure 1.7
shows how Process Explorer looks when you first start it.
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By default, Process Explorer consists of two main views. The top view lists all the
processes currently running on the system, and the bottom view shows all handles that
the process has open (as well as the name of the handle). The columns of the top view
can be customized by right-clicking on the column status bar and selecting the Select
Columns menu. The bottom view can be changed from listing handles to listing DLLs
by choosing DLLs from the Lower Pane View menu on the View menu.

We will be using Process Explorer in Chapter 9 to illustrate how the tool can be
used to aid in tracking down resource leaks.

Process Monitor

Process Monitor, which is another recently released tool, is related to Process Explorer. Process
Monitor is an advanced monitoring tool that shows file system, registry, and process/thread
activity. We use the tool in several chapters in the book. The tool is free of charge and can be
downloaded from http://www.microsoft.com/technet/sysinternals/utilities/processmonitor.mspx. 

Windows Driver Kits

Usage Scenarios General development
Current Version WDK 6000
Download Point Can be downloaded from http://www.microsoft.

com/whdc/devtools/wdk/betawdk.mspx

The Windows Driver Kits (WDK) is a powerful and complete build environment that
can be used for production development. This development environment is truly
remarkable because it includes a large number of powerful development tools (includ-
ing the compiler and linker) and is available free from Microsoft.

The WDK supports building for all Windows versions starting with Windows XP
up to and including Windows Vista. This allows development targeting the x86, x64,
and Itanium architectures. 

Installation of the WDK is straightforward, and typically, choosing the default set-
tings is sufficient. When the installation begins, you will be asked to install the pre-
requisite setup packaged (packages such as the .NET framework 2.0). Once the
installation of those packages is complete, you can select to install the WDK. 

Figure 1.8 shows the various options available during installation.
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By default, the build environment, documentation, tools, and samples will be
installed. 

The default installation path for the WDK is 

%systemdrive%\WINDDK\6000

As mentioned previously, the documentation node is selected by default. Unless you
have hard drive size limitations or know the WDK inside out, you should always keep
this selection.

Finally, the Tools option allows you to select specific tools you want installed.
Most of the tools in this selection are very specific to device driver developers, but
some (such as command-line Registry tools) can be very useful not only for device
driver developers, but also across all types of development.

After the installation process completes, all you need to do to start building
source code is to open a WDK command-line window by going through the Start, All
Programs, Windows Driver Kits, WDK 6000, Build Environments menus and choose
the target platform of choice. The WDK build environments come in two flavors: free
and checked. The free version is typically the final version of the product and con-
tains highly optimized code. The checked version, on the other hand, is used during
development to smooth the troubleshooting process. Checked versions typically have
minimal or no optimizations turned on, making it much easier to debug code. 



Open a Windows XP Checked x86 Build Environment window and navigate to
the following directory:

C:\AWD\Chapter1

This directory contains a sample of a very small console-based application. To build
this application, type build /ZCc:

C:\AWD\Chapter1>build /ZCc

BUILD: Adding /Y to COPYCMD so xcopy ops won’t hang.

BUILD: Object root set to: ==> objchk_wxp_x86

BUILD: Compile and Link for i386

BUILD: Examining c:\awd\chapter1 directory for files to compile.

BUILD: Compiling (NoSync) c:\awd\chapter1 directory

Compiling - sample.cpp for i386

BUILD: Linking c:\awd\chapter1 directory

Linking Executable - objchk_wxp_x86\i386\sample.exe for i386

BUILD: Done

2 files compiled

1 executable built

The net result of this successful compilation is sample.exe, located in

C:\AWDBIN\WinXP.x86.chk 

Running this sample application yields

C:>C:\AWDBIN\WinXP.x86.chk\01sample.exe

Welcome to Advanced Windows Debugging!!!

An important note is that the resulting output directories are named according to the
following convention:

obj<flavor>_<platform>_<architecture1>\<architecture2>\<target executable>

The flavor can be one of the following:

■ chk: Corresponds to checked builds
■ fre: Corresponds to free builds
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The platform can be one of the following:

■ wnet: Corresponds to Windows Server 2003
■ wxp: Corresponds to Windows XP

The architecture1 can be one of the following:

■ x86: Corresponds to Intel 32-bit processors
■ amd64: Corresponds to AMD 64bit processors

Finally, architecture2 can be one of the following:

■ I386: Corresponds to Intel 32-bit processors
■ AMD64: Corresponds to AMD 64-bit processors

All the samples in this book are built using the freely available WDK; however, the
samples should build correctly using the Visual Studio environment; but no testing
has been done using this build environment.

This book does not aim to detail every aspect of the WDK but rather just use the
basic build mechanism to provide realistic samples of tough debugging problems that
occur frequently in the software world. For more in-depth information on the WDK,
refer to the documentation. 

Ethereal

Usage Scenarios Network Protocol Analyzer
Current Version 0.99
Download Point http://www.ethereal.com/download.html
Analysis Mechanism Network traces

Ethereal is a powerful, open source network protocol analyzer that can be used to
help the troubleshooting of cross machine calls. Ethereal allows you to capture and
analyze data from a live network or analyze previously created capture files. 

When installing Ethereal, choose the typical installation option.
Chapter 8, “Interprocess Communication,” gives examples of how to use Ethereal

to help analyze and track down interprocess communication issues in your code. 
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DebugDiag

Usage Scenarios Process troubleshooting (memory leaks and crashes)
Current Version 1.0
Download Point Part of the IIS Diagnostics Toolkit http://www.

microsoft.com/downloads/details.aspx?familyid=9BF
A49BC-376B-4A54-95AA-73C9156706E7&
displaylang=en

Analysis Mechanism Debuggers, log files

DebugDiag was originally designed to help analyze performance issues with IIS, but
it can be used equally well with any process. It combines the following troubleshoot-
ing features:

■ Process crash data gathering: Much like the Windows debuggers, DebugDiag
attaches to a process and generates dump files when a crash or exception
occurs. 

■ Memory leaks: The DebugDiag tool injects a DLL into the process to be mon-
itored for leaks and monitors memory allocations over time. A dump is then
generated, which can be analyzed to find the leaking code path. Depending on
the allocation pattern of the application, the tool calculates a leak probability. 

■ A powerful extensible object model (COM based): This surfaces the information
needed to analyze the memory leaks and process crashes. 

When installing the IIS Diagnostics Toolkit, choose the typical installation option.
Chapter 14, “Power Tools,” gives examples of how to use DebugDiag to help ana-

lyze and track down memory leaks and process crashes. 

Summary

The tools described in this chapter constitute a developer’s best friend. Rather than
relying on expensive trial-and-error approaches to navigate your way around tough
problems, these free tools will not only reduce the amount of time you spend on iden-
tifying and tracking down difficult bugs, but they will also surface bugs that otherwise
might not be found during testing. Considering the fact that these tools are available
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free of charge as simple downloads, there should be no reason not to fully integrate
these tools into the development process (making them a great complement to inte-
grated development tools). Mastering these tools is a key ingredient to becoming
highly efficient in the debugging process.

Throughout the remainder of this book, we will show you how to master these
tools by utilizing them to track down tough and common problems. 
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C H A P T E R  2

INTRODUCTION TO THE DEBUGGERS

The software debugging process has different meanings, depending on the program-
ming language used to create the product, as well as the situation at hand and the
developer’s experience. Although some developers are still debugging by using exten-
sive console printouts or analyzing verbose logging files, most are using a specialized
tool: a debugger. 

This chapter focuses on the Debugging Tools for Windows, freely available from
Microsoft Corporation. It contains several debuggers, which we describe shortly. Why
are those debuggers so important? 

The Windows debuggers are enhanced in parallel with the Windows develop-
ment process since they are used to debug each operating system version. As a result,
they are always in sync with the latest operating system version or service pack. Since
the same tools are also used to debug previous versions of the operating systems,
debugger developers work hard to ensure that the current debuggers are compatible
with existing systems. When a specific piece of functionality is not available in the
older operating systems, the debuggers fail gracefully. To realize the backward com-
patibility level of these debuggers, it is enough to mention that the latest Windows
debuggers work with Windows 9x/Me, Windows NT, Windows 2000, Windows XP,
Windows 2003, and Windows Vista. 

Other qualities of these debuggers are not obvious, such as the extensibility, the
minimal install, and runtime requirements. The Windows debuggers’ functionality
can be enhanced with domain specific extensions, running simultaneously with the
existing debugger commands. But they are also very flexible because they do not
require any local registration, making them the true xcopy “installable”; they can run
from any location (such as a USB thumb drive, where the debugger folder has been
copied from another installation), and the memory they require is very small. 

In a parallel development, the 64-bit family of the Windows operating systems is
the first step of introducing 64-bit computing into the mainstream, and many devel-
opment companies are already planning to convert 32-bit applications to 64-bit.
Debugging Tools for Windows offers an excellent debugging environment for the 64-
bit platform.  
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All this makes the Windows debuggers the perfect set of tools—powerful and
usable in any situation. In this chapter, we explore

■ The basics about the Windows debuggers 
■ How to set up the Windows debuggers
■ How to work with symbols and sources
■ Basic commands available in the Windows debuggers
■ How to use the Windows debugger remotely
■ Several debugging scenarios 

This chapter uses 02sample.exe, which is specially handcrafted to help introduce the
Windows debuggers. The source code and binary for 02sample.exe can be found in
the following folders: 

Source code: C:\AWD\Chapter2
Binary: C:\AWDBIN\WinXP.x86.chk\02sample.exe

Debugger Basics

This section describes the types of available debuggers, when to use each debugger,
and the most effective way to use them. User mode developers represent the main
audience for this section even if some sections have references to kernel mode. 

Debugger Types
The two basic types of debuggers discussed here are user mode and kernel mode
debuggers. 

User Mode Debuggers
The simplest form of a debugger is capable of debugging a single target user mode
(UM) process. User mode debuggers are capable of examining the program state
(running threads, memory content, registers, and kernel objects opened in the
process space) representing the debugger target. The capabilities are similar to what
the target process is capable of doing if it can execute code similar to the code exe-
cuted by the debugger. 

User mode debuggers are also capable of modifying the state (changing the
thread execution order, changing registers’ content, and changing the memory con-
tent) and being notified of special events happening in the target process. This 
scenario is commonly known as live debugging because the debugger can interact
with the debugger target as long as the target process is running. 
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User mode debuggers can also examine a dump file that contains a snapshot of a
given process, also known as postmortem debugging. Chapter 13, “Postmortem
Debugging,” describes in detail various ways to create user mode dump files. Because
these snapshots represent the process state, they are a good representation of the
original running process and can be successfully used to investigate various problems
with minimal impact on the application. 

Debugging Tools for Windows come with three user mode debuggers: cdb.exe,
ntsd.exe, and windbg.exe. These three are built around the same debugger engine
but go about exposing the same functionality in different ways. All three are capable
of debugging console applications, as well as graphical Windows programs. All three
can be used to perform source-level debugging, if the sources are available, or
straight machine-level debugging. A short explanation of each one will help you
decide which one is the most appropriate to use. 

■ cdb.exe (CDB) is a character-based console program that enables low-level
analysis of Windows user-mode memory and constructs. CDB is extremely
powerful for debugging a currently running or recently crashed program and is
simple to set up. CDB can attach to vital subsystem processes that run during
the early boot phase (such as WinLogon or CSRSS), whereas a graphical debug-
ger does not work that early in the boot process, since the graphical subsystem
is not yet initialized. If the target application is a console application, the target
will share the console window with CDB. To spawn a separate console window
for a target console application, use the -2 command-line option. 

■ ntsd.exe (NTSD) is identical to CDB in every way, except that it spawns a new
text window when started. More precisely, CDB is a console application,
whereas NTSD is a GUI application that can create its own console. Like
CDB, NTSD is fully capable of debugging both console applications and
graphical Windows programs. The only time they are not interchangeable is
when you are debugging a user mode system process. In that case, errors or
breaks in the process might cause all console applications to work improperly.
In such cases, it is possible to configure NTSD to run with no console at all.

■ windbg.exe (WinDbg) is a powerful graphical interface debugger with the
same debugging capabilities found in console mode debuggers, enhanced to
automate routine tasks such as examine the current call stack, view variables
(including C++ objects), show the current registers, and a lot more. WinDbg
also provides convenient, full, source-level debugging when the symbol files
are properly configured, as we explain later in this chapter. At startup, some
WinDbg settings are retrieved from workspaces, which can be changed and
saved during the debugging session. All these capabilities make WinDbg the
preferred tool for interactively debugging user mode applications. 
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Kernel Mode Debuggers
In contrast to user mode debuggers, kernel debuggers can inspect the computer sys-
tem as a whole, with nearly the same view as the system processor. For kernel debug-
gers, each process or thread is just a collection of data structures, the memory
addresses have a direct relation with the physical memory installed on the system, and
the paged out memory is not accessible without loading it in the physical memory. The
kernel mode debugger can change the state of the entire computer and can be noti-
fied of special events. This model of debugging is known as live kernel debugging. 

Kernel debuggers are mainly used by device driver developers, but they can also
be very useful when debugging user mode applications. Several scenarios described
in this book make use of the kernel mode debuggers, even if the debugged code runs
entirely in user mode. 

Much in the same way user mode debuggers can load user mode dumps, a ker-
nel debugger can load kernel mode dumps and perform offline debugging of an exist-
ing system or a postmortem analysis of the bug checks. The Windows debuggers
contain two basic kernel mode debuggers: kd.exe and windbg.exe. 

■ kd.exe (KD) is the kernel mode character-based debugger. It enables in-depth
analysis of kernel-mode activity on Windows and can be used to debug kernel
mode programs and drivers, to debug user mode applications, or to monitor
the behavior of the operating system itself. 

■ windbg.exe (WinDbg) is also capable of kernel mode debugging. WinDbg pro-
vides full source-level debugging for the Windows kernel, kernel-mode driv-
ers, as well as user mode applications running on the system. It allows you to
debug any application or kernel module in a friendly user interface by tracing
the source code, setting breakpoints based on the source content, and much
more.  

Kernel debuggers are capable of debugging a target computer running a platform dif-
ferent from the host platform. The debugger automatically detects the platform on
which the target is running. 

Debugger Commands
The Windows debuggers support a set of commands that are natively implemented in
the executable file and are entered without any special prefix at the command prompt.
Most short commands, such as kP, are built-in commands. Meta-commands are anoth-
er set of commands implemented by the executable file that starts with a dot (.). For
example .help is a meta-command that displays all meta-commands implemented by
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debuggers. Also, the Windows debuggers enable the use of debugger extension com-
mands. Extensions add power and flexibility to the debugger by extending the range of
functions that can be executed against the debugger target, extending the ease by which
target data and structures can be parsed. Extension support enables a model in which
additional extensions can be added to the debugger for component and driver-specific
debugging. The debugger extensions are sometimes called ‘bang’ commands to indicate
that they are all prefixed with the exclamation point (!).

Debugger extension commands are used much like the standard debugger com-
mands. However, although the built-in debugger commands are part of the debugger
binaries themselves, debugger extension commands are exposed by DLLs separated
from the debugger. A number of debugger extension DLLs are shipped with the
debugging tools themselves.

The syntax used to call a debugger extension is !module.extension [argu-
ments], where the module name is the name of the debugger extension DLL and
the extension name is the function exported by that DLL. The extension function can
also accept parameters through arguments on the command line. These extension
commands are entered at the debugger prompt in the same way as other commands. 

Various DLLs that ship with the kernel debugger provide default kernel and user
mode extensions, including kdext.dll and exts.dll. When an extension is called with-
out a module name specified, these DLLs are always checked unless another exten-
sion DLL has been loaded containing that command. Example debugger extensions
supported by these DLLs include !teb to get the tread environment block using a
thread from any debugger and !thread to get information on the current or a spe-
cific thread from the kernel mode debugger.

An extension DLL can be implicitly loaded by calling a function in that DLL with
the full !module.extension syntax. An extension DLL can also be explicitly loaded
using the .load debugger command, specifying the full path to the DLL. When
loaded, all other extension functions can be called without specifying the extension
DLL unless the same function is implemented in two loaded extensions. In this case,
the full syntax must be used to resolve the name collision. 

Setting Up the Debuggers
Even in their basic usage, the Windows debuggers provide exceptional and valuable
flexibility, while also forcing you to choose among their various options. This section
details those options that enable you to configure the debugger for all cases present-
ed in this book. 
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User Mode Debuggers
Debuggers need at least two key ingredients to perform at full capacity: the target
image being debugged and the symbol information associated with that image. In this
section, we focus on setting up the debugger target. The later section “Setting Up and
Using the Symbols” shows how to load the associated symbols for the debugger tar-
get. Some examples from this section use cdb.exe, but they work similarly with 
windbg.exe or ntsd.exe. 

In the most common situation, the debugger starts a new process, and the target
image is loaded in the newly created process that becomes the debugger target. Using
the tlist.exe executable (located in the debugger installation folder), you can see the
debugger as the parent of the debugged process. The executable name is passed in as
a parameter to the debuggers, as you can see in Listing 2.1. The command line start-
ing the debugger shows as cdb 02sample.exe. The debugger cdb.exe having the
process identifier 2428 is the parent for the process 02sample.exe having the process
identifier 2816. 

Listing 2.1 Listing all processes as task tree

C:\> REM tlist with –t parameter displays the process tree

C:\> tlist –t tlist will display the process tree 

System Process (0)

System (4)

smss.exe (756)

csrss.exe (836)

winlogon.exe (864)

services.exe (908)

svchost.exe (1080)

svchost.exe (1152)

svchost.exe (1216)

svchost.exe (1348)

svchost.exe (1408)

spoolsv.exe (1748)

svchost.exe (572)

svchost.exe (1688)

lsass.exe (920)

explorer.exe (3552) Program Manager

cmd.exe (2856) C:\WINDOWS\system32\cmd.exe - tlist -t

cdb.exe (2428) cdb 02sample.exe 

02sample.exe (2816) 

tlist.exe (268)
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When debugging a process in which the actual process lifetime is managed by an
external entity, one approach is to attach the debugger to the running process. The
“Debugging Scenarios” section toward the end of this chapter describes additional
options to debug such a process. This is the approach used when debugging Windows
services, DCOM servers, IIS filters, and so on. Listing 2.2 shows the list of switches
that can be used when attaching to an already running process. 

Listing 2.2 Options for attaching the debugger to a running process

C:\>cdb -?

cdb version 6.4.0004.3

usage: cdb [options]

Options:

...

<command-line> command to run under the debugger

— equivalent to -G -g -o -p -1 -d -pd

[ more]

-p <pid> specifies the decimal process ID to attach to

-pn <name> specifies the name of the process to attach to

-psn <name> specifies the process to attach to by service name

-pv specifies that any attach should be noninvasive

-pvr specifies that any attach should be noninvasive and nonsuspending

...

Although most options displayed by the command help are self-explanatory, we will
stress a few helpful parameters to use when you are attaching the debugger to a run-
ning process. cdb.exe –p <pid> is the standard command used when the process
identifier is known. If the image name is known (as is the case with DCOM servers
or with SCM services), cdb.exe –pn <image name> does an excellent job in find-
ing its process identifier and attaching to it. However, if multiple processes are start-
ed with the same image, the command bails out, as shown here: 

C:\>cdb -pn svchost.exe

There is more than one ‘svchost.exe’ process running.  Find the process ID of the

instance you are interested in and use -p <pid>.

In this case, we find the target process identifier using tlist.exe and use it as parame-
ter for the cdb –p <pid> command. Special for service writers sharing the same
host image name, it is possible to specify a service name as a parameter: cdb –psn 
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<service name>. Last, but not least, -pv can be used with all other options to
attach nonintrusively to a running process. This allows you to access process infor-
mation even if another debugger is attached to that process or if the previous debug-
ger hung (bad extensions, long symbols resolution, and so on). Listing 2.3 shows the
command line used to attach nonintrusively to the dnscache service, as well as the
output generated by the debugger. 

Listing 2.3 Debugging a service nonintrusive

C:\>cdb.exe -pv -psn Dnscache

…

*** wait with pending attach

Symbol search path is: SRV*c:\symbols*http://msdl.microsoft.com/download/symbols

Executable search path is:

WARNING: Process 1320 is not attached as a debuggee

The process can be examined but debug events will not be received

........................................

(528.52c): Wake debugger - code 80000007 (first chance)

eax=0007fc44 ebx=00000000 ecx=7c80999b edx=02160001 esi=00000000 edi=00000068

eip=7c90eb94 esp=0007fc48 ebp=0007fcb0 iopl=0         nv up ei pl zr na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000246

ntdll!KiFastSystemCallRet:

7c90eb94 c3               ret

The debugging session finishes when the debugger target ceases to exist or when you
use the q (quit) command or the qd (quit and detach) command. The latter option
leaves the debugger target running. WinDbg’s Exit menu item in the File menu (the
ALT+F4 key combination) is equivalent to the q command. 

A common scenario encountered in development centers is dumping the process
memory on error and restarting the test process. In this case, the memory dump can
be loaded as an active target using the windbg –z <dumpname> command. Listing
2.4 shows how to load one dump file that has been previously generated from a run-
ning instance of the notepad.exe process. Chapter 13 describes multiple ways to
create memory dump files and use them effectively.  

Listing 2.4 Debugging a memory dump

C:\>windbg -z c:\AWDBIN\DUMPS\notepad.dmp

…

Loading Dump File [C:\AWDBIN\DUMPS\notepad.dmp]
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User Dump File: Only application data is available

…

...........................

eax=7ffdc000 ebx=00000001 ecx=00000002 edx=00000003 esi=00000004 edi=00000005

eip=7c901230 esp=0091ffcc ebp=0091fff4 iopl=0         nv up ei pl zr na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=0038  gs=0000             efl=00000246

ntdll!DbgBreakPoint:

7c901230 cc               int     3

Kernel Debuggers
The kernel debugger usually runs on a different system from the system being
debugged. Live kernel mode debugging requires two computers (the host computer
running the kernel debugger and the target computer being debugged) since the
debugger target cannot execute any code while it is stopped in the kernel debugger. The
debugger target is the system that has experienced the failure of a software component,
system service, an application, or of the operating system. This system can be located
within a few feet of the computer on which you run the kernel debugger, or it can be
in a completely different location, depending on the connection options used. The
debugger target can also be a virtual machine running inside the host system. 

The kernel debugger is very flexible. It can target computers running on an x86
platform, an Itanium platform, or an x64 platform. The kernel debugger automatical-
ly detects the target platform. The operating system running on the host computer
does not need to be the same version as the one running the debugger target.
However, it is recommended that the kernel debugger is up-to-date in order to sup-
port the latest operating system versions as the debugger target.

A portion of the debugging system lives inside the operating system and runs
regardless of whether a kernel debugger is connected to the system. Because this por-
tion is an integral part of the Windows kernel, the kernel debugger does not require
any additional software to be installed on the debugger target. This functionality is
configured at boot time. For example, a system enabled for kernel debugging freezes
when entering CTRL-SysReq from a PS/2 keyboard. In this state, a kernel debugger
can connect to this system and debug it. 

On x86 computers running Windows XP, the kernel debugger can be enabled in
the boot.ini file, or it can be enabled interactively, at boot time, by choosing Windows
Advanced Option after pressing the F8 key from the boot console, as shown in 
Figure 2.1. 
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Figure 2.1 Windows Advanced Options menu 

The following shows a sample entry with several parameters controlling the kernel
debugger such as /debug (enabling the debugger), /debugport (representing the
serial port used by the kernel debugger), and /baudrate (serial port’s baud rate).
For a full description of all the available options when changing boot.ini, check the
debugger help (help topic Boot parameters to Enable Debugging). 

Despite the documentation available about boot.ini, the safest way of changing
the configuration files is through bootcfg.exe, as it guarantees the correctness of start-
up parameters. A simple boot.ini file that starts the default installation with the ker-
nel debugger active on COM1 port, initialized at 57600 baud rate, is shown here: 

[boot loader]

timeout=30

default=multi(0)disk(0)rdisk(0)partition(1)\WINDOWS

[operating systems]

multi(0)disk(0)rdisk(0)partition(1)\WINDOWS=”KD” /fastdetect /debug /debugport=COM1

/baudrate=57600

Assuming that the serial cable is connected on the serial port COM2 of the host sys-
tem, the following line can be used to start a kernel debugger using that port at a
57600 baud rate. 

C:\>windbg -k com:port=COM2,baud=57600

The kernel debugger is enabled if any debug parameter is found in boot.ini, regard-
less of the presence of the /debug switch. 
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Connecting the Kernel Debuggers
In the most common case, on a live operating system, the kernel debugger connects
to the target operating system using a serial null-modem cable, but faster ways to con-
nect are already available, such as IEEE 1394 or USB 2.0 cables. Today, each con-
nection is a physical connection, represented by a cable, as shown in Figure 2.2. But
in the near future, other connection paradigms might be available, such as providing
kernel debugging support over TCP/IP using a dedicated networked controller board
that runs independent from the host computer.  
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KD Debugger KD Target

Figure 2.2 Connecting a kernel debugger to the target system

For target computers running Windows XP or higher, the connection from the
debugger to the target computer can be established using an IEEE 1394 (FireWire)
cable. The connection to target computers running Windows Vista or higher can use
a USB 2.0 debug cable connection. The connection method selected is determined
by the available hardware to make the connection and by the target computer char-
acteristics. Consult the debugger help file for more information about the connection
options and the command line required to use such a connection (help topic
Choosing Kernel Debugging Settings).

Is the kernel debugger even useful if you cannot use two computers because you
are restricted by the environment? In this case, you can simulate the target machine
in a virtual machine environment and at least have the same options as in the two
machine set-up case. Currently, most virtualization software products on the market
offer a free version. Although this section uses Microsoft Virtual PC as an example,
the same functionality is available on all virtualization products. With the exception
of hardware-specific software, all other software components can run successfully
and can be debugged within a virtual machine. 

The virtual machine emulator virtualizes a serial port available in the target PC
into a named pipe in the host computer namespace. In Figure 2.3, the serial port
COM2 of the Microsoft Virtual PC is accessible as a named pipe on the host PC, hav-
ing the name \\.\pipe\pipe2. 
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Figure 2.3 Enable Virtual PC for kernel debugger

The kernel debugger can then connect to the virtual machine having the settings
shown in Figure 2.3 using the following command line: 

C:\>windbg -k com:pipe,port=\\.\pipe\pipe2

The kernel mode debugging session finishes when the debugger target ceases to exist
or the kernel debugger disconnects from the target by using the CTRL+B command.
If the debugger target waits for user input before disconnecting the kernel debugger,
the system state does not change until a new kernel debugger connects to it or the
system is restarted. WinDbg’s Exit menu item in the File menu (ALT+F4 key com-
bination) is equivalent to the CTRL+B command. 

If using a virtual machine is not possible (because of license constrains), you can
still benefit from using a kernel debugger in local connection mode (functionality
introduced starting with Windows XP). You have very limited functionality in con-
trolling the target, but you have unlimited options to view the machine status. Any
memory write should be very carefully inspected because it can potentially corrupt
the integrity of the operating system running the kernel debugger. As with any kernel
debugger setup, the corresponding boot.ini entry must specify the /debug flag. The
kernel mode debugger can start in local mode using the following command line: 

C:\>windbg –kl
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The kernel mode debugger can also open kernel dump files generated using the
methods described in Chapter 13. Both kd.exe and windbg.exe can open kernel
dumps, so choosing between them is a personal preference. Windbg.exe recognizes
the kernel dump file type and starts in kernel mode debugging, without requiring any
additional command-line parameter. The following command lines are capable of
opening the mini dump files captured automatically by the operating system in the
%windir%\Minidump folder, as well as some manually generated ones. 

C:\>kd -z %temp%\full.dmp

C:\>kd -z %windir%\Minidump\Mini091704-01.dmp

C:\>windbg -z %wtemp%\full.dmp

Redirecting a User Mode Debugger Through a Kernel
Debugger
One important feature of a kernel debugger is its capability to control a user mode
debugger for the kernel debugger session and synchronize the user mode debugging
session with the system activity. Because the system activity is frozen while you are
controlling the user mode debugger, you can use it to debug sequences expected to
execute in a bound time period—time relative to the system activity. Since the kernel
debugging session is already established at system boot time, you can debug process-
es early in the start-up phase or very late in the system shutdown phase when no
interactive console is available. The kernel debugger also gives you access to infor-
mation not available from a user mode session debugger, making the combination the
most powerful form of user mode debugging.  

By starting the user mode debugger with the –d parameter in the command line,
any user mode debugger redirects its input and output to a kernel debugger, as in the
following listing: 

C:\>ntsd –d <Process Path>

C:\>ntsd –d –p <PID>

The kernel mode debugger must be enabled before using the redirection options.
Otherwise, the user mode debugger returns to the command prompt without exe-
cuting the command passed in as a parameter. However, with the kernel debugger
enabled, the operating system allows low privilege users to stop the entire activity,
which is not always desired. 

When the debugger is in a state in which it waits for user input, either at the user
mode prompt or the kernel mode prompt, as shown in Figure 2.4, the kernel activity
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is suspended. The exact state is clearly identifiable in the debugger input. KD shows
the user mode prompt as a regular user mode debugger, whereas WinDbg, used as a
kernel debugger, shows the prompt as Input> instead of the regular kd> prompt. It
is not unusual to go back and forth between the kernel mode debugger and the user
debugger before resolving problems involving interprocess communication. 

After entering a new command at the user mode debugger prompt, the kernel
mode debugger dispatches that command to the current user mode debugger and
resumes the system activity, enabling the user mode debugger to perform the com-
mand. If, after executing the command, the user mode debugger prompts the user,
the system goes back to the user mode debugger prompt. 

Kernel debugger prompt

System normal run

User mode prompt

KM goKM go

!bpid <pid>!bpid <pid>

KM debugger eventKM debugger event

UM operation startUM operation start

.breakin.breakin

UM operation completeUM operation complete

UM debugger eventUM debugger event

KM go

!bpid <pid>

KM debugger event

UM operation start

.breakin

UM operation complete

UM debugger event

UM prompt requestUM prompt requestUM prompt request

Figure 2.4 State transition between a kernel mode prompt and a user mode prompt

While in the user mode prompt state, it is possible to jump to the kernel mode
prompt state by entering the .breakin command in the user mode debugger. The
kernel debugger breaks in the context of the debugger process, not of the process
being debugged:

0:000> .breakin

.breakin

Break instruction exception - code 80000003 (first chance)
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nt!RtlpBreakWithStatusInstruction:

8051ac9c cc               int     3

kd> !process -1 0

PROCESS ff7eeb38  SessionId: 0  Cid: 055c    Peb: 7ffdf000  ParentCid: 03c8

DirBase: 03983000  ObjectTable: e1a02fb8  HandleCount:  39.

Image: ntsd.exe

This command requires SeDebugPrivilege privileges for the debugger process itself,
and it fails with an explicit error if the debugger does not run under an account hav-
ing the debug privilege, as follows:

0:000> .breakin

.breakin

.breakin requires debug privilege

In such cases, an alternative way to go into KD is to issue a break (using CTRL+C,
CTRL+break, or CTRL+SysRq) after asking the user mode debugger to perform
anything long running, such as a sleep command, as seen in Listing 2.5. The key com-
bination CTRL+C is being interpreted by the kernel mode debugger as a kernel
mode event.  

Listing 2.5 Switching from user mode to kernel mode debugger

0:000> .sleep 1000

.sleep 1000

Break instruction exception - code 80000003 (first chance)    

***********************************************************************

*                                                                     *

*   You are seeing this message because you pressed either            *

*       CTRL+C (if you run kd.exe) or                                 *

*       CTRL+BREAK (if you run WinDBG)                                *

*   on your debugger machine’s keyboard.                              *

*                                                                     *

*                   THIS IS NOT A BUG OR A SYSTEM CRASH               *

*                                                                     *

* If you did not intend to break into the debugger, press the “g” key,*

* then press the “Enter” key now.  This message might immediately     *

* reappear.  If it does, press “g” and “Enter” again.                 *

*                                                                     *

***********************************************************************

nt!DbgBreakPointWithStatus+0x4:

8051ac9c cc               int     3

kd>
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From the kernel mode prompt, you can enter the system in normal execution mode
by entering any form of the g command. If the user mode debugger prompts the user,
the system moves to the user mode prompt. The transition back into the user mode
prompt is difficult when there is no user mode prompt or a new debugger event
requiring user prompting has been sent to the kernel debugger. 

The most reliable method to regain the control of the user mode debugger is to
use the breakin.exe utility installed with the Debugging Tools for Windows.
Breakin.exe accepts only one parameter, the process identifier of the target process
that must be stopped. In this case, the process identifier is the user mode process pre-
viously started under the user mode debugger. The breakin.exe <pid> command is
executed directly on the target computer being debugged. From the kernel debugger
prompt, it is possible to regain the user mode debugger prompt by using the !bpid
<pid> extension command. 

A useful command for suspending the user mode debugger is .sleep <time>.
This command leaves the target system in a normal running state for the specified
time interval—time in which the system can be used for operations, such as copying
local symbols or even to attach a user mode debugger to another process. 

DEFAULT NUMERIC BASE IS IMPORTANT If you ever wonder why the .sleep 1000
command feels more like four seconds than one second, we should note that the timeout is
interpreted according to the current radix used by the debugger—the default base being 16. 

To KD or Not to KD

Most application developers are not considering using a kernel debugger, as it seems
unnecessary if not too complicated. We want you to consider some cases in which the
kernel debugger is the natural way of debugging a particular problem—how is
detailed in the later section “Debugging Scenarios,” as well as in some other chapters
in this book. In such cases, all alternative solutions for debugging the problem are
usually just expensive workarounds.

At the other end of the spectrum are cases in which kernel debugging is not an
option at all, mostly because other components installed on the system cannot work well
in its presence. In this category, we can enumerate various products that use files pro-
tected by Digital Right Management (DRM) technologies. Those products have become
commonly used in our lives to store our music securely or to protect the confidentiality
of our files. Unfortunately, the products capable of reading or writing DRM-protected
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content do not work with debuggers, including kernel mode debuggers. It is expected
that all such products use all sorts of anti-debugging tricks and debugging detection
mechanisms. In the most common case, they will simply refuse to work if a kernel mode
debugger is detected. In this case, each scenario for which we are recommending the use
of a kernel debugger should instead use an alternative, non-KD, method. 

In the development phase, there are cases in which the user of the developed
application sees a huge number of failures when a kernel mode debugger is enabled.
In this case, the product might contain some special function calls, named asserts,
that break in the debugger for specific parameters. These assert statements were
introduced by developers just to validate their thinking. When the assert statement is
no longer valid in the customer environment and the kernel mode debugger is
enabled, the application breaks often in the kernel debugger. In this case, the correct
solution should be tailored to the environment (disabling the kernel mode debugger,
updating the application, or removing the assert statement).  

SECURITY NOTE If you enable the kernel debugger on a system shared by multiple users,
the debugger will not differentiate between handling breakpoints on low privileged users’
processes and breakpoints in processes running under a system or administrator account. By
enabling the KD this way, you allow any user to break the system and put the system’s serv-
ice into a nonfunctional state. Therefore, a best practice is to disable the kernel debugger
on production systems.

We can now recognize some situations in which kernel debugging is not an
acceptable technique in the toolbox, but we are not always sure when it can be real-
ly useful. Therefore, in the later section “Debugging Scenarios,” we will reveal some
typical situations in which a kernel debugger is extremely useful. 

Basic Debugger Tasks

After setting up the debugger, you should see a command prompt or a debugger win-
dows waiting for your commands. After a new command is entered, the debugger
switches to execution mode, executes the command displaying the results, and
switches back into the command prompt mode. If the command entered requires the
target to execute code, any debugger event encountered while executing the com-
mand returns the debugger back into the command mode. In the following sections,
we describe some of the most used commands and provide a brief description of the
resultant output, highlighting the most relevant information from it.   
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Entering Debugger Commands 
Within the console-based debuggers ntsd.exe, cdb.exe, and kd.exe, the entire console
window is used to display the results of the commands entered at the command
prompt. In WinDbg, the output window is a special window, identifiable by the
Command title. The window has an input box at the bottom that is used to enter com-
mands in the same fashion as in the console-based debuggers. The Command menu
item in the Tool menu can be used to display the command windows (alternatively,
the Alt+1 shortcut). 

One big advantage of the GUI interface is the capability to show multiple views
of the debugged process at the same time, eliminating the need to enter a new com-
mand to display that piece of information and accept commands from the menu and
toolbar. All user interface commands have one correspondent textual command and
can be entered in the command window. Because the WinDbg’s command window is
more or less identical to the console of any text-based debugger, all examples in this
book are illustrated using the command window commands.

Furthermore, one of the biggest advantages WinDbg has over the console mode
debugger is the source mode capabilities. With proper access to symbol and source
files, which are managed by using a process similar to the one described in Chapter
4, “Managing Symbol and Source Files,” the power of WinDbg is fully realized. The
user benefits from a debugger that automatically retrieves the source files, shows, and
synchronizes multiple views into the debugger target while enabling fine control of
the debugger target using the command prompt. This debugger can also be extend-
ed with business-specific functionality, as explained in Chapter 11, “Writing Custom
Debugger Extensions.” 

You can use any command from the multitude of debugger commands or debug-
ger extensions commands, but your goal is to resolve a specific problem, and we
should follow some general directions. The generic workflow used to resolve a debug-
ger session starts by identifying the current debugging environment and correct, if
possible, any problem with the symbols. The next step is to understand why the
debugger stopped where it did and, with the available information, create possible
scenarios leading to the current stop. With each such scenario in mind, we should use
any piece of information from the debugger session to try to prove that the scenario
was really executed. If we find any contradiction, we should go back and try another
scenario. With the scenario proven by the current state of the application in mind, the
developer goes to the source code, finds the problem, and fixes it. In the next section,
we explore the basic commands used to explore the application state required in the
steps described previously. 
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Interpreting the Debugger Prompt
Without entering any commands in the debugger and just by looking at the debugger
prompt, including some of the previous console output, we can figure out a few
details concerning the debugger target. We will start by examining the normal output
from a user mode debugger immediately after starting a new process (for example.,
c:\>windbg notepad). The output is shown in Listing 2.6.

Listing 2.6 User mode debugger output

(2d4.23c): Break instruction exception - code 80000003 (first chance)

eax=7ffdf000 ebx=00000001 ecx=00000002 edx=00000003 esi=00000004 edi=00000005

eip=77f75a58 esp=0084ffcc ebp=0084fff4 iopl=0         nv up ei pl zr na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=0038  gs=0000             efl=00000246

ntdll!DbgBreakPoint:

77f75a58 cc               int     3

0:000> vertarget

Windows XP Version 2600 (Service Pack 2) UP Free x86 compatible

Product: WinNt, suite: SingleUserTS

kernel32.dll version: 5.1.2600.2180 (xpsp_sp2_rtm.040803-2158)

Debug session time: Mon May 28 20:21:23.486 2007 (GMT-7)

System Uptime: 2 days 18:44:45.827

Process Uptime: 0 days 0:01:04.402

Kernel time: 0 days 0:00:00.000

User time: 0 days 0:00:00.010

0:000> .lastevent

Last event: 2d4.23c: Break instruction exception - code 80000003 (first chance)

0:000> ||

.  0 Live user mode: <Local>

The first line contains the process and the thread identifier generating the last debug-
ger event (debugger events are described in more detail in Chapter 3, “Debuggers
Uncovered”) displayed as (2d4.23c) along with the event description, a break
instruction exception, and the exception code 80000003. The debugger handled the
event on the first chance, before the normal exception handling in the user code.
(Exception handling is covered in more detail in Chapter 3.) This information is not
always available, but we should use it if we can find it. 

The register values displayed on the next few lines are not so relevant at this
point, with the notable exceptions of the instruction pointer (eip) and the stack
pointer (esp). The register structure tells about the architecture under which this
process runs, such as x64 or Itanium.  
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Immediately after the register information, there is the symbol associated with
the address where the last event was raised, along with the address and the instruc-
tion at that address. As you will see in the remainder of the book, the instruction itself
can explain the immediate cause of the break. 

The last piece of information from the debugger output is the command prompt.
The prompt (0:000>) tells that we are in the user mode debugger. (For a kernel
mode debugger session, the prompt contains the kd string.) The first number indi-
cates the active target of this debugger, and it will be 0 for most debugging sessions.
The second number represents the thread “number” of the thread raising the debug-
ger event. 

DEBUGGING MULTIPLE TARGETS It is not a very well-known fact that the Microsoft
debuggers are capable of debugging multiple remote systems at the same time. In this case,
the debugger will change the prompt and prefix the prompt with the system name as
0:0:000>. You can read more about this in debuggers help under the “Debugging Targets
on Multiple Computers” topic.

The kernel debugger prompts reveal information about the running environment
and the stop reason. Using option ‘2’ of 02sample.exe in the presence of the kernel
debugger causes the whole system to stop. Listing 2.7 shows the kernel debugger
console output while using the same commands as in the previous listing. 

Listing 2.7 Kernel mode debugger output

Break instruction exception - code 80000003 (first chance)

7c901230 cc              int     3

kd> vertarget

Windows XP Kernel Version 2600 (Service Pack 2) UP Free x86 compatible

Product: WinNt, suite: TerminalServer SingleUserTS

Built by: 2600.xpsp_sp2_rtm.040803-2158

Kernel base = 0x804d7000 PsLoadedModuleList = 0x8055ab20

Debug session time: Tue May 29 20:47:16.107 2007 (GMT-7)

System Uptime: 0 days 0:11:24.844 

kd> .lastevent

Last event: Break instruction exception - code 80000003 (first chance)

debugger time: Tue May 29 20:48:23.671 2007 (GMT-7)

kd> ||

.  0 Remote KD:

KdSrv:Server=@{<Local>},Trans=@{COM:Port=\\.\pipe\pipe1,Baud=19200,Pipe,Timeout=4000,

Resets=2}
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The first few lines indicate the cause of the current break, the amount of information
being dependent of the stop type. In this example, the kernel debugger encountered
a break instruction and stopped. The debugger also tells the exception code 80000003
generated by the break instruction. The next line contains the address of the current
instruction pointer followed by the current instruction in assembly language. A 64-bit
address for the instruction indicates that the current processor runs in 64-bit mode. In
this case, the 32-bit address indicates a processor executing in 32-bit mode. The oper-
ating system version and architecture are displayed in response to the vertarget
command. 

The debugger uses kd> as a prompt when the debugger target is a single proces-
sor system and n:kd> as a prompt when the debugger target has more than one
processor. The numeral denotes the logical processor number generating the current
debugger event. 

Setting Up and Using the Symbols
Debugging an application break without proper symbols is difficult, and there are
minimal chances to discover the problem in that application. No wonder that deter-
mining the accuracy of the symbol information is the most important step in debug-
ging. Bad symbols can lead you in wrong directions and create unrealistic hypotheses.
In this section, we discuss how to use the symbol files and discover their importance
in debugging. 

What Are Symbol Files?
When applications, libraries, drivers, or operating systems are built, the compile and
link procedure that creates the .exe, .dll, .sys, and other executable files (collectively
known as binaries or images) also creates a number of additional files known as sym-
bol files. To effectively debug a target image, all that symbolic information generated
at compile and link time must be available to the debugger. 

For various reasons, ranging from compilation performance to IP protection,
Microsoft has used several symbol formats, such as Common Object File Format
(COFF), CodeView format (CV), and Program Database format (PDB). Table 2.1
presents some characteristics of those formats. 
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Table 2.1 Different Formats Used by Microsoft in the Past 10 Years

Embedded in Extension When Supported by 

PE Image Non-embedded Windbg/ntsd

COFF Yes .dbg Yes
CV Yes .dbg Yes
PDB No .pdb Yes
Windows 9x/Me 
core symbols No .sym No

For example, early versions of Windows NT used symbol files with the extension
.dbg. Windows 2000 and earlier versions of Windows NT keep their symbols in files
with the extensions .pdb and .dbg. Windows XP and Windows Server 2003 use .pdb
files exclusively. Symbols for Windows drivers can follow either model, depending on
the compiler and linker version used to build them. Binary files generated by tools
not conforming to either of the recognized formats cannot be debugged properly
using the Windows debuggers.  

Symbol files hold a variety of data not needed when executing the binaries but
that is essential to the debugging process. Typically, symbol files contain

■ Names and addresses of global variables
■ Function names, their addresses, and their signatures 
■ Frame Pointer Optimization (FPO) data to aid the debugger
■ Names and locations of local variables 
■ Source file paths and line numbers associated with each symbol
■ Type information for variables, structures, and so on

The binaries are smaller due to keeping these symbol files separate. However, this
means that when debugging, you must make sure that the debugger can access the
symbol files associated with the target you are debugging. Both interactive debugging
and debugging crash dump files benefit from using correct symbols. You must obtain
the proper symbols for the code you want to debug and load these symbols into the
debugger.

Errors encountered in binary images running on the customer’s site can be inves-
tigated without having all this information available on the customer’s site. To dis-
courage reverse engineering, the generated symbol files, also known as private
symbols, are usually kept private by the company owning the intellectual property for
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those binary images. However, the customer can always use another symbol file, con-
taining a restricted set of symbols, called public symbols. Public symbol files are suf-
ficient for the module users, without disclosing the internal structures, function
parameters, or local variables. 

For example, public symbols are available for download as a whole package for
every version of the operating system shipped by Microsoft. In addition, each driver
shipped with any version of Windows has public symbols available in the same down-
load package. The binary file contains just a pointer to the symbols files, and the
debugger loads a public symbol or a private symbol, subject to availability. 

If you like to see the debug information stored in the binary file, the link.exe util-
ity, available from within WDK build windows, is the best tool for the task, as shown
in Listing 2.8. The information about the symbol file is stored in the debug directory
section of each executable module. 

Listing 2.8 Using the link.exe utility to find debug information stored in the binary file

C:\>link -dump -headers C:\WINDOWS\system32\ntdll.dll

Microsoft (R) COFF/PE Dumper Version 7.10.2179

Copyright (C) Microsoft Corporation.  All rights reserved.

Dump of file C:\WINDOWS\system32\ntdll.dll

... other information about the module

Debug Directories

Time Type       Size      RVA  Pointer

---- ---- ---- ---- ----

41107F17 cv           22 0007B6DC    7AADC    Format: RSDS, {36515FB5-D043-45E4-

91F6-72FA2E2878C0}, 2, ntdll.pdb

41107F17 (   A)        4 0007B6D8    7AAD8    BB030D70

Public symbol download packages represent a convenient way to get access to all sym-
bol files if the system does not change over time. Since it is very common to see one
binary file being updated several times between service pack releases, a dynamic
method of downloading the symbols just in time is much more useful. This function-
ality is provided by a symbol server, described in more detail in the “Symbol Server”
section. The symbol server finds and downloads on demand the symbol file associat-
ed with the module debugged, using the debug directory information as the key for
the symbol file.
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Symbol Path
How does the debugger know where to get the symbols required for a specific assem-
bly? The debugger uses two pieces of information: the location of the symbols path,
represented as a collection of paths, combined with the information stored in the
module headers used to validate the symbol files. Each path can be a local folder, a
UNC share, or a symbol server path, as described in the “Symbol Server” section. 

In the simple form, the symbol path is a succession of folders separated by the semi-
colon (;) character entered in the interactive debugger using the following command: 

0:000>.sympath C:\SymPath1;\\mysymbols\symbols

The symbol filename is extracted from the CV record of the image header or manu-
factured from the binary filename when the header is not available. The debugger
uses a heuristic algorithm to search the symbol file on the symbol path, validating
each symbol file found against the module information. If no matching symbol file is
found, the debugger defaults to using symbols exported by the module, as in Listing
2.9. The commands used in the listing will be explained shortly, in the “Reloading the
Symbols” section. 

Listing 2.9 Heuristic used by debugger to find the symbol file

0:000> !sym noisy

noisy mode - symbol prompts off

0:000> !reload -f kernel32.dll

DBGHELP: c:\SymPath\kernel32.pdb - file not found

DBGHELP: c:\SymPath\symbols\dll\kernel32.pdb - file not found

DBGHELP: c:\SymPath\dll\kernel32.pdb - file not found

DBGHELP: C:\WINDOWS\system32\kernel32.pdb - file not found

DBGHELP: kernel32.pdb - file not found

*** ERROR: Symbol file could not be found.  Defaulted to export symbols for C:

\WINDOWS\system32\kernel32.dll -

DBGHELP: kernel32 - export symbols

Symbol Server
Setting up symbols correctly for debugging can be a challenging task, especially when
a specific module has been released more than once. It requires knowing the names
and releases of all the modules loaded in the debugger target. The debugger must be
capable of locating each of the symbol files corresponding to the product release and
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service pack. This can result in an extremely long symbol path, consisting of a long list
of directories.

To simplify the difficulties associated with coordinating symbol files, a symbol
server can be used. A symbol server enables the debuggers to automatically retrieve
the correct symbol files without product names, releases, or build numbers. 

The symbol server is activated by including a certain text string in the symbol
path. Each time the debugger needs to load symbols, it calls the symbol server to
locate the appropriate files. The symbol server locates the files in a symbol store,
which is a collection of symbol files indexed according to combination of parameters
such as the symbol filename, the time stamp, and the image size.

The symbol path to a symbol server uses a special syntax that might contain mul-
tiple paths to downstream stores followed by the real address of the symbol server.
The basic syntax for the symbol path is

0:000>SRV*[cachei]*toppath

The SRV string indicates that the path is a symbol server path, with toppath repre-
senting the address of the symbol server. The symbol path can contain up to 10 down-
stream stores, local or UNC, which are used to cache the symbols. The cache stores
chain is a convenient method to implement common caches for a remote location
having a limited bandwidth. The symbol server address can be the UNC to a symbol
server implemented on a file system share, or it can be a URL to the symbol server.
This path can be combined with other symbol paths, using a semicolon (;) as a sepa-
rator, to create a symbol search path having access to all symbols required in that spe-
cific debugging session. 

Within a symbol server path, the symbol server searches for the symbol file in the
first downstream symbol store and loads it from this location, if found. On failure, it
recursively searches each symbol store for the file until one is found. The debugger
then caches that symbol file into previous downstream stores, which are writable. 

Because the software runs on Microsoft Windows operating systems, the debug-
ger should always use the Microsoft public symbol store, available at http://
msdl.microsoft.com/download/symbols URL, as one entry on the symbol
path.

It is also highly recommended that companies have a strong private symbol man-
agement policy. Chapter 4 describes the process of creating and maintaining such a
symbol store. In this case, the company-wide private symbol store path will be the
first entry in the symbol path, followed most likely by Microsoft public symbol store’s
address.
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The first downstream store in the symbol path should be a local cache entry,
which is usually faster than any other remote store. Listing 2.10 shows some examples
of symbol paths pointing to the Microsoft public symbol store, to a company symbol
store combined or not with a downstream store. The examples use c:\symbols
folder as the downstream store for faster symbol access. Note that you can combine
symbol server paths with regular UNC locations, as described in the previous section. 

Listing 2.10 Example of symbol server paths

0:000>.srvpath srv*c:\Symbols*http://msdl.microsoft.com/download/symbols

0:000>.srvpath srv*http://msdl.microsoft.com/download/symbols

0:000>.srvpath srv*c:\symbols*\\myserver\mysymbols*http://msdl.microsoft.com/

download/symbols

Symbol Cache
In the previous section, you saw how the debugger uses the downstream folders as
intermediate caches for the symbol files provided by the symbol server. The caching
improves the response time of all operations requiring new symbol file download.
However, if the symbol files are stored in a remote share but they are not organized
as a symbol server, we cannot use this caching mechanism. 

Later versions of debuggers solve this deficiency using the built-in support for
symbol files caching. The caching feature is enabled by specifying the cache folder in
the symbol path using a special format. The debugger recognizes the cache* direc-
tive and treats the folder following the start (*) character as a cache location. All sym-
bols acquired by the debugger from any path following the cache directive will be
cached regardless of their source. Listing 2.11 uses the cache directive to indicate a
local cache for symbols downloaded from a symbol server or from a symbol share.  

Listing 2.11 Example of symbol paths with local cache

0:000>.srvpath cache*c:\symbols;srv*http://msdl.microsoft.com/download/symbols

0:000>.srvpath cache*c:\symbols;\\farawayserver\symbols;

Maintaining the Symbol Cache
The local cache created by the mechanism described in the previous sections does not
have an expiration policy, and it can grow unbound if the target binaries change often.
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It is a good idea to periodically purge the cache folder. The Debugging Tools for
Windows provides the agestore.exe cleanup tool that can delete all files not accessed
after a specific date. The built-in help is sufficient to learn how to use it efficiently.
Listing 2.12 uses the agestore.exe command in list mode to evaluate how many files
were not recently used. It is recommended to always use this option before the actu-
al delete operation to confirm which files need to be deleted. 

Listing 2.12 Listing all symbol files unused since a specific date

C:\> agestore.exe -date=01-01-2007 -l -s c:\symbols

processing all files last accessed before 01-01-2007 12:00 AM

12-26-2006 9:43 PM   c:\symbols\02sample.pdb\5226684770524C77B6D9658E94FEA2F21\

02sample.pdb

12-26-2006 9:43 PM   c:\symbols\kernel32.pdb\04B9D5F57B154AA2BDBAB7946947DC4F2\

kernel32.pdb

12-26-2006 9:43 PM

c:\symbols\msvcrt.pdb\8A24BF4B1A05412FB0312AD4CB7867042\msvcrt.pdb

12-26-2006 9:43 PM   c:\symbols\ntdll.pdb\C0A498F0036E4D4FB5CBF69005B0F9242\ntdll.pdb

6098944 bytes would be deleted

Setting the Symbol Path
At startup, the debugger reads the _NT_ALT_SYMBOL_PATH and _NT_SYMBOL_PATH
environment variables and uses them together as a symbol path, in that order. If the
environment cannot be set, another method of setting the symbol path from the
beginning of the debug session is to start the debugger with the –y parameter.
WinDbg combines the path retrieved from the workspace with the one provided
through alternative mechanisms. The two sections shown in Listing 2.13 have the
same meaning.

Listing 2.13 Two methods of setting up the symbol path at debugger startup

Using the environment 
c:\>set _NT_SYMBOL_PATH=c:\symbols

c:\>windbg <image.exe>

Using the command-line parameter
C:\>windbg –y c:\symbols <image.exe>
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Regardless of the method used to specify the symbol path during the debugger start-
up, you can overwrite it in the interactive mode. After the debugger enters the inter-
active mode, multiple options exist for managing the symbol paths. You can set the
symbol path by using the .sympath command in one of the following forms. It is
important to notice that the change doesn’t affect the symbol files already loaded
from the previous symbol path.

■ 0:000>.sympath <new path>
Changes the current symbol path to the new path specified as the argument to
the command, which the debugger uses to load symbol files from. It overwrites
the existing symbol path without reloading any symbol file or discarding any
symbol already loaded. 

■ 0:000>.sympath+ <new path>
Appends the specified new path to the existing symbol path. 

■ 0:000>.sympath
Displays and resolves the current symbol path. Inaccessible symbol paths are
listed at the end of the output; currently, symbol server entries are not
resolved.
If you look at the previous examples using the Microsoft symbol store, you
might be wondering if such a long URL must be memorized. You can keep it
in a file with well-known strings to paste in the debugger console when you
need it, but a better way is by using the .symfix command.

■ 0:000>.symfix <downstream folder>
Changes the symbol path to Microsoft’s public symbol store. The command
takes a downstream folder, caching all symbols downloaded from the Microsoft
public symbol store. As a result of this command, the symbol path is set to
SRV*downstream folder*http://msdl.microsoft.com/download/symbols.

■ 0:000>.symfix+ <downstream folder> 
Appends the Microsoft public symbol store to the existing symbol path. The
command takes a downstream folder, caching all symbols downloaded from
the Microsoft public symbol store. Listing 2.14 shows the typical usage of the
.sympath and .symfix commands.

Listing 2.14 Using the .sympath and .symfix commands

0:000> .sympath srv*c:\symstore.pri

Symbol search path is: srv*c:\symstore.pri

0:000> .sympath+ c:\PathNotAvailable

http://msdl.microsoft.com/download/symbols
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Symbol search path is: srv*c:\symstore.pri;c:\PathNotAvailable

WARNING: Inaccessible path: ‘c:\PathNotAvailable’

0:000> .sympath

Symbol search path is: srv*c:\symstore.pri;c:\PathNotAvailable

WARNING: Inaccessible path: ‘c:\PathNotAvailable’

0:000> .symfix c:\symbols

0:000> .sympath

Symbol search path is: SRV*c:\symbols*http://msdl.microsoft.com/download/

symbols

0:000> .sympath c:\

Symbol search path is: c:\

0:000> .symfix+ c:\symbols

0:000> .sympath

Symbol search path is: c:\;SRV*c:\symbols*http://msdl.microsoft.com/download/symbols

Even if all the illustrated examples are used in the user mode debugger, the same
options are available for the kernel mode debugger. It is important to note that all
paths are relative to where the debugger engine runs; this has a direct impact in sce-
narios in which the user mode debugger is redirected through the kernel debugger.

Checking the Loaded Modules and Symbol Files
The debugger loads the symbols as needed at the first attempt to resolve a symbol
within a specified module. If the load operation fails, the debugger does not retry
reloading the module. The symbol loading state can be viewed using the lm (list mod-
ules) command, one of the most useful commands for exploring the loaded module’s
information. 

0:000>lm [option] [-a Address] [-m Pattern] [-M Pattern]

The general form of the command has multiple options, but only a few are used more
often. This section includes several examples using the 02sample.exe binary, the
book’s symbols store, followed by the Microsoft public symbols store. For clarity, the
symbol path is set using the environment variable, as follows:

c:\>set _NT_SYMBOL_PATH=CACHE*C:\Symbols;

SRV*http://www.advancedwindowsdebugging.com/symbols/symstore.pri;

SRV*http://msdl.microsoft.com/download/symbols

C:\>windbg C:\AWDBIN\WinXP.x86.chk\02sample.exe

The _NT_SYMBOL_PATH variable is observed by most tools used to debug software
applications on the Windows platform. The same symbol path can be set into any other
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tool using methods specific to each tool. The symbol path shown in the previous list-
ing is sufficient to download and cache all the symbols used in the book’s samples. 

lm returns information about all modules loaded in the process, along with the
address range used by the module, the symbol loading results, and the symbol file
path (relative to the symbol path). 

0:000> lm

start    end        module name

00400000 00404000   02sample        (private pdb symbols)

c:\symbols\02sample.pdb\DE4335BC88FD4EA1A1714350C33B84281\02sample.pdb

76080000 760e5000   msvcp60    (deferred)

77c10000 77c68000   msvcrt     (deferred)

7c800000 7c8f4000   kernel32   (deferred)       

7c900000 7c9b0000   ntdll      (pdb symbols)

c:\symbols\ntdll.pdb\36515FB5D04345E4

91F672FA2E2878C02\ntdll.pdb

The command accepts various options filtering the list of modules that are processed.
For example, lm l processes only loaded symbols files, whereas lm e processes the
modules for which no symbol file has been found. 

The lm command also accepts a string pattern that is used to filter which mod-
ules are processed by the commands. The module name filtering is specified by using
the m parameter, and the entire path filtering is triggered by the M parameter. The
parameters can be combined to obtain the desired behavior, as shown in Listing 2.15.
Listing 2.15 shows verbose information about modules whose names match the ker-
nel* string. Note that the pattern string does not include the extension. When the
extension is entered as part of the pattern, the command doesn’t find the specified
module. 

Listing 2.15 Displaying information about a loaded module

0:000> lm v m kernel*

start    end        module name

7c800000 7c8f4000   kernel32   (export symbols)       C:\WINDOWS\system32\kernel32.dll

Loaded symbol image file: C:\WINDOWS\system32\kernel32.dll

Image path: C:\WINDOWS\system32\kernel32.dll

Image name: kernel32.dll

Timestamp:        Wed Aug 04 00:56:36 2004 (411096B4)

CheckSum:         000FF848

ImageSize:        000F4000

File version:     5.1.2600.2180

Product Version:   5.1.2600.2180



59Basic Debugger Tasks

File flags:       0 (Mask 3F)

File OS:          40004 NT Win32

File type:        2.0 Dll

File date:        00000000.00000000

Translations:     0409.04b0

CompanyName:      Microsoft Corporation

ProductName:      Microsoft<< Windows<< Operating System

InternalName:     kernel32

OriginalFilename: kernel32

ProductVersion:   5.1.2600.2180

FileVersion:      5.1.2600.2180 (xpsp_sp2_rtm.040803-2158)

FileDescription:  Windows NT BASE API Client DLL

LegalCopyright:   © Microsoft Corporation. All rights reserved.

Despite the amount of information returned by the lm command, additional infor-
mation is buried in the module header that can be explored by the !lmi extension
command. This extension command dumps the entire debug directory information,
as shown in Listing 2.16.

Listing 2.16 Displaying the module headers

0:000> * !lmi command accepts the module address or module’s name

0:000> !lmi ntdll.dll

Loaded Module Info: [ntdll.dll]

Module: ntdll

Base Address: 7c900000

Image Name: ntdll.dll

Machine Type: 332 (I386)

Time Stamp: 411096b4 Wed Aug 04 00:56:36 2004

Size: b0000

CheckSum: af2f7

Characteristics: 210e  perf

Debug Data Dirs: Type  Size     VA  Pointer

CODEVIEW    22, 7b6dc,   7aadc RSDS - GUID: (0x36515fb5, 0xd043, 0x

45e4, 0x91, 0xf6, 0x72, 0xfa, 0x2e, 0x28, 0x78, 0xc0)

Age: 2, Pdb: ntdll.pdb

CLSID     4, 7b6d8,   7aad8 [Data not mapped]

Image Type: FILE     - Image read successfully from debugger.

C:\WINDOWS\system32\ntdll.dll

Symbol Type: PDB      - Symbols loaded successfully from symbol server.

ntdll.pdb\36515FB5D04345E491F672FA2E2878C02\ntdll.pdb

Load Report: public symbols , not source indexed

ntdll.pdb\36515FB5D04345E491F672FA2E2878C02\ntdll.pdb
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In some cases, not even the information returned by !lmi is enough. The module
headers can be further explored using another debugger extension, !dh <module
address> , or they can be inspected outside the debugger with your tools of choice. 

MORE MODULE INFORMATION Some debugging situations require additional informa-
tion about the binary images. For example, when debugging a stack overflow, it is easy to
obtain the stack size used by the thread. However, this value must be compared against the
default stack reserve size. This size, stored in the process image headers, is useful to under-
stand if the thread uses more stack space than the developer intended. The following com-
mand displays the module headers, similar to the WDK tool link.exe, described in Listing 2.8. 

0:000>!dh <module start address>|<module name> -f 

Reloading the Symbols 
Because using an invalid symbol file is worse than not using any, reloading the correct
symbol files is important. The basic command for fixing the symbols is .reload com-
bined with the multitude of its available options. Despite its name, the .reload com-
mand does not load by default the new symbol files. The command discards
previously loaded symbol files and relies on the debugger to reload the files on the
first attempt to use them. Some common forms of the .reload command are

■ 0:000>.reload
Discards symbol information for all loaded modules, returning the debugger
back to the initial state. Any attempt to resolve a symbol reloads the symbol file
from the disk. 

■ 0:000>.reload <module>
Discards the information about a specified module. Any attempt to resolve a
symbol will reload the symbol file from the disk. 

■ 0:000>.reload /f <module>
Forces the debugger to immediately resolve and load the symbol file associat-
ed with the module.

■ 0:000>.reload nt
Kernel mode debugger option. It reloads the symbol file corresponding to the
current Windows NT kernel, essential for most operations in the kernel mode
debugger. The command does not work in user mode.  

■ 0:000>.reload /user
Kernel mode debugger option. It reloads all user mode symbol files for the
active process. 
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■ 0:000>.reload <module>=start, length 
All the commands shown previously use the information stored in the module
header and in the process control block (PCB) to obtain the module address
space in memory and the symbol file reference. If any information is missing,
as is the case when the system is low in memory, you can find the starting
address from different sources (build log, identical running systems) and force
the symbol load by specifying the starting address, as shown in the following
example:

0:000>.reload rpcrt4.dll=78000000,86000

This is also useful if you have an address for a module that has already been
unloaded, and you need to reconstruct the stack for the code path in the miss-
ing module. 

■ 0:000>.sym noisy 
When the .reload command fails, you must turn on the verbose log for the
.reload command, controlled by the .sym command. .sym noisy enables
the verbose logging after which any .reload command shows all the load
attempts and their operation results. 

Validating Symbols
Without the correct symbols, a good developer can spend hours reading the source
code, hoping to understand why the debugger shows a stack that does not make sense
or why some variables have completely unrealistic values. We cannot overstate the
importance of ensuring that the symbols are correct. But how can you be sure that
the symbols are correct? 

The first option is to use the lml command to inspect the possible warnings about
symbol files. Furthermore, the debugger provides an extension command that can
test the validity of the symbol file against the image file. This extension command
takes either an address inside the loaded image or the image name. The extension
tests against the symbol file specified as a parameter or against the symbol file already
loaded by debugger. The following listing uses the extension command to validate the
correctness of the loaded symbols for the image loaded at the specified address. 

0:000> !chksym 01001b90

02sample.exe

Timestamp: 461001C1

SizeOfImage: 5000
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pdb: 02sample.pdb

pdb sig: 52266847-7052-4C77-B6D9-658E94FEA2F2

age: 1

Loaded pdb is +.sympath

SRV\02sample.pdb\5226684770524C77B6D9658E94FEA2F21\02sample.pdb

02sample.pdb

pdb sig: 52266847-7052-4C77-B6D9-658E94FEA2F2

age: 1

MATCH: 02sample.pdb and 02sample.exe 

Using Symbols
Almost every command uses the symbol information, directly or indirectly, but a few
are dedicated to symbol inspection. The basic command to examine the symbols is x,
which stands for “examine symbols.” The command has the following general syntax:

O:000>x [options] module!symbols 

Both the module part and the symbols part can contain wildcards. The wildcard sup-
port is a powerful tool when debugging unfamiliar code because it allows us to guess
function names or global variables well before reading the code. Several common
uses of the x command are listed here:

■ 0:000>x *!*some* 
Search a symbol name containing the string some in the middle of every sym-
bol within each symbol file for the debugger target. If the symbol is an export-
ed function, the result contains both the modules implementing it, as well as the
modules importing it (prefixed by _imp string), as in the following example:

0:000> x *!*NtOpenThreadToken*

77e41348 kernel32!_imp__NtOpenThreadToken = <no type information>

7c821808 ntdll!NtOpenThreadTokenEx = <no type information>

7c8217f8 ntdll!NtOpenThreadToken = <no type information>

■ 0:000>x module!prefix*
If any module uses naming conventions, such as prefixing all global variables
by a common prefix, these conventions can be factored into the investigation.
For example, if all global variables are prefixed by g_, the x module!g_*
command lists all global variables, along with their current value, as follows:
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0:000> x kernel32!g_*

77ecdb74 kernel32!g_hModXPSP2Res = <no type information>

...

77e77c80 kernel32!g_DllEntries = <no type information>

■ 0:000>x /v /t module!symbol

Using the /v command can help you better understand the content of the
binary file. It shows the symbol type and the size, in bytes, occupied by that
object or function in ascending size order.

0:000> x /v /t 02sample!*

prv global 00402004    4 02sample!__security_cookie_complement = 0xffff4134

... 

prv global 004010a0    4 02sample!__xc_a = <function> *[1]

...

prv func   00401713   11 02sample!__SEH_epilog (void)

prv func   004013fa   cc 02sample!wmain (unsigned long, wchar_t **)

... 

The symbol inspection commands are unable to work at their full capabilities when
the debugger uses the public symbol file for the image. Another helpful command
making good use of the symbols is the ln command, which stands for “list near.” The
ln command shows the symbol associated with the specific address, if available.
When no symbol exactly matches the address, the debugger returns a symbol gener-
ated by pointer arithmetic on a symbol closer to that address. 

0:000> ln 01001b90

(01001b90)   02sample!wmain | (01001bc0)  02sample!AppInfo::AppInfo

Exact matches:

02sample!wmain (unsigned long, wchar_t **)

0:000> ln 01001b90+1

(01001b90)   02sample!wmain+0x1 | (01001bc0)  02sample!AppInfo::AppInfo 

The exact matches are very valuable, although the calculated one should be taken
with caution, especially when the address is part of an image file that is part of the
operating system. Microsoft uses special techniques to optimize the executable
images for performance before releasing them. After optimization, a single function
can be split in multiple sections located at different addresses, adversely impacting
the pointer arithmetic performed by the debugger. The performance-optimized
image can be identified by the presence of the perf attribute into the module char-
acteristics, as shown in Listing 2.16. 
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This command is very powerful when you are inspecting an arbitrary piece of data
and you don’t know what it represents. If the address you are examining is part of a
stack, most probably you will find sequences from the calling stack, and ln can help
you identify them. If you are inspecting a heap block, it is very possible to find frag-
ments from original objects, which can help with identifying the block usage.

Using Source Files
When debugging a software application, the source files are useful in two main situ-
ations: when executing the code line by line to learn or to validate its behavior, or
when creating possible scenarios leading to the application failure. In both cases, the
access to private symbol files is required, as they contain information that correlates
each symbol with the source filename and line, as well as the location of all source
files used to generate the binary file. 

The debugger uses the source location information stored in the symbol file and
tries to locate files in various locations as indicated by the source path location.
WinDbg preserves the last source path location in the workspace. The location can be
overwritten using the srcpath command-line switch, such as windbg -srcpath
<SourcePath>. Interactively, the source path can be changed using the .srcpath
command or using the Source File Path menu item in the File menu. When debug-
ging images on the same system used to compile them, the debugger does not need
any source path. The unprocessed symbol files contain fully qualified paths to the
source files, which are opened directly by the debugger. 

The source path is interpreted by the debuggers as a list of file paths, separated
by semicolon (;) characters. The debugger then finds a source file, located in the
source path folder, representing the best match for the file path originally used to
build the binary. The source path is entered in the debugger command windows using
a dot (.) command, as in the following:

0:000>.srcpath c:\;\\mycompany\sources

Source search path is: c:\; \\mycompany\sources

Because the source file resolution process is relatively complex and depends on a
number of parameters on the local system, sometimes the debugger is unable to
locate or access the correct source file for the source path retrieved from the private
symbol files. The debugger provides a verbose mode for the process of locating the
correct source code files. This mode can be controlled by another command, .src-
noisy <1|0>. When enabled, the debugger displays all locations checked for the
presence of the source file, as well as the result of each operation. 
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0:000> .srcnoisy 1

Noisy source output: on

0:000> .srcpath e:\;c:\

Source search path is: e:\;c:\

DBGENG:  Scan paths for partial path match:

DBGENG:    prefix ‘c:\awd\chapter2’

DBGENG:    suffix ‘sample.cpp’

DBGENG:      match ‘e:’ against ‘c:\awd\chapter2’: 14 (match ‘’)

DBGENG:      match ‘c:’ against ‘c:\awd\chapter2’: 14 (match ‘’)

DBGENG:  Scan paths for partial path match:

DBGENG:    prefix ‘c:\awd’

DBGENG:    suffix ‘chapter2\sample.cpp’

DBGENG:      match ‘e:’ against ‘c:\awd’: 5 (match ‘’)

DBGENG:      match ‘c:’ against ‘c:\awd’: 5 (match ‘’)

DBGENG:  Scan paths for partial path match:

DBGENG:    prefix ‘c:’

DBGENG:    suffix ‘awd\chapter2\sample.cpp’

DBGENG:      match ‘e:’ against ‘c:’: 1 (match ‘’)

DBGENG:      match ‘c:’ against ‘c:’: -1 (match ‘c:’)

DBGENG:      check ‘c:\awd\chapter2\sample.cpp’

DBGENG:      found file ‘c:\awd\chapter2\sample.cpp’

The default source file matching is not as strict as the symbol file matching because
the source information is just the fully qualified source filename. As long as a source
file having the same name as the name indicated in the symbol file is found in the
source path, the debugger loads it. The process works reasonably well for applications
in which the source files are unchanged from last compilation. 

Chapter 4 explains how to address this problem using a source server that works
side by side with a source control system to ensure source correctness. The debugger
interprets the source server information stored in the symbol files when the SRV*
string is present in the source path. The debugger extracts the source file from the
source store described in the symbol file and caches it on the local system. 

For the sake of convenience, the debugger accepts the .srcfix command,
which simply sets the source path to SRV* in case the exact syntax of the source serv-
er path is forgotten. The process of loading the source file from the source server is
illustrated in the following listing: 

0:000> .srcnoisy 1

Noisy source output: on

0:000> .srcfix

Source search path is: SRV*

DBGENG:  Scan srcsrv SRV* for:

DBGENG:    ‘<token>!c:\awd\chapter2\sample.cpp’
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DBGENG:      found file ‘c:\awd\chapter2\sample.cpp’

DBGENG:      server path ‘SRV*’

DBGENG:      local ‘http://www.advancedwindowsdebugging.com/sources/AWD/Chapter2/

sample.cpp/VERSION1/sample.cpp’

When the source path is a combination of local paths and the source server path, the
debugger uses the source server mechanism for all files that are indexed in the source
server, as described in the symbol files. The debugger uses the standard path when
matching all other files. Even if the sources are provided by multiple source stores,
the SRV* string is required just once in the source path. 

Similar to the symbol path, to simplify the process of composing the source path,
both .srcfix and .srcpath provide an alternative syntax, .srcpath+ <srcpath>
or .srcfix+, which append to the existing source server path. The next listing shows
an example of appending a share location to the existing source path. 

0:000> .srcpath+ \\mysources\sources

Source search path is: srv*;\\mysources\sources

Exploratory Commands
As you have seen before, the message displayed by the debugger is very helpful in
understanding why and where the debugger stopped. If we connect to a remote
debugger after the event has been encountered, we lose precious information, which
might have been previously displayed in the debugger console. In this section, we
explore a few options that we have when trying to understand the state in which the
debugger target stopped and the reason for the current stop. 

Why Did the Debugger Stop?
The .lastevent command displays information about the last debugger event that
caused the current debugger to stop. Chapter 3 explains the origin and importance of
possible debugger events. Listing 2.17 shows a sample of output generated by the
.lastevent command in two cases: after the debugger stopped because of a user-
defined breakpoint and, in the second output, because of an operation on an inac-
cessible memory location. Knowing why the debugger stopped can sometimes
complete the investigation, as is the case with the initial process breakpoint or process
exit breakpoint. 
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Listing 2.17 .lastevent output

0:000> * after a breakpoint

0:000> .lastevent

Last event: 170c.1464: Hit breakpoint 2

0:000> * after an access violation exception

0:000> .lastevent

Last event: 170c.1464: Access violation - code c0000005 (first chance)

What Is the Target System?
The program you are debugging behaves differently depending on the operating sys-
tem and the updates installed on it—not because it uses a feature of one of those
releases, but because the operating system mechanism can change between releases.
At the same time, the debugger and its extensions use components implemented in
the operating system, which can behave differently across different releases, intro-
ducing limitations to the debugger tool itself. 

So, except for the case in which you are debugging a component not dependent
on operating system services, you most likely need to know the operating system ver-
sion, the debugger version, the loaded extension version, and so on. 

The vertarget command is a subset of the version command, which displays
only the version of the operating system running the debugger target. The version
command shows additional information about the debugger environment, the com-
mand line used to start the debugging session, as shown in Listing 2.18. If the system
uses more than one processor, the first line also shows the number of active proces-
sors; otherwise, it shows the UP (which stands for uni processor) string.    

Listing 2.18 The version output from a user mode debugger

0:000> version

Windows XP Version 2600 (Service Pack 2) UP Free x86 compatible

Product: WinNt, suite: SingleUserTS

kernel32.dll version: 5.1.2600.3119 (xpsp_sp2_gdr.070416-1301)

Debug session time: Sun Jul  8 14:31:35.259 2007 (GMT-7)

System Uptime: 0 days 0:10:39.826

Process Uptime: 0 days 0:00:04.356

Kernel time: 0 days 0:00:00.030

User time: 0 days 0:00:00.020

Live user mode: <Local>

command line: ‘“c:\Program Files\Debugging Tools for Windows”\ntsd notepad’  
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Debugger Process 0x738

dbgeng:  image 6.6.0007.5, built Sat Jul 08 13:12:40 2006

[path: c:\Program Files\Debugging Tools for Windows\dbgeng.dll]

dbghelp: image 6.6.0007.5, built Sat Jul 08 13:11:32 2006

[path: c:\Program Files\Debugging Tools for Windows\dbghelp.dll]

DIA version: 60516

Extension DLL search Path:

c:\Program Files\Debugging Tools for Windows\winext;c:\Program Files\Debugging

Tools for Windows\winext\arcade;c:\Program Files\Debugging Tools for

Windows\WINXP;c:\Program Files\Debugging Tools for Windows\pri;c:\Program Files\Debug-

ging Tools for Windows;c:\Program Files\Debugging Tools for

Windows\winext\arcade;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS

\System32\Wbem

Extension DLL chain:

dbghelp: image 6.6.0007.5, API 6.0.6, built Sat Jul 08 13:11:32 2006

[path: c:\Program Files\Debugging Tools for Windows\dbghelp.dll]

ext: image 6.6.0007.5, API 1.0.0, built Sat Jul 08 13:10:52 2006

[path: c:\Program Files\Debugging Tools for Windows\winext\ext.dll]

exts: image 6.6.0007.5, API 1.0.0, built Sat Jul 08 13:10:48 2006

[path: c:\Program Files\Debugging Tools for Windows\WINXP\exts.dll]

uext: image 6.6.0007.5, API 1.0.0, built Sat Jul 08 13:11:02 2006

[path: c:\Program Files\Debugging Tools for Windows\winext\uext.dll]

ntsdexts: image 6.0.5457.0, API 1.0.0, built Sat Jul 08 13:29:38 2006

[path: c:\Program Files\Debugging Tools for Windows\WINXP\ntsdexts.dll]

What Are the Current Register Values?
After we know why the debugger stopped, what operating system it runs on, and what
extensions are available for our investigations, it is time to find an explanation for the
current break. The process of finding the reason for the break can be compared to
forensics work of collecting and questioning every piece of evidence that we can get
from the debugger, exploring all unknown elements, and validating any assumption
that we made while investigating the failure. The first step is to validate symbol cor-
rectness, as described in the symbol section. If the symbols are not correct, we can
easily fix them, as described in the earlier section “Reloading the Symbols.” 

The r command, which stands for register, provides the access to processor regis-
ters. In the simplest form, it displays all register values according to the register mask
active on the debugger. The r command can also load a register with a user-entered
value. That option is extremely useful when you use the debugger to simulate various

Listing 2.18 The version output from a user mode debugger (continued)
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failures in the code execution to trigger different code paths. For example, after a call
to allocate some memory using the malloc function, the allocated block address is
returned from the function using the eax register. If that value is replaced with zero,
the application can be tested for out-of-memory conditions. The display command can
be scoped to a single register or even to a single flag from the eFlags register.
WinDbg provides a register window that’s updated with the current context every time
the debugger stops. Listing 2.19 uses the r command to read and write register values. 

Listing 2.19 Registers value using the default register mask

0:000> r

eax=00000000 ebx=00000000 ecx=00000000 edx=00000000 esi=7d61cbcf edi=00000000

eip=7d61cbe1 esp=0014fed4 ebp=0014ff0c iopl=0         nv up ei pl nz na po nc

cs=0023  ss=002b  ds=002b  es=002b  fs=0053  gs=002b             efl=00000202

ntdll!NtTerminateProcess+0x12:

7d61cbe1 c20800          ret     8

0:000> * Displaying eax register

0:000> reax

eax=00000000

0:000> * Displaying the overflow flag

0:000> r of

of=0

0:000> * Changing eax register

0:000 > reax=1

The register mask is a bit mask that controls what registers are displayed by the r
command. The rm command can be used to display the current register mask or to
change it according to the debugging needs. Listing 2.20 shows some useful examples
of the rm command. In general, for a standard application, we are only interested in
integer registers. If the application makes heavy use of floating point, we will set the
mask to show those values as well. When debugging programs that make heavy use of
Streaming SIMD Extensions, we can enable MMX or SSE XMM registers in the out-
put using the register mask.

Listing 2.20 Changing the default register mask

0:000> * What is the current mask?

0:000> rm

Register output mask is 9:

1 - Integer state (32-bit)

8 - Segment registers
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0:000 > * What is the meaning of all register mask bits?

0:000 > rm ?

1 - Integer state (32-bit) or

2 - Integer state (64-bit), 64-bit takes precedence

4 - Floating-point state

8 - Segment registers

10 - MMX registers

20 - Debug registers and, in kernel, CR4

40 - SSE XMM registers

0:000 > * Setting the mask to zero (nothing is displayed)

0:000 > rm 0

0:000 > r

ntdll!NtTerminateProcess+0x12:

7d61cbe1 c20800          ret     8

The first question we might ask is the value of the program counter register (also
known as instruction pointer registers). We also might ask how the processor got to
that location. An instruction pointer register name depends on the processor archi-
tecture, making it difficult for casual debugger users to remember the name on all
platforms. To overcome the naming problem, the debugger’s team introduced various
pseudo-registers, specialized to the hardware architecture by debugger. For example,
the $ip pseudo-register name represents the instruction pointer register name in the
current debugger target architecture. 

Pseudo-registers are symbolic names, in the form of $name, recognized by the
debugger as variables holding values in the current debugging session. The debugger
manages several automatic pseudo-registers representing values meaningful in the
current debugger session. For example, the $ip pseudo-register is the same as the
eip register from x86 processors or the rip register for x64 processors; the $tpid
pseudo-register is the current process identifier (PID). The debugger provides 20
other general-purpose pseudo-registries, named $t0–$t19, in the current debugger
session. As with the standard registers, pseudo-register names must be escaped using
ampersand (@) characters in expressions.  

You can find a detailed list with the description of each pseudo-register in the
debugger (help topic Pseudo-Registers), along with their availability in various
debugger scenarios. In the remainder of this book, we use the following pseudo-
registers as much as possible:

■ $ip: The instruction pointer register; dot sign (.) evaluates to the current
instruction pointer as well. Depending on the processor architecture, $ip eval-
uates as the following:

Listing 2.20 Changing the default register mask (continued)
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$ip = eip on x86 architecture
$ip = rip on x64 architecture
$ip = iip on Itanium architecture

■ $ra: The return address from the current function.
■ $retreg: The primary value register; immediately after the function call

returns, it contains the result of the function. Depending on the processor
architecture, $retreg evaluates as the following:  
$retreg = eax on x86 architecture
$retreg = rax on x64 architecture
$retreg = ret0 on Itanium architecture

■ $csp: The current stack pointer; depending on the processor architecture,
$csp evaluates as following:  
$csp = esp on x86 architecture
$csp = rsp on x64 architecture
$csp = bsp on Itanium architecture

■ $proc: The current process; it contains the address of the process environ-
ment block (PEB) in user mode or the address of the current processes’
EPROCESS structure in kernel mode debugger.

■ $thread: The current thread; it contains the address of the thread environ-
ment block (TEB) in user mode or the address of the current thread’s
ETHREAD structure in kernel mode debugger.

■ $tpid: The current process identifier (PID).
■ $tid: The current thread identifier (TID).

Listing 2.21 shows the typical use of pseudo-register in normal commands. 

Listing 2.21 Pseudo-register used on user mode debugger break (x86)

0:000> reip

eip=00401264

0:000> r$ip

$ip=00401264

0:000> ?.

Evaluate expression: 4199012 = 00401264

0:000> reax

eax=00401264

0:000> r$retreg

$retreg=00401264

0:000> r$proc

$proc=7ffde000
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0:000> r $peb

$peb=7ffde000

0:000> r$thread

$thread=7ffdd000

0:000> r$teb

$teb=7ffdd000

0:000> ~

.  0  Id: 16f8.16c8 Suspend: 1 Teb: 7ffdd000 Unfrozen

0:000> r$tid

$tid=000016c8

0:000> r$tpid

$tpid=000016f8

0:000> r$t1=0xbaadf00d

0:000> r$t1

$t1=baadf00d

What Code Is the Processor Executing Now?
To find out details about the current break, we will start by analyzing the code sec-
tion containing the failure, starting with the current program counter. The u com-
mand, which stands for “unassembly,” is used to inspect the machine code generated
from the source code. We start the executable 02sample.exe under the debugger and
select the option ‘1’ to generate an access violation. Listing 2.22 shows the debugger
command window after using the u command at the break. WinDbg provides a dis-
assembly window that’s updated with the assembly code at the current instruction
pointer location every time the debugger stops. 

Listing 2.22 The u command used in user mode debugger (x86)

0:000> * Unassembly eight instruction as the address current $ip

0:000> u .

02sample!RaiseAV+0xd:

00401264 c6050000000000   mov     byte ptr [00000000],0x0

0040126b 8be5             mov     esp,ebp

0040126d 5d               pop     ebp

0040126e c3               ret

...

0:000> * Unassembly the entire function containing the current $ip

0:000> uf .

02sample!RaiseAV:

00401257 8bff             mov     edi,edi

Listing 2.21 Pseudo-register used on user mode debugger break (x86) (continued)
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00401259 55               push    ebp

0040125a 8bec             mov     ebp,esp

0040125c 6a04             push    0x4

0040125e 58               pop     eax

0040125f e8cc020000       call    02sample!_chkstk (00401530)

00401264 c6050000000000   mov     byte ptr [00000000],0x0

0040126b 8be5             mov     esp,ebp

0040126d 5d               pop     ebp

0040126e c3               ret

0:000> * Unassembly eight instructions prior to the current $ip

0:000> ub .

02sample!RaiseCPP+0x24:

00401255 cc               int     3

00401256 cc               int     3

02sample!RaiseAV:

00401257 8bff             mov     edi,edi

00401259 55               push    ebp

0040125a 8bec             mov     ebp,esp

0040125c 6a04             push    0x4

0040125e 58               pop     eax

0040125f e8cc020000       call    02sample!_chkstk (00401530)

0:000> * Unassembly two instructions after the current $ip

0:000> u . L2

02sample!RaiseAV+0xd:

00401264 c6050000000000   mov     byte ptr [00000000],0x0

0040126b 8be5             mov     esp,ebp

0:000> * Unassembly two instructions prior to the current $ip

0:000> ub . L2

02sample!RaiseAV+0x7:

0040125e 58               pop     eax

0040125f e8cc020000       call    02sample!_chkstk (00401530)

0:000> * Unassembly ten instructions between $ip and $ip plus ten 

0:000> u . .+a

02sample!RaiseAV+0xd:

00401264 c6050000000000   mov     byte ptr [00000000],0x0

0040126b 8be5             mov     esp,ebp

0040126d 5d               pop     ebp

What Is the Current Call Stack?
Knowing the current register values, the current executing instruction pointer, plus a
few instructions surrounding it helps us to understand the current fault, but we are
far from understanding the dynamic factors contributing to this fault, such as what
code was executed before it, how the registers have been changed by other functions,
and much more. 
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The processor uses stack memory areas controlled by a stack register to record
the return address where the execution must continue after completing the current
function call. Because each processor manages the stack in its own way, we focus on
the x86 family of processors, as they are common and easily accessible, for all of our
examples in this chapter. The 64-bit processor-specific aspects are discussed in
Chapter 12, “64-Bit Debugging,” that must be studied before digging into the 64-bit
realm. The x86 processor stack always grows downward, and it is addressed by the
stack pointer register, named esp. 

Chapter 5, “Memory Corruption Part I—Stacks,” explains in detail the differ-
ences between various calling conventions used in the x86 processor architecture and
how they affect code execution. This chapter focuses on the __stdcall calling conven-
tion, as it is the default convention used by Windows APIs. This section (and the
remainder of the book), ignores frame pointer omission (FPO) optimization, simply
because it is not used in Windows XP SP2 and later operating systems. Since FPO
optimization makes debugging nearly impossible without symbols, the current rec-
ommendation is to avoid it completely. 

Upon entering a function, the compiler generates a so-called stack frame that is
maintained using the frame base pointer register ebp. The function prolog saves the
current value of ebp on the stack and loads the current stack pointer value that will
be kept until the function executes the function epilog. Within the function, the com-
piler addresses input parameters using positive offsets for the frame-based pointer
and negative offsets for the local variable allocated in the function. The simplest func-
tion prolog and function epilog are shown here:

0:000> uf .

02sample!KBTest::Fibonacci_stdcall:

00401760 8bff            mov     edi,edi

00401762 55              push    ebp

00401763 8bec            mov     ebp,esp

... 

004017b3 8be5            mov     esp,ebp

004017b5 5d              pop     ebp

004017b6 c20400          ret     4

In the function epilog, the ebp value is reloaded with the saved value so that the reg-
ister is preserved after the call. The layout of the input parameters, the local variable,
and the base frame pointer are shown in the next figure. Before making a function
call, the caller pushes all the function parameters on the stack. The processor then
saves the address from where the execution will continue on return. The called func-
tion uses the stack to save the old ebp and allocates the necessary space for the local
variable. The ebp register is then used to access the input parameters and the local
variable, as you can see on the right side of Figure 2.5.
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Figure 2.5 Stack content when calling a function following the __stdcall convention 

The call stack records the entire chain of function calls made by the current thread,
resulting in the invocation of the current function. The stack representation starts
with the current executed function displayed at the top followed by its caller, the
caller of the current function callers, and so on—each calling point being identified
by its stack frame. The process repeats itself until the debugger reaches the last stack
frame on the call stack, or an external condition, such as incorrect symbols or a non-
accessible stack, prevents the debugger from further decoding the stack.

Not surprisingly, the stack of the current fault is one of the most used pieces of infor-
mation. Sometimes the thread stack is used to index and catalogue software failures. 

The k (display stack back trace) command can be used to analyze the current
stack using module symbols and formatting the information according to additional
parameters passed in the command line. As with most context-dependent commands,
k interprets the stack from the current context information. WinDbg provides a call
stack window that’s updated every time the debugger stops. 

To experiment with k commands, we will run 02sample.exe under debugger and
select the option to generate a normal call stack. This option recursively calculates the
32nd number from the Fibonacci series. The source code for the function is shown in
Listing 2.23.

Listing 2.23 Source of Fibonacci function implemented in the 02sample.exe sample

#define STOP_ON_DEBUGGER { if (IsDebuggerPresent()) DebugBreak();}

unsigned int Fibonacci(unsigned int n)

{

switch(n)

{

case 0: STOP_ON_DEBUGGER;return 0;

case 1: return 1;

default: return Fibonacci(n-1)+Fibonacci(n-2);

}

}
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This function includes a special functionality to facilitate its debugging. When it runs
under a user mode debugger, our Fibonacci function calls DebugBreak before
returning F (0). 

We discussed (in the “Setting Up and Using the Symbols” section) how to set the
symbols, and we assumed that they are correct. Now we are ready to experiment with
k commands after the program stops in the debugger. In the basic form, the k com-
mand shows a maximum number of frames controlled by the .kframes command,
the default value being 20. For each frame, the command displays in the ChildEBP
column stack frame information. In the RetAddr column, it displays the address
where the code starts to execute, when the function returns, and with which symbol
the current function is associated, as shown in Listing 2.24.  

Listing 2.24 Displaying the call stack

0:000> k

ChildEBP RetAddr

0006fcb0 010017eb ntdll!DbgBreakPoint

0006fcc0 01001810 02sample!KBTest::Fibonacci_stdcall+0x2b

0006fcd4 01001802 02sample!KBTest::Fibonacci_stdcall+0x50

...

0006ff2c 0100179c 02sample!KBTest::Fibonacci_stdcall+0x42

0006ff38 01001d93 02sample!Stack+0xc

0006ff50 01001cab 02sample!AppInfo::Loop+0xb3

0006ff5c 01002076 02sample!wmain+0x1b

0006ffa0 76033833 02sample!__wmainCRTStartup+0x102

0006ffac 7734a9bd kernel32!BaseThreadInitThunk+0xe

0006ffec 00000000 ntdll!_RtlUserThreadStart+0x23

Each function most likely receives a few parameters with relevant values for program
execution history. kp and kP are specially designed to interpret each function’s infor-
mation and display the parameter type, parameter name, as well as the associated
parameter’s value. kp shows all parameters on a single line (see Listing 2.25), where-
as kP uses a line for each parameter. 

Listing 2.25 Displaying the parameters used by the past five functions from the call stack

0:000> * Displays the past five function on the stack with their parameters

0:000> kP 5

ChildEBP RetAddr  

0006fcb0 010017ab ntdll!DbgBreakPoint

0006fcc0 010017d0 02sample!KBTest::Fibonacci_stdcall(
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unsigned int n = 0)+0x2b

0006fcd4 010017c2 02sample!KBTest::Fibonacci_stdcall(

unsigned int n = 2)+0x50

0006fce8 010017c2 02sample!KBTest::Fibonacci_stdcall(

unsigned int n = 3)+0x42

0006fcfc 010017c2 02sample!KBTest::Fibonacci_stdcall(

unsigned int n = 4)+0x42 

Because function symbols are part of private symbols, it is common for the stack to
contain a function without the parameter information. In such cases, we can use the
kb command to display the first three parameters passed on the stack to that func-
tion. Using additional information, such as the function signature and its calling con-
vention, we can interpret what parameters are valid for each function. In Listing 2.26,
you can see that a real parameter is shown correctly, whereas the next two parame-
ters have no meaning in this stack, as the function has just one parameter. 

Listing 2.26 Displaying the first three parameters used by the five functions from the call
stack

0:000> kb 5

ChildEBP RetAddr  Args to Child

0006fc6c 004017b0 00000001 00191ffc 00000003 02sample!KBTest::Fibonacci_stdcall+0x5

0006fc80 004017a2 00000003 00191ffc 00000004 02sample!KBTest::Fibonacci_stdcall+0x50

0006fc94 004017a2 00000004 00191ffc 00000005 02sample!KBTest::Fibonacci_stdcall+0x42

0006fca8 004017a2 00000005 00191ffc 00000006 02sample!KBTest::Fibonacci_stdcall+0x42

0006fcbc 004017a2 00000006 00191ffc 00000007 02sample!KBTest::Fibonacci_stdcall+0x42

In the process of developing and testing reliable servers, failure to extend the thread’s
stack in a low memory condition represents a common failure. The solution employed
in this case is limiting the stack usage to the committed stack size by carefully watch-
ing the stack space used in every stack frame and minimizing it as much as possible. 

The stack usage for each frame can be calculated by subtracting the current base
frame pointer from the base frame pointer of one of the functions called by the cur-
rent function. The process is facilitated by a form of the k command that calculates
and shows this value for each function except the current one. The kf command
accepts the same parameters as all other forms of the k command, and it is used in
Listing 2.27 to display the past five functions. In the first column, the command dis-
plays the stack size used by the function.
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Listing 2.27 Displaying the stack size used by past the five functions from the call stack

0:000> kf 5

Memory  ChildEBP RetAddr

0006fc6c 004017b0 02sample!KBTest::Fibonacci_stdcall+0x5

14 0006fc80 004017a2 02sample!KBTest::Fibonacci_stdcall+0x50

14 0006fc94 004017a2 02sample!KBTest::Fibonacci_stdcall+0x42

14 0006fca8 004017a2 02sample!KBTest::Fibonacci_stdcall+0x42

14 0006fcbc 004017a2 02sample!KBTest::Fibonacci_stdcall+0x42

In some cases, only part of the stack is available, and the debugger k command is
unable to decode the stack since the address pointed to by the current base frame
pointer ebp and the current stack pointer esp are not accessible. In those cases, a vari-
ant of the k command that accepts values for the base frame pointer, the stack point-
er, and the instruction pointer can be used instead. 

The hardest part in the manual process of reconstructing the stack is identifying
a good pair of values from the memory area that represents a correct stack frame from
the calling stack. One way to find them is to identify a series of values representing
an address pointing to the current stack, followed by an executable address. Each
address can be a potential frame, and it should be verified using the k command. The
operation should be repeated with another potential frame until the stack is proper-
ly rendered and the k command shows a reasonable stack, as shown in Listing 2.28. 

Listing 2.28 Manual stack reconstruction using the k command

0:000> * Dump the memory block and look for pattern

0:000> dc esp

0006fc6c 0006fc80 004017b0 00000001 00191ffc  ......@.........

0006fc7c  00000003 0006fc94 004017a2 00000003  ..........@.....

0006fc8c  00191ffc 00000004 0006fca8 004017a2  ..............@.

0006fc9c  00000004 00191ffc 00000005 0006fcbc  ................

0006fcac  004017a2 00000005 00191ffc 00000006  ..@.............

0006fcbc  0006fcd0 004017a2 00000006 00191ffc  ......@.........

0006fccc  00000007 0006fce4 004017a2 00000007  ..........@.....

0006fcdc  00191ffc 00000008 0006fcf8 004017a2  ..............@. 

0:000> * Used saved ebp, the address storing it and the return address

0:000> k = 0006fc80 0006fc6c 004017b0

ChildEBP RetAddr

0006fc80 004017a2 02sample!KBTest::Fibonacci_stdcall+0x50

0006fc94 004017a2 02sample!KBTest::Fibonacci_stdcall+0x42
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This is a common scenario encountered while debugging extremely loaded systems from
the kernel mode debugger and only some pages from the thread stack are paged in.  

Setting a Code Breakpoint
The debugger is often used to validate the execution of a specific code sequence,
either by stopping the execution at the sequence start or when an interesting condi-
tion is happening. This can be achieved by using breakpoint commands. 

Code breakpoints are set using the bp command that takes as parameters the
address to set the breakpoint, breakpoint options, breakpoint restrictions, and a string
containing the command to be executed when the breakpoint is hit. The breakpoint
set in the user mode debugger can be prefixed with a thread identifier; in which case,
the debugger will stop only when the specified thread reaches the breakpoint. Listing
2.29 shows the usage of breakpoint commands for setting a breakpoint, listing all the
breakpoints, and deleting them. 

Listing 2.29 Using breakpoints in the user mode debugger

0:000> * Breakpoint only on thread 0 and execute “resp” command 

0:000> ~0 bp 02sample!KBTest::Fibonacci “resp”

0:000> * List the breakpoints

0:000> bl  

0 e 00401750     0001 (0001)  0:~000 02sample!KBTest::Fibonacci_stdcall “resp”

0:000> g

esp=0006fdc4

eax=00000012 ebx=7ffdf000 ecx=00000011 edx=77c61b78 esi=7c9118f1 edi=00011970

eip=00401750 esp=0006fdc4 ebp=0006fdd4 iopl=0         nv up ei pl nz na pe nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000206

02sample!KBTest::Fibonacci_stdcall:

00401750 8bff            mov     edi,edi

0:000> * Clear all breakpoints

0:000> bc *

0:000> * Set a breakpoint for all threads to execute”reasp;g” 

0:000> bp 02sample!KBTest::Fibonacci “resp;g”

0:000> g

esp=0006fc98

esp=0006fcac

esp=0006fc98

esp=0006fc98

... 
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Upon creation, each breakpoint gets a numeric identifier that can be used later to
make changes to that breakpoint. The identifier of the breakpoint that was at the ori-
gin of the current stop is shown by the debugger immediately after the stop. WinDbg
provides a toolbar button and a Breakpoints window for managing the breakpoints. 

The same breakpoint can be set from the kernel mode debugger, with the main
difference being that it is global for the whole system. If the breakpoint scope must
be limited to a specific process or thread, the address of the EPROCESS or
KTHREAD structure must be specified as an option to the breakpoint command. In
Listing 2.30, the first breakpoint is set for all threads (and implicitly all processes)
running on the system, whereas the second one is scoped to the process having the
current process identified by the $proc pseudo-register.

Listing 2.30 Using breakpoints in the kernel mode debugger

kd> * Breakpoint on ntdll!RtlAllocateHeap will break on each allocation

kd> bp ntdll!RtlAllocateHeap 

kd> * Breakpoint limited to the process

kd> bp /p @$proc ntdll!RtlAllocateHeap  “!process -1 0;g”

kd> g

PROCESS 811de7f8  SessionId: 0  Cid: 037c    Peb: 7ffd9000  ParentCid: 0240

DirBase: 0567b000  ObjectTable: e1781770  HandleCount: 1412.

Image: svchost.exe

kd> bl

0 e 7c9105d4     0001 (0001) ntdll!RtlAllocateHeap

Match process data 811de7f8

The bm command is a convenient way to set multiple breakpoints on all addresses
matching the symbol pattern specified as parameter. Listing 2.31 uses the bm com-
mand to set breakpoints for all methods implemented by the class KBTest. When the
private symbols are not available for the target module, the bm command fails unless
we override its behavior using the /a parameter. 

Listing 2.31 Using breakpoints in the user mode debugger

0:000> bm 02sample1!*kbtest*

1: 00401860 @!”02sample!KBTest::Fibonacci_fastcall”

2: 004017a0 @!”02sample!KBTest::Fibonacci_stdcall”

3: 004018d0 @!”02sample!KBTest::ObjFibonacci”

4: 00401800 @!”02sample!KBTest::Fibonacci_cdecl”

breakpoint 2 redefined

2: 004017a0 @!”02sample!KBTest::Fibonacci”
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The Windows operating system loads dynamic link libraries when they are needed,
and we must often set a breakpoint on a module that has not been loaded yet. The bu
command can set a deferred breakpoint that becomes a real breakpoint when the
module owning that breakpoint is loaded. For example, the following line sets a
deferred breakpoint on the DCOM initialization function.  

0:000> bu ole32!CoInitializeEx

When the module containing the symbol is already loaded in memory, the bu com-
mand sets a breakpoint immediately at the symbol address. Because the deferred
breakpoints are based on symbolic information, they are saved in workspaces created
by WinDbg, which are used in subsequent debugging sessions. Not surprisingly, bu is
often used as the preferred method of enabling breakpoints. 

The bu command works with the kernel mode debugger as well. But for the ker-
nel mode debugger, the command sets breakpoints only on modules to be loaded in
kernel space. So the user mode breakpoints must be set using a combination of tech-
niques, as you can see later in the section “Debugging Scenarios.” 

What Are the Variable Values?
Because the entire code execution is dependent on the instant values of all variables
used in that specific function, it is essential to know the values in order to understand
the execution history and predict further execution. 

The dv command does exactly that, offering a large set of options for variable
inspections. The command is similar in meaning, and sometimes in functionality, to
the x command used to inspect symbol information. To illustrate the dv command
functionality, we will set a breakpoint at the Fibonacci_thiscall member func-
tion built in the 02sample.exe, which is exercised by selecting option ‘6.’ The function
member, shown in the following listing, implements the Fibonacci functionality. 

unsigned int KBTest::Fibonacci_thiscall(unsigned int n)

{

m_lastN = n;

int localN = n + gGlobal.m_ref;

switch(n)

{

case 0: STOP_ON_DEBUGGER;return 0;

case 1: return 1;

default: 

{

return Fibonacci_thiscall(localN-2)+Fibonacci_thiscall(localN-3);

}

}    } 
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The function uses just four variables: the function parameter with the symbolic name
n; the C++ implicit pointer named this; the local variable, localN; and the global
variable, gGlobal. Listing 2.32 shows various uses of the dv command exploring vari-
able values in the context of the Fibonacci_thiscall function after the code execution
has been stopped with a breakpoint. The executable has been compiled without opti-
mization to minimize the discrepancies between the C++ code and the generated
assembly code. Even when the optimization is turned off, the dv command some-
times returns unexpected information to the user. WinDbg provides a Locals window
that’s updated with the current variable value times the debugger stops. 

Listing 2.32 Use of dv command

0:000> * In the simplest form dv displays the local variables

0:000> dv

this = 0x77c146f0

n = 0x20

localN = -1

0:000> * dv can be used to display variables matching a pattern

0:000> dv 02sample!gGlo*

02sample!gGlobal$initializer$ = 0x01002920

02sample!gGlobal = class Global

0:000> * dv /i shows the symbol type (priv) and parameter type

0:000> * on the second column

0:000> dv /i

prv local             this = 0x77c146f0

prv param                n = 0x20

prv local           localN = -1

0:000> * dv /V shows the location where the variable is stored

0:000> dv /V this

0006fee4 @ebp-0x08            this = 0x77c146f0

0:000> * If the variable is not correct, unassemble the function

When the variable is a complex type, such as a data structure or a class, the dv com-
mand shows only its address. However, the dt command, which stands for display
type, can interpret a block of memory as a data type whose name is passed a param-
eter. The dt command does not require the data type name if the address is a sym-
bolic name whose type is known by debugger. Listing 2.33 shows some examples of
using the dt command The dt command can also recursively process an embedded
object or an array of objects with the right options, well described in the debugger
help (help topic DT). 
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Listing 2.33 Use of dt command

0:000> * dt interprets this object type when displaying the memory block

0:000> dt this

Local var @ 0x6fee4 Type KBTest*

0x77c146f0

+0x000 __VFN_table : ????

+0x004 m_lastN          : ??

Memory read error 0x77c146f0

0:000> * dt uses the data type passed in when displaying the memory block

0:000> dt KBTest 0x0006fee4

02sample!KBTest

+0x000 __VFN_table : ????

+0x004 m_lastN          : ??

0:000> * dt interpret the object type when displaying the memory block

0:000> dt 02sample!gGlobal

gGlobal

+0x000 m_ref            : 1

If you are arbitrarily inspecting a heap block, it is very possible to find in the first few
positions a v-table symbol, indicating the type of C++ object located (or previously
located) at that address. You can then use the type information to display the object,
as shown in the following listing captured at the same break as Listing 2.33. 

0:000> dc @ecx l4

0006fee4  00401504 ffffffff 0006ff90 01002b28  ............(+..

0:000> ln 00401504

(00401504)   02sample!KBTest::`vftable’   |  (00401508)   02sample!`string’

Exact matches:

0:000> dt KBTest @ecx

02sample!KBTest

+0x000 __VFN_table : 0x00401504

+0x004 m_lastN          : -1

In Listing 2.32, the value displayed for the this pointer variable does not look right,
as that value is usually reserved for system binary code segments. By looking at the
code, you can see that the object is allocated on the stack and should have a value
close to the current stack pointer. Let us examine the output from the dv /V this
command: 

0006fee4 @ebp-0x08            this = 0x77c146f0
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The this pointer is stored at the stack location 0006fee4 and is accessed by the
function code by using the frame-based register @ebp-0x08. The value stored at that
address is, in fact, wrong. How can that be? The member function call follows the
__thiscall convention, meaning that the ecx register contains the this pointer
value. The register value is later saved in the function stack frame at the location
@ebp-0x08, meaning that the value becomes accurate after the function executes the
following statement: 

00401878 894df8          mov     dword ptr [ebp-8],ecx

The question now becomes this: Why doesn’t the compiler generate better symbols
for tracking the local variable locations? Try to imagine what will happen in code
highly optimized with many variables: The registers are reused and the writes to the
function stack frame are minimized, meaning that the compiler will have to generate
a new symbol reference for each assembly instruction touching the variables. This
means that the symbol files will be larger. This larger file must be moved around and
loaded by debuggers at debug time, as well as examined much more often, resulting
in poor user experience with minimal benefits. 

Until a better solution is found to this problem, you must make sure that the vari-
able value is correct before continuing the investigation. You can then inspect it using
the dt command, as in the next listing: 

0:000> dt kbTest @ecx

02sample!KBTest

+0x000 __VFN_table : 0x00401504

+0x000 m_lastN          : -1

LOCAL VARIABLE VERSUS INPUT PARAMETERS Generally, most of the input parame-
ters can be found on the stack and are addressed using the frame-based parameters with a
positive offset, such as @ebp+8, whereas the local parameters are accessed using negative
offsets, such as @ebp-8. At times, the compiler reuses the variable storage, which can
cause difficulties when debugging. 

How Do You Inspect Memory?
When investigating a problem in a debugger, we often have to examine different
memory blocks to understand the reason behind the problem and to later prove that
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the scenario is indeed valid. Because the state of various objects persists in memory,
the memory content is equivalent to the object’s state. The display command takes
an address or a range of addresses and displays the content stored at those addresses
according to the command arguments. 

The most common form of display command simply reads formats and displays
the data based on the types stored at the address. The debugger does not attempt to
guess what data is stored in that location because it will more than likely be wrong in
most cases. The user determines the format in which the data should be interpreted.
display has the following syntax: 

d[type] [AddressRange]

To illustrate various forms of this command, we use the same 02sample.exe, but we
start it with multiple command-line arguments. Even if the arguments are ignored,
they are still passed to the main function. The function signature is the standard main
declaration, as follows:

VOID _cdecl main( ULONG argc, PCHAR argv[] )

In Listing 2.34, we use several forms of the display command to inspect the command-
line parameters passed in the argv[] array after setting a breakpoint in
02sample!wmain function.

Listing 2.34 Use of d command

0:000> bp 02sample!wmain

0:000> g

Breakpoint 0 hit

0:000> * Get the address of argv parameter

0:000> dv /V argv

0006ff68 @ebp+0x0c            argv = 0x005f0ea0

0:000> * Dump 4 double words at argv address

0:000> dc 0x005f0ea0 l4

005f0ea0  005f0eb4 005f0efe 005f0f08 005f0f12  .._..._..._..._.

0:000> dd 0x005f0ea0

005f0ea0  005f0eb4 005f0efe 005f0f08 005f0f12  

0:000> * Dump one Unicode string

0:000> du 005f0eb4

005f0eb4  “c:\AWDBIN\WinXP.x86.chk\02sample”

005f0ef4  “.exe”

0:000> * Dump one Unicode string as ASCI string
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0:000> da 005f0eb4

005f0eb4  “c”

0:000> * Dump four bytes as byte array

0:000> db 005f0eb4 l4

005f0eb4  63 00 3a 00                                      c.:. 

0:000> * Dump four bytes in binary format

0:000> * The heading line represent the bit position

0:000> dyb 005f0eb4 l4

76543210 76543210 76543210 76543210

———— ———— ———— ————

005f0eb4  01100011 00000000 00111010 00000000  63 00 3a 00

0:000> * Dump four double words in binary format

0:000> dyd 005f0eb4 l4

3          2          1          0

10987654 32109876 54321098 76543210

———— ———— ———— ————

005f0eb4  00000000 00111010 00000000 01100011  003a0063

005f0eb8  00000000 01000001 00000000 01011100  0041005c

005f0ebc  00000000 01000100 00000000 01010111  00440057

005f0ec0  00000000 01001001 00000000 01000010  00490042 

0:000> * Dump four float numbers

0:000> df 005f0eb4 l4

005f0eb4    5.3265975e-039   5.9694362e-039   6.2449357e-039   6.7040837e-039

0:000> * Dump four words numbers

0:000> dw 005f0eb4 l4

005f0eb4  0063 003a 005c 0041

0:000> * Dump four float numbers with the character representation

0:000> dW 005f0eb4 l4

005f0eb4  0063 003a 005c 0041                      c.:.\.A

0:000> * Dump an invalid memory address

0:000> dc 0 l4

00000020  ???????? ???????? ???????? ????????  ????????????????

In the listing, the nonprintable characters are displayed as dots (.). This can be a bit
confusing when the block really does contain dots. At other times, the debugger dis-
plays just a stream of question marks (?) that represent, well…nothing. The address
is not valid, and the debugger cannot read anything from that address because the
address is not mapped in the target process. 

After selecting option ‘6,’ we use thread zero to exemplify other forms of this
command. The next form is used to dump the memory area, as well as to treat each
element in memory as a symbol and to resolve it. There are three forms of this com-
mand, generically referred to as d*s commands: dds treats each group of four bytes

Listing 2.34 Use of d command (continued)
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as a symbol; dqs treats each group of eight bytes as a symbol; whereas dps uses the
length most appropriate for the processor architecture being debugged. Listing 2.35
shows an example of using this command over some stack memory. 

Listing 2.35 Use of d*s command

0:000> dps esp l8

0005fcb4  010017ab 02sample!KBTest::Fibonacci_stdcall+0x2b 

0005fcb8  00000001

0005fcbc  00000000

0005fcc0  0006fcd4

0005fcc4  010017d0 02sample!KBTest::Fibonacci_stdcall+0x50 

The last form is similar to the d*s command. The debugger iterates over the memo-
ry area considering it as a sequence of 32- or 64-bit pointers, as the d*s command
discussed previously does. It uses each value read from the memory area as a point-
er to a different data type, which is subsequently displayed using the type specific for-
mat. Not convinced, or confused about the usefulness of this? At the debugger
prompt used in Listing 2.34, we use this option to display an array of Unicode strings
representing the debugger target command-line arguments. 

0:000> * Dump an array of UNICODE strings

0:000> dpu 0x005f0ea0 L4

005f0ea0  005f0eb4 “c:\AWDBIN\WinXP.x86.chk\02sample.exe”

005f0ea4  005f0efe “arg1”

005f0ea8  005f0f08 “arg2”

005f0eac  005f0f12 “arg3” 

This form of command is also highly effective when acting over an unknown memo-
ry area. The s command, which stands for search, is another effective command to
discover known values in the debugger target memory. The command accepts the
searched type and the search value as parameters. The next listing demonstrates the
usage of the s command to search an exception code in the process memory. The next
listing is captured after selecting the option ‘1’ in 02sample.exe. The s command
searches a double-word value in the first 265MB from the virtual address space. 

0:000> * Run the debugger target after the access violation exception

0:000> g

(53a8.4070): Access violation - code c0000005 (!!! second chance !!!)

eax=00000000 ebx=00000000 ecx=01003008 edx=01003008 esi=00000001 edi=0100373c

eip=010016d0 esp=0006ff34 ebp=0006ff38 iopl=0         nv up ei pl nz na pe nc
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cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00010206

02sample!RaiseAV+0x10:

010016d0 66c7000000      mov     word ptr [eax],0         ds:0023:00000000=????

0:000> * Search for the exception code in the first 256Mb of the address space

0:000> s -d 0 L10000000/4 C0000005

0006fc4c  c0000005 00000000 00000000 010016d0  ................

0006ff80  c0000005 00000000 0006ff70 0006fb30  ........p...0...

0006ffc8  c0000005 76b25984 76b25984 0006ffb8  .....Y.v.Y.v....

Setting a Breakpoint on Access
Not all problems can be found with code breakpoints. For example, there are multi-
ple cases in which one memory location changes less often than the function chang-
ing that type of data, as in the case with kernel32!HeapFree API. We are interested
when a specific block is deleted, and it is not practical to intercept all calls and break
only when the parameter passed to the API matches the address we are concerned
about. Nevertheless, the block can be changed as a result of a buffer overrun and not
during the function execution. 

The problem in this scenario can be solved effectively only by using the proces-
sor capability to generate a breakpoint on accessing a specific memory location. The
facility is controlled by using the ba, or breakpoint on access, debugger command.
The address monitored by breakpoint on access facilities must be aligned with the
data size monitored by the breakpoint. 

Listing 2.36 contains the Global class definition used in 02sample.exe to declare
the global variable, gGlobal. The class has one member variable, m_ref, that is
changed every time the constructor or the destructor of this class is executed. The class
is hypothetically used in many other places besides the global static variable, but our
goal is to find out which stack changes the m_ref member of the global static variable. 

Listing 2.36 gGlobal declaration

class Global

{

public:

int m_ref;

Global():m_ref(1){};

~Global()

{

m_ref = 0;

};    

} gGlobal;
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After a quick look at the class definition, we can try to set a breakpoint on the con-
structor and the destructor of Global class, under the assumption that we can easi-
ly understand what object is changed. Since the destructor is called numerous times,
the process gets costly and prone to errors.  

However, the memory address of the object, and implicitly the memory address
of the m_ref member, is known in each debugging session. The address is then used
to set a breakpoint on access, monitoring the m_ref memory address for writing
operations. The breakpoint is set to monitor four bytes that store the m_ref member.
Listing 2.37 shows how ba can be used to solve the problem in a single line. The ba
command requires the access mode and the data size that will be monitored by the
processor.  

Listing 2.37 Typical use of the ba command

0:000> * Getting the address of the variable to be monitored

0:000> dt gGlobal

+0x000 m_ref            : 0

0:000> * Setting a breakpoint when m_ref memory address is changed

0:000> * The processor monitors writes in the four bytes following 

0:000> ba w4 gGlobal+0

0:000> bl

0 e 0040301c w 4 0001 (0001)  0:**** 02sample!gGlobal

0:000> g

Breakpoint 0 hit

eax=0040301c ebx=00000000 ecx=0040301c edx=775ec534 esi=00000001 edi=003f2bd0

eip=004018c2 esp=0006fefc ebp=0006ff00 iopl=0         nv up ei pl nz na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000202

02sample!Global::~Global+0x12:

004018c2 8be5            mov     esp,ebp

0:000> * The break is happening after the change happened

0:000> ub . l1

02sample!Global::~Global+0xc:

004018bc c70000000000    mov     dword ptr [eax],0

Breakpoint on access works equally well from the kernel mode debugger. 

What Does That Memory Location Contain?
While debugging, there are a lot of pointers in the objects as well as on the stack for
which we cannot quickly guess what they represent. Although it is easier to distin-
guish kernel space addresses than user mode addresses, it is not easy to distinguish an
address representing the stack from an address representing a block on the heap. The
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debugger team created an extension command useful to solve this problem, accessed
by !address <address>. The command is extremely useful in user mode debug-
ging. Typical output is shown in Listing 2.38. 

Listing 2.38 !address debugger command example

0:000> !address .

7c900000 : 7c901000 - 0007b000

Type     01000000 MEM_IMAGE

Protect  00000020 PAGE_EXECUTE_READ

State    00001000 MEM_COMMIT

Usage    RegionUsageImage

FullPath ntdll.dll

0:000> !address @esp

00030000 : 0006e000 - 00002000

Type     00020000 MEM_PRIVATE

Protect  00000004 PAGE_READWRITE

State    00001000 MEM_COMMIT

Usage    RegionUsageStack

Pid.Tid  1124.1568

0:000> !address 00080000

00080000 : 00080000 - 00004000

Type     00020000 MEM_PRIVATE

Protect  00000004 PAGE_READWRITE

State    00001000 MEM_COMMIT

Usage    RegionUsageHeap

Handle   00080000

0:000> !address 1000

00000000 : 00000000 - 00010000

Type     00000000

Protect  00000001 PAGE_NOACCESS

State    00010000 MEM_FREE

Usage    RegionUsageFree

The first time, the command parameter is a code address (the current execution
address); the second time, it is the stack address, followed by a heap address, and
finally an invalid address. The extension command can process other types of memo-
ry, as well. 

When no address is provided, the extension searches and enumerates all memo-
ry zones with all available details, as shown in Listing 2.39. Afterward, it computes a
summary with the memory usage based on the type of section, on the access mode,
and on the page sharing mode. A simplified output analyzing the process space can
be seen in the following listing.  
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Listing 2.39 !address command

0:000> !address

00000000 : 00000000 - 00010000

Type     00000000

Protect  00000001 PAGE_NOACCESS

State    00010000 MEM_FREE

Usage    RegionUsageFree

...     

7ffdf000 : 7ffdf000 - 00001000

Type     00020000 MEM_PRIVATE

Protect  00000004 PAGE_READWRITE

State    00001000 MEM_COMMIT

Usage    RegionUsageTeb

Pid.Tid  1124.1568

...

---------- Usage SUMMARY -------------

TotSize (     KB)   Pct(Tots) Pct(Busy)   Usage

1d4000 (    1872) : 00.09%    32.16%    : RegionUsageIsVAD

7fa41000 ( 2091268) : 99.72%    00.00%    : RegionUsageFree

266000 (    2456) : 00.12%    42.20%    : RegionUsageImage

40000 (     256) : 00.01%    04.40%    : RegionUsageStack

1000 (       4) : 00.00%    00.07%    : RegionUsageTeb

130000 (    1216) : 00.06%    20.89%    : RegionUsageHeap

0 (       0) : 00.00%    00.00%    : RegionUsagePageHeap

1000 (       4) : 00.00%    00.07%    : RegionUsagePeb

1000 (       4) : 00.00%    00.07%    : RegionUsageProcessParametrs

2000 (       8) : 00.00%    00.14%    : RegionUsageEnvironmentBlock

Tot: 7fff0000 (2097088 KB) Busy: 005af000 (5820 KB)

---------- Type SUMMARY --------------

TotSize (      KB)   Pct(Tots)  Usage

7fa41000 (  2091268) : 99.72%   : <free>

266000 (     2456) : 00.12%   : MEM_IMAGE

1d4000 (     1872) : 00.09%   : MEM_MAPPED

175000 (     1492) : 00.07%   : MEM_PRIVATE

---------- State SUMMARY --------------

TotSize (      KB)   Pct(Tots)  Usage

34e000 (    3384) : 00.16%   : MEM_COMMIT

7fa41000 ( 2091268) : 99.72%   : MEM_FREE

261000 (    2436) : 00.12%   : MEM_RESERVE

Largest free region: Base 00405000 - Size 75c7b000 (1929708 KB)
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Other Exploratory Commands
Another common question that debugger users ask is what command-line parameters
have been used to start the current debugger target.

This information is stored in the process environment block (PEB) and can be
easily obtained by using the !peb extension command as shown in Listing 2.40. The
command interprets the PEB showing the command line, the location of all loaded
DLLs, the environment variables, and much more. 

Listing 2.40 Obtaining the process PEB

0:000> !peb

PEB at 7ffdd000

InheritedAddressSpace:    No

ReadImageFileExecOptions: No

BeingDebugged:            Yes

ImageBaseAddress:         00400000

Ldr                       00181ea0

Ldr.Initialized:          Yes

Ldr.InInitializationOrderModuleList: 00181f58 . 001821a0

Ldr.InLoadOrderModuleList:           00181ee0 . 00182190

Ldr.InMemoryOrderModuleList:         00181ee8 . 00182198

Base TimeStamp                     Module

400000 453bf190 Oct 22 15:32:48 2006 C:\AWDBIN\WinXP.x86.chk\02sample.exe

7c900000 411096b4 Aug 04 00:56:36 2004 C:\WINDOWS\system32\ntdll.dll

7c800000 44ab9a84 Jul 05 03:55:00 2006 C:\WINDOWS\system32\kernel32.dll

77c10000 41109752 Aug 04 00:59:14 2004 C:\WINDOWS\system32\msvcrt.dll

76080000 41109751 Aug 04 00:59:13 2004 C:\WINDOWS\system32\msvcp60.dll

SubSystemData:     00000000

ProcessHeap:       00080000

ProcessParameters: 00020000

WindowTitle:  ‘C:\AWDBIN\WinXP.x86.chk\02sample.exe’

ImageFile:    ‘C:\AWDBIN\WinXP.x86.chk\02sample.exe’

CommandLine:  ‘C:\AWDBIN\WinXP.x86.chk\02sample.exe’

DllPath:

‘C:\AWDBIN\WinXP.x86.chk;C:\WINDOWS\system32;C:\WINDOWS\system;C:\WINDOWS;.;c:\Debug.x

86\winext\arcade;C:\WINDDK\3790~1.183\bin\x86;C:\WINDDK\3790~1.183\bin;C:\WINDDK\3790~

1.183\bin\x86\drvfast\scripts;C:\Perl\bin\;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\

System32\Wbem;’     

Environment:  00010000

=::=::\

=C:= C:\ 

=ExitCode=00000000

...

OS=Windows_NT
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Path=c:\Debug.x86\winext\arcade;C:\WINDDK\3790~1.183\bin\x86;C:\WINDDK\3

790~1.183\bin;C:\WINDDK\3790~1.183\bin\x86\drvfast\scripts;C:\Perl\bin\;C:\WINDO

WS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;

PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH

PREFAST_ROOT=C:\WINDDK\3790~1.183\bin\x86\drvfast

...

_NT_TOOLS_VERSION=0x700

The !peb extension command depends on the current process context that can be
changed using one of the options explained in the later section, “Changing the
Context.”  

Another piece of useful information is the thread environment block that can be
displayed using the !teb extension command. Although it is possible to display any
thread’s TEB by specifying the address as a parameter to the command extension,
most commonly the extension command detects the TEB address from the current
thread, as you can see in Listing 2.41.

Listing 2.41 Obtaining the thread TEB

0:000> !teb

TEB at 7ffdf000

ExceptionList:        0006ff34

StackBase:            00070000

StackLimit:           0006e000

SubSystemTib:         00000000

FiberData:            00001e00

ArbitraryUserPointer: 00000000

Self:                 7ffdf000

EnvironmentPointer:   00000000

ClientId:             000013b4 . 00001184

RpcHandle:            00000000

Tls Storage:          00000000

PEB Address:          7ffdd000

LastErrorValue:       203

LastStatusValue:      c0000100

Count Owned Locks:    0

HardErrorMode:       0

The !teb extension command depends on the current thread context that can be
changed using one of the options explained in the later section, “Changing the
Context.” 
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Win32 APIs do not always return the status code to the caller using the return
value or one of the output parameters. In fact, most APIs store the last error code in
a thread-specific location preallocated in the thread environment block, accessed pro-
grammatically by using the kernel32!GetLastError API. 

The value can be inspected immediately after an API failure by using the !gle
extension command. This command extracts the value and displays the formatted
string to the user. The command also displays the last NTSTATUS error that repre-
sents the error previously returned from a system API. 

0:000> !gle

LastErrorValue: (Win32) 0xcb (203) - The system could not find the environment option

that was entered.

LastStatusValue: (NTSTATUS) 0xc0000100 - Indicates the specified environment variable

name was not found in the specified environment block.

The command reads the error code from the current thread contexts.
The last useful command in this category is the simple <enter> or <CTRL>+M

key that repeats the last entered commands. This is useful only when the last com-
mand changes some internal state in the debugger, as is the case with d or u com-
mands, and the operation is repeated for the next memory block. 

Context-Changing Commands
The following set of commands affect the state of the debugger target and are nor-
mally used to watch the debugger target in a controlled execution mode or to change
the view interpreted by various extension commands. 

Tracing Code Execution
t is the basic command used to execute the code step-by-step, also known as tracing.
When we trace the code in assembly mode, it steps over a single assembly instruction
at a time. When the debugger runs in source mode, each step executes multiple assem-
bly instructions representing a single line in source mode. The mode can be controlled
by the source option mode command, as you can see in the following listing:  

0:000> l+t

Source options are 1:

1/t - Step/trace by source line

0:000> l-t

Source options are 0:

None
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Chapter 3 explains the mechanisms used by the debugger to implement the tracing
functionality in assembly mode. Source mode tracing is possible only in the modules for
which the private symbols are available; otherwise, the debugger switches silently into
assembly mode. Tracing usefulness is limited to cases in which the register changes
must be closely watched or the code execution must step into a method call instead of
executing it entirely as a single statement, as you can see in the following listing: 

02sample!KBTest::Fibonacci_stdcall+0x4b:

004017ab e8b0ffffff      call    02sample!KBTest::Fibonacci_stdcall (00401760)

0:000> t

02sample!KBTest::Fibonacci_stdcall:

00401760 8bff            mov     edi,edi

When tracing a multithreaded application, any thread context switch schedules the
executions of a different thread on the current processor. While executing the new
thread, the debugger can encounter a breakpoint or a different event requiring user
attention, and the command can return with a different active thread and stack. The
engineer can prevent the context switch by prefixing the trace command with the
desired thread number. For example, the ~.t command executes one statement on
the current thread, while other threads are suspended. 

SOURCE-LEVEL TRACING VERSUS ASSEMBLY LEVEL TRACING Many developers
using tracing at the source code level have a really hard time debugging highly optimized
code, as the debugger jumps back and forth between source lines. The explanation lies in
the number of processor statements the compiler generates for every source line and the
way they are intermixed with code corresponding to another line, to maximize processor uti-
lization. In such cases, moving from source-level debugging to assembly-level debugging
brings back the predictability of debugging tracing.  

Stepping Over a Function Execution
The p command is functionally similar to that of the trace command for all statements
except for the function calls. The p command treats the entire function call as a sin-
gle statement and executes it in its entirety. 

0:000> p

02sample!KBTest::Fibonacci_stdcall+0x4b:

004017ab e8b0ffffff      call    02sample!KBTest::Fibonacci_stdcall (00401760)

0:000> p
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02sample!KBTest::Fibonacci_stdcall+0x50:

004017b0 03c6            add     eax,esi

When debugging a complex piece of code, we want only to validate the variable’s
value at some important point in the code execution, such as the place where the code
calls a new function. At this point, both the parameters to the function can be
checked, as well as the return values from the function after it is executed. 

pc is the command that executes the entirety of the code until the next subrou-
tine call. It can be combined nicely with p when only the function results are impor-
tant or with t when more careful tracing is required. With the debugger stopped right
before the function call, all parameters passed to the function can be inspected. If
necessary, the parameters can be changed using the e or r commands; this is usually
done to simulate various failures.  

0:000>t

02sample!wmain:

01001c90 8bff            mov     edi,edi 

0:000> pc

02sample!wmain+0xe:

01001c9e e81d000000      call    02sample!AppInfo::AppInfo (01001cc0) 

0:000> p

02sample!wmain+0x13:

01001ca3 8d4dfc          lea     ecx,[ebp-4] 

Continuing Code Execution
When the debugger waits in command mode, the debugger target does not change
its state at all. To resume the execution of the debugger target, the user must explic-
itly tell the debugger to continue the execution. When the current break has been
caused by an exception and the debugger cleared the exception condition, the con-
tinuation should be done using the form of the command telling the system that the
exception has been handled. A very good description of these details can be found in
Chapter 3.  

g is the basic command used to release the debugger target, and it works equal-
ly well in user mode and kernel mode debugger. By far the most used command, in
the simplest form, it just continues, unconditionally, the execution of the debugger
target. 

The second most used form, g <address>, is used to continue the debugger tar-
get execution until a specific address is hit, where the execution stops in the debugger.
The command is equivalent with setting a breakpoint, executing the debug target until
the breakpoint is hit, and removing the breakpoint. 
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gu is another common form used to continue the execution of the debugger tar-
get until the current function finishes and returns to the caller. The command is
aware of the current stack pointer, so it can be used to return from a recursive func-
tion call. 

In the user mode debugger, all forms of the execute command can be directed to
a specific thread instead of the entire process. When the thread identifier is specified,
all threads but the specified one are frozen until the debugger target stops again in
the debugger. 

0:000> k3

ChildEBP RetAddr

0006fc64 00401792 02sample!KBTest::Fibonacci_stdcall+0x50

0006fc78 00401792 02sample!KBTest::Fibonacci_stdcall+0x42

0006fc8c 00401792 02sample!KBTest::Fibonacci_stdcall+0x42

0:000> * Execute until returning from the current function

0:000> gu

eax=00000001 ebx=7ffd9000 ecx=00000001 edx=00000000 esi=00000000 edi=00000000

eip=00401792 esp=0006fc70 ebp=0006fc78 iopl=0         nv up ei pl nz na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000202

02sample!KBTest::Fibonacci_stdcall+0x42:

00401792 8bf0            mov     esi,eax

0:000> * Unassemble the function to find a good spot to execute to

0:000> u . l4

02sample!KBTest::Fibonacci_stdcall+0x42:

00401792 8bf0            mov     esi,eax

00401794 8b5508          mov     edx,dword ptr [ebp+8]

00401797 83ea02          sub     edx,2

0040179a 52              push    edx

0:000> * Execute until 0040179a address is reached

0:000> g 0040179a

eax=00000001 ebx=7ffd9000 ecx=00000001 edx=00000001 esi=00000001 edi=00000000

eip=0040179a esp=0006fc70 ebp=0006fc78 iopl=0         nv up ei pl nz na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000202

02sample!KBTest::Fibonacci_stdcall+0x4a:

0040179a 52              push    edx

0:000>  * Execute until returning from the current function, freezing all threads but

0.  

0:000> ~0 gu

eax=00000002 ebx=7ffd9000 ecx=00000001 edx=00000001 esi=00000000 edi=00000000

eip=00401792 esp=0006fc84 ebp=0006fc8c iopl=0         nv up ei pl nz na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000202

02sample!KBTest::Fibonacci_stdcall+0x42:

00401792 8bf0            mov     esi,eax

All execute commands described so far have matching buttons in the WinDbg toolbar. 
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Tracing and Watching a Function Execution
wt is a very useful command that can be used instead of the p command to step over
a function. The command obtains statistical information about the called function,
such as what functions are called inside, how many times they are called, and how
many processor instructions are executed inside the function itself. The command
accepts multiple parameters—the nesting level –l being the most important. Listing
2.42 shows the output of the wt command while executing the
02sample!AppInfo::AppInfo constructor. 

Listing 2.42 Trace and watch function execution

0:000> g

Breakpoint 2 hit

02sample!wmain:

01001b90 8bff            mov     edi,edi

0:000> pc

02sample!wmain+0xe:

01001b9e e81d000000      call    02sample!AppInfo::AppInfo (01001bc0)

0:000> wt -l1

13     0 [  0] 02sample!AppInfo::AppInfo

13 instructions were executed in 12 events (0 from other threads)

Function Name                               Invocations MinInst MaxInst AvgInst

02sample!AppInfo::AppInfo                             1      13      13      13

0 system calls were executed

Regardless of how the code execution resumes, the processor context changes each
time it executes a new assembly instruction. Sometimes, the context must be explic-
itly set in order to evaluate register values or a local variable.     

Changing the Context
To understand how the context must be changed, we start by defining what the con-
text is in different situations. The most common use of the term context refers to the
set of registers representing the processor state at a specific moment, known as reg-
ister context. Chapter 3 describes the use of the context as related to the exception
dispatching. 

The register context when the exception was generated is saved by the exception
dispatcher code on the stack and can be used to restore the register values at the



99Basic Debugger Tasks

moment when the exception was raised. How can that context be found? The easiest
way is to grab it from the parameters of various functions used in the exception dis-
patching process or by searching the stack for the context information. Regardless of
how the register context is found, it can be set as the current context using the .cxr
<context address> command, as follows. After we selected the option to gener-
ate an access violation exception, the investigation continued when the access viola-
tion exception occurred. 

0:000> * Search for full context signature in the first 256Mb of the address space

0:000> s -d 0 L10000000/4 0001003f

0006fc1c  0001003f 00000000 00000000 00000000  ?...............

0:000> * Set the context found at this address

0:000> .cxr 0006fc1c

eax=00000000 ebx=7ffde000 ecx=00401174 edx=77c61b18 esi=7c9118f1 edi=00011970

eip=0040130a esp=0006fee8 ebp=0006fef0 iopl=0         nv up ei pl nz na pe nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000206

02sample!RaiseAV+0x1a:

0040130a c60000          mov     byte ptr [eax],0           ds:0023:00000000=??

After we set the context, all commands depending on the context use that informa-
tion as a base. (k shows the stack for the current context; dv shows the local variable
for the current function.) 

In user mode, the context used by the debugger to perform various operations
can also be changed by selecting a thread different from the current one. The debug-
ger identifies each thread by a thread number, which is an index starting from a value
of 0. To activate a particular thread, we must use the thread number in the ~<thread
index>s command. After the change, all commands are executed in the context of
the new thread. Some debugger commands can be prefixed by the thread index to
execute in a different thread context without changing the active thread. 

The thread index does not have meaning for the application. The application knows
only thread identifiers obtained from various APIs, which are usually stored in various
locations in the application. Instead of listing all threads, finding the thread index cor-
responding to a thread identifier, and using that index for all thread-related commands,
it is possible to use the thread identifier directly. ~~[ThreadIdentifier] is the
equivalent command that uses the thread identifier. We use the same sample, with the
option to generate a stack overflow, to experiment with those commands, as illustrated
here: 

0:002> ~

0 Id: 16cc.f80 Suspend: 1 Teb: 7ffdf000 Unfrozen

1  Id: 16cc.1248 Suspend: 1 Teb: 7ffde000 Unfrozen
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.  2  Id: 16cc.10e4 Suspend: 1 Teb: 7ffdd000 Unfrozen

3  Id: 16cc.111c Suspend: 1 Teb: 7ffdc000 Unfrozen

0:002> * dot sign marks the current thread

0:002> ~0s

eax=0006fec8 ebx=00000000 ecx=0000bd09 edx=7c90eb94 esi=0006fdc8 edi=00000000

eip=7c90eb94 esp=0006fd7c ebp=0006fd9c iopl=0         nv up ei pl zr na pe nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000246

ntdll!KiFastSystemCallRet:

7c90eb94 c3              ret

0:002> ~~[f80] s

eax=0006fec8 ebx=00000000 ecx=0000bd09 edx=7c90eb94 esi=0006fdc8 edi=00000000

eip=7c90eb94 esp=0006fd7c ebp=0006fd9c iopl=0         nv up ei pl zr na pe nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000246

ntdll!KiFastSystemCallRet:

7c90eb94 c3              ret

0:000> * # sign is the thread that broke initially in the debugger

0:000> ~

.  0  Id: 16cc.f80 Suspend: 1 Teb: 7ffdf000 Unfrozen

1  Id: 16cc.1248 Suspend: 1 Teb: 7ffde000 Unfrozen

#  2  Id: 16cc.10e4 Suspend: 1 Teb: 7ffdd000 Unfrozen

Id: 16cc.111c Suspend: 1 Teb: 7ffdc000 Unfrozen

0:000> k

ChildEBP RetAddr  

0006fd94 77370190 ntdll!KiFastSystemCallRet

0006fd98 77377fdf ntdll!NtRequestWaitReplyPort+0xc

0006fdb8 760416f4 ntdll!CsrClientCallServer+0xc2

0006fea4 760415ef kernel32!GetConsoleInput+0xd2

0006fec4 75e4f529 kernel32!ReadConsoleInputW+0x1a

0006ff04 75e4f5ef msvcrt!_getwch_nolock+0xa8

0006ff38 01001d50 msvcrt!_getwch+0x1d

0006ff50 01001cab 02sample!AppInfo::Loop+0x70

0006ff5c 01002076 02sample!wmain+0x1b

0006ffa0 76033833 02sample!__wmainCRTStartup+0x102

0006ffac 7734a9bd kernel32!BaseThreadInitThunk+0xe

0006ffec 00000000 ntdll!_RtlUserThreadStart+0x23

0:000> * dv command depends on the last .frame command

0:000> .frame 8

08 0006ff5c 01002076 02sample!wmain+0x1b

0:000> dv

argc = 1

argv = 0x001b2d58

appInfo = class AppInfo

In the previous listing, we also use the .frame command, which changes the context
and affects which local variables are displayed using the dv command. The command
works equally well in user mode and with the kernel mode debugger. 
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The frame command is internally executed by WinDbg every time a different
function is selected from the Calls windows. When a different thread is selected from
the Processes and Threads window, the current context is changed to that thread. 

Specific only to kernel mode are register contexts captured when threads transi-
tion into kernel mode identifiable in each thread stack as trap frames. Each such cap-
tured trap can be used as a parameter to the .trap command. All commands used
afterward are dependent on the last trap context. 

Each thread has its own state whose context can be set as the current register con-
text, regardless of its running state, using the .thread command. This assumes that
the debugger target is stopped in the kernel mode debugger, so each thread context
is fixed in time. In the kernel mode debugger, each thread can potentially be part of
a different process. The debugger needs process-specific information, such as the
symbol file information, to interpret the stack and execute various commands. This is
called the process context. Unless the thread examined by the user is in the same
process that caused the break, the process context must be switched to the process
owning the thread. The process context is a page directory used to translate the vir-
tual addresses into physical addresses required to read the virtual space content.

User mode symbols are loaded based on the current process context, and they are
used until the debugger reloads the user mode symbols. As a result, each time the
thread or the trap we are interested in is associated with a different process, we must
make sure that the process context is correct and that the user mode symbols corre-
sponding to the current process are loaded. 

The next listing uses all those concepts on a kernel mode debugger session that
has been stopped in an arbitrary location using the CTRL+C keys. The thread we
focus on has been selected from the list of threads ready to run next, displayed by the
!ready extension command.  

kd> !ready

Processor 0: Ready Threads at priority 10

THREAD ffb9a020 Cid 037c.04d4  Teb: 7ffa4000 Win32Thread: 00000000 READY

kd> * Setting the current thread, change the active process and reload user mode 

symbols

kd> .thread /p /r ffb9a020

Implicit thread is now ffb9a020

Implicit process is now 812532d8

.cache forcedecodeuser done

Loading User Symbols

......................................................................................

..................................

............ 

kd> * Debugger tells that context has been set explicitly

kd> k

2.
INTRODUCTION

TO
THED

EBUGGERS



102 Chapter 2 Introduction to the Debuggers

*** Stack trace for last set context - .thread/.cxr resets it

ChildEBP RetAddr

f72973f0 806f4070 nt!KiDispatchInterrupt+0x7f

f72973f0 faa0d8c7 hal!HalpDispatchInterrupt2ndEntry+0x1b

f729746c 804f82ae Ntfs!NtfsAllocateFcbTableEntry

... 

kd> * Display full thread information

kd> !thread ffb9a020

THREAD ffb9a020  Cid 037c.04d4  Teb: 7ffa4000 Win32Thread: 00000000 READY

Impersonation token:  e1a54278 (Level Impersonation)

Owning Process            812532d8       Image:         svchost.exe

Wait Start TickCount      3721769        Ticks: 2 (0:00:00:00.020)

Context Switch Count      523

UserTime                  00:00:00.0260

KernelTime                00:00:06.0329

Win32 Start Address schedsvc!PfSvProcessTraceThread (0x7730a597)

Start Address kernel32!BaseThreadStartThunk (0x7c810856)

Stack Init f7298000 Current f72973dc Base f7298000 Limit f7295000 Call 0

Priority 8 BasePriority 8 PriorityDecrement 0 DecrementCount 16

ChildEBP RetAddr  Args to Child

f72973f0 806f4070 00000000 f7297484 faa0d8c7 nt!KiDispatchInterrupt+0x7f 

f72973f0 faa0d8c7 00000000 f7297484 faa0d8c7 hal!HalpDispatchInterrupt2ndEntry+0x1b

(TrapFrame @ f72973fc)

f729746c 804f82ae 812943c8 0000001c e13afcc8 Ntfs!NtfsAllocateFcbTableEntry 

f7297484 faa3c180 812943c8 f72974c8 0000000c

nt!RtlInsertElementGenericTableFullAvl+0x1f 

f7297520 faa3c9ec f7297880 81294100 00004cae Ntfs!NtfsCreateFcb+0x20c 

... 

kd> * Set the context from a TrapFrame address

kd> .trap f7297100

ErrCode = 00000000

eax=ffbb7201 ebx=f7297228 ecx=ffb9a020 edx=ffb9a020 esi=ffbb71e8 edi=f7297230

eip=804f61b8 esp=f7297174 ebp=f72971e8 iopl=0         nv up ei pl nz na po nc

cs=0008  ss=0010  ds=0894  es=715c  fs=7164  gs=7228             efl=00000202

nt!CcPinFileData+0x3ca:

804f61b8 e925abffff      jmp     nt!CcPinFileData+0x3fc (804f0ce2)

kd> k

*** Stack trace for last set context - .thread/.cxr resets it

ChildEBP RetAddr

f72971e8 8057a5a7 nt!CcPinFileData+0x3ca

f729725c faa34017 nt!CcPinMappedData+0xf4

f729727c faa35045 Ntfs!NtfsPinMappedData+0x4f

... 

kd> * Make sure the current process and symbols are correct. .trap does not fix them
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kd> .process /p /r 812532d8

Implicit process is now 812532d8

.cache forcedecodeuser done

Loading User Symbols

...................................................................................

The command used to examine local variables, as well as the stacks, is reset after each
context switch. When the user mode symbols are not loaded correctly, all commands
depending on the symbols have unpredictable behavior. 

Entering Value
Although most of the debugger commands are not destructive, the capability to
change some of the debugger target memory can be considered a dangerous one.
What it does is clear enough; it allows you to change the memory content at a specif-
ic virtual address or at a series of addresses. 

Most of the time, we change a global variable required for triggering a specific
change in the system or perhaps a local variable that was not initialized properly as a
result of some bug. The command has multiple forms that must be selected according
to the type of data we want to change; the eb command is used to enter a series of bytes,
but a series of DWORDs must be entered using the ed command. The next listing
demonstrates the usage of the ed command to change first a local variable and then a
global variable. The next listing is captured after selecting option ‘6’ in 02sample.exe.

0:000> * We want to change the input parameter for testing purposes

0:000> dv /V

0006fc60 @ebp+0x08 n = 0

0:000> * Change a dword variable using its name as address

0:000> ed n 3

0:000> * Change a dword variable using its storage address

0:000> ed @ebp+0x08 5

0:000> dv /V

0006fc60 @ebp+0x08               n = 5

0:000> * Change a dword global variable

0:000> ed kernel32!g_dwLastErrorToBreakOn 5

The command is powerful enough to change the code being executed on the debug-
ger target. Although this is not a common operation, we need to understand when or
how to use it. In our experience, the most common case is an overactive assert func-
tion that prevents us from continuing a specific operation, and the turnaround time
of making the fix in the source code is relatively large. In such cases, we will patch the
debugger target by replacing the assert code with a series of NOP operations so that
the code will just skip over the former assert. 
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0:000> * After returning from breakpoint we examine the previous instruction 

0:000> ub . l1

02sample!KBTest::Fibonacci_stdcall+0x25:

00401785 ff1508104000    call    dword ptr [02sample!_imp__DebugBreak (00401008)]

0:000> * DebugBreak call takes 6 bytes that will be replaced with opcode 90 

0:000> eb .-6 90 90 90 90 90 90

0:000> ub . L6

02sample!KBTest::Fibonacci_stdcall+0x25:

00401785 90              nop

00401786 90              nop

00401787 90              nop

00401788 90              nop

00401789 90              nop

0040178a 90              nop

Armed with a minimal set of commands that enable memory content to be changed,
any debugger session is easily accessible because it becomes controllable. In the next
section, we describe some commands without an apparent connection to the debug-
ger that have been proven to save precious debugging time. 

Other Helper Commands
Not all commands interact with the debugger target, yet they still provide useful func-
tionality to the user. We will enumerate a few of them, along with some sample usage. 

One very common situation encountered in debugging is to have an error code
on the screen without having any idea what it means. The !error extension com-
mand takes an error and tries to find the message code associated with it. 

0:000> !error 0x80070005

Error code: (HRESULT) 0x80070005 (2147942405) - Access is denied.

0:000> !error 5

Error code: (Win32) 0x5 (5) - Access is denied.

In some cases, it is not possible to start the full GUI just to see the registry values, as
is the case with remote debugger sessions. The solution is yet another debugger
extension command, !dreg, that can be used to investigate the registry values on the
machine being debugged. 

The command accepts multiple options, which are very well described in the
debugger documentation or by the command itself running in the help mode: 

!dreg



105Basic Debugger Tasks

Because the parameters accepted by the !dreg extension command are long, they
are often copied from a note or previous debugging session. It is not unusual to have
some files containing a list of commands used every time before investigating each
debugger session.   

0:000> !dreg Software\Microsoft\Windows NT\CurrentVersion\AeDebug!*

Value: “Auto” - REG_SZ: “0”

------------------------------------

Value: “Debugger” - REG_SZ: “”C:\WINDOWS\system32\vsjitdebugger.exe” -p %ld -e %

ld”

------------------------------------

Value: “UserDebuggerHotKey” - REG_DWORD: 0 = 0x00000000

------------------------------------

While debugging a piece of code, we are faced with the challenge of performing some
calculations, not too complex but hard to do manually. The built-in expression evalu-
ator can be invoked using the question (?) character followed by the mathematical
MASM expression to be evaluated. The debugger also provides a C++ expression
evaluator invoked by using a double question (??) string. The usage of both expres-
sion evaluators is similar and predictable as long as no symbolic names are involved.
To better understand the differences, we will examine both the object information
using the this pointer variable and the stack information associated with the current
thread. The class used has a single integer member at offset 4, as follows:

class KBTest

{

int m_lastN;

};

The MASM expression evaluator considers each symbol equal with its memory
address; in other words, each symbol is a pointer. To obtain the value from that loca-
tion, we must dereference the pointer using one of the dereference expressions.
Based on the pointer type, different operators must be used for this: poi for an arhi-
tecture specific pointer size, qwo for a quad word pointer, dwo for a double-word
pointer, wo for a word pointer, and by for a byte pointer. 

Next, we have a simple expression used to show the value of the m_lastN mem-
ber value folowed by an expression to calculate the stack size for the current thread,
using an MASM expression. 

0:000>dt this

Local var @ 0x6fee4 Type KBTest*
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0x0006ff20

+0x000 __VFN_table : 0x00401504

+0x004 m_lastN          : 32

0:000> ? poi(poi(this)+4)

Evaluate expression: 32 = 00000020

0:000> ?poi(@$teb+4)-poi(@$teb+8)

Evaluate expression: 8192 = 00002000

The same calculation can be performed using the C++ expression evaluator, which
uses the type information to perform the necessary indirections. Note that the evalu-
ator understands the type for each pseudo-register value.  

0:000> ?? this->m_lastN

int 32

0:000> ?? int(@$teb->NtTib.StackBase) - int(@$teb->NtTib.StackLimit)

int 8192

Last, the expression evaluator can be used to perform conversions of numbers in dif-
ferent numeric systems from decimal to hexadecimal formats. 

0:000> ? 0y1010

Evaluate expression: 10 = 0000000a

0:000> ? 0n255

Evaluate expression: 255 = 000000ff

0:000> ? 0xFF

Evaluate expression: 255 = 000000ff

When more complicated conversions are necesary, the user must use the .formats
command, which shows the parameter in various formats, as shown in the following: 

0:000> .formats 44444444

Evaluate expression:

Hex:     44444444

Decimal: 1145324612

Octal:   10421042104

Binary:  01000100 01000100 01000100 01000100

Chars:   DDDD

Time:    Mon Apr 17 18:43:32 2006

Float:   low 785.067 high 0

Double:  5.65866e-315

Some readers ask how they can remember all the commands described in this chapter.
The debugger team comes to the rescue by providing a simple command-line equiva-
lent to the F1 key, the .hh <string> command. This starts the debugger help in
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search mode with the string already entered in the search box. Just select the topic you
aren’t sure about and want more information for. For example, the .hh log command
entered in the debugger console starts the help at the topic, describing how the user
can keep logs with the debugger activity so that they can be used later as reference. 

A multitude of extensions can be used in specific situations; be curious about var-
ious commands and extension commands used elsewhere in this book. Don’t forget
to check this book’s Web site for various tips and real-life scenarios that we were
unable to cover in this book.

Examples
When debugging an application, we must combine the facilities provided by the
debugger with our knowledge about the debugger target to achieve results. This sec-
tion shows a few common cases demonstrating the capabilities of such combinations. 

Conditional Breakpoints
With each breakpoint, the debugger accepts a command that is executed every time
the debugger target execution triggers that breakpoint. This facility can be used to
create a powerful conditional breakpoint. We often have a function that fails occa-
sionally, and we want to stop the execution in that point and perform further investi-
gations. This can be achieved by conditionally executing the g command when the
error condition is not detected after each function’s execution. In the following list-
ing, we set a breakpoint that performs these steps: It executes the current function;
it tests the function result afterward; and if the result is different from the value 1, the
debugger is told to execute another g command. When the function returns the value
1, the debugger waits at the command prompt. 

0:000> bp 02sample!KBTest::Fibonacci_stdcall “gu;.if (eax!=1) {g}” 

0:000> g

eax=00000001 ebx=00000000 ecx=00000001 edx=0100302c esi=00000001 edi=0100373c

eip=010017c2 esp=0006fccc ebp=0006fcd4 iopl=0         nv up ei pl zr na pe nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000246

02sample!KBTest::Fibonacci_stdcall+0x42:

010017c2 8bf0            mov     esi,eax

Detecting a Reference Release
Breakpoints on access are extremely useful for catching, for example, what’s holding
a reference to a specific kernel object. When the reference is maintained by a user
mode process, the investigation is fairly easy using tools, such as Process Explorer,
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available from Microsoft. If the reference is maintained by a kernel component, such
as an antivirus filter driver, no tool is capable of finding out what’s holding that refer-
ence. In this case, the best bet is to assume that the reference is eventually released
in time or at system shutdown. 

To find the culprit, start from the object and find out the object header address.
The address is used as a base for a breakpoint on access, with an offset of 0, when
tracking an object-only reference, or with an offset of 4, when tracking a handle ref-
erence. In Listing 2.43, we are tracking the last handle release, with the handle point-
ing to the process object representing an instance of cmd.exe. We start by using the
!process extension command to obtain the EPROCESS structure address for the
target process. Next, we use the !object extension command to obtain its header
address, which is used to set the breakpoint on access. 

Listing 2.43 Finding the stack that released a specific handle

kd> !process 0 0 cmd.exe

PROCESS ffba1020 SessionId: 0  Cid: 01a4    Peb: 7ffd5000  ParentCid: 05d4

DirBase: 0567e000  ObjectTable: e17c2b60  HandleCount:  30.

Image: cmd.exe

kd> !object ffba1020

Object: ffba1020  Type: (812ee900) Process

ObjectHeader: ffba1008

HandleCount: 1  PointerCount: 8

kd> dt nt!_OBJECT_HEADER ffba1008

+0x000 PointerCount     : 8

+0x004 HandleCount      : 1

...

kd> ba w4 ffba1008+8

kd> g

Breakpoint 2 hit

nt!ObpFreeObject+0x16c:

80563f66 5e              pop     esi

kd> k

ChildEBP RetAddr

fafb3cd0 80563ffe nt!ObpFreeObject+0x16c

fafb3ce8 804e3c55 nt!ObpRemoveObjectRoutine+0xe7

fafb3d0c 8057e5fb nt!ObfDereferenceObject+0x5f

fafb3d24 80563ff6 nt!PspThreadDelete+0xea

fafb3d40 804e3c55 nt!ObpRemoveObjectRoutine+0xdf

fafb3d64 804f9c5c nt!ObfDereferenceObject+0x5f

fafb3d74 804e47fe nt!PspReaper+0x4a

fafb3dac 8057dfed nt!ExpWorkerThread+0x100
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fafb3ddc 804fa477 nt!PspSystemThreadStartup+0x34

00000000 00000000 nt!KiThreadStartup+0x16

kd> dt nt!_OBJECT_HEADER ffba1008

+0x000 PointerCount     : 0

+0x004 HandleCount      : 0

...

Remote Debugging

Remote debugging is a popular choice in the developer community because it per-
mits a high density of systems available for testing without the requirement to pro-
vide real estate for an application developer who might need to debug the systems.
Remote debugging offers the luxury of using the personal office with the entire book-
shelf around instead of debugging the system while being physically present in the
remote location.

Remote.exe
The easiest method of remote debugging is remoting the debugger console streams,
STDIN and STDOUT, through the remote.exe utility (help topic Remote.exe).
Remote.exe is automatically installed with the Debugging Tools for Windows.
Remote.exe uses Windows named pipes to communicate between the remote server
and the remote client. The client must be authenticated by the server to be capable
of connecting to it. This utility is not specific to debugging, and it can be used to
remote any interactive command-line utility, such as cmd.exe. 

The command line shown in Listing 2.44 activates a remote server named
DiskPartRemote corresponding to the console running the diskpart.exe com-
mand. The same remote.exe utility is then used to connect to the server, using the
command line provided by the remote server at startup (the To Connect: line in
Listing 2.44). 

Listing 2.44 Remoting the console using remote.exe

C:\> remote /S “diskpart” DiskPartRemote

**************************************

***********     REMOTE    ************

***********     SERVER    ************

**************************************

2.
INTRODUCTION

TO
THED

EBUGGERS

(continues)



110 Chapter 2 Introduction to the Debuggers

To Connect: Remote /C AWD-TEST “DiskPartRemote”

Microsoft DiskPart version 5.1.3565

Copyright (C) 1999-2003 Microsoft Corporation.

On computer: AWD-TEST

DISKPART>

It is important to note that remote.exe uses the existing console to launch the command
line passed in as a parameter, imposing some restrictions when you want to spawn
another remote session from it. For example, assume that you have access to a remote
session, running cmd.exe, and you want to create another remote session to a second-
ary cmd.exe execution. You must first create a new console using start and pass the
remote command line as a parameter. You end up with a new remote server to a new
process using a different name, while the first remote is still available. The following list-
ing illustrates the command succession required to spawn another remote session. 

C:\> remote /s “cmd” cmdOrigRemote

**************************************

***********     REMOTE    ************

***********     SERVER    ************

**************************************

To Connect: Remote /C AWD-TEST “cmdOrigRemote”

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\>start remote /s “cmd” cmdNewRemote

start remote /s “cmd” cmdNewRemote

C:\>

Debug Server
The second option for remote debugging is the built-in support in the debugger,
called debugger server. Each debugger has the option to give away its control to
remote debugging clients, using different protocols, through the following form of
command line (help topic Activating a Debugging Server):

<debugger> –server <protocol>:<protocol options> <debugger options>

Listing 2.44 Remoting the console using remote.exe (continued)
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If the debugger is already running, the debugger server can start at any time by enter-
ing the built-in debugger command, .server. This option has an advantage over the
command line in that you can support multiple endpoints at once. Some examples of
using the .server command are shown in Listing 2.45. 

Listing 2.45 Starting the debugger server

Command form
0:000>.server <protocol>:<protocol options>

Results
0:000> .server npipe:pipe=notepad_%i_debug

Server started.  Client can connect with

<path>\<debugger>.exe -remote <options>

0 - Debugger Server - tcp:Port=6000,Server=AWD-TEST

1 - Debugger Server - tcp:Port=6001,Server=AWD-TEST

2 - Debugger Server - npipe:Pipe=notepad_debug,Server=AWD-TEST

3 - Debugger Server - npipe:Pipe=notepad_2112_debug,Server=AWD-TEST

The remote debugger client—that is, the controller—can connect to the debugging serv-
er using the following command (help topic Activating a Debugging Client):

C:\><debugger> –remote <protocol>:<protocol options>

The <debugger> parameter can be WinDbg.exe, cdb.exe, or kd.exe, whereas the
<protocol> parameter can be npipe, tcp, spipe, ssl, and even serial com port. You
will use one or the other, depending on the debugging situation. Let’s look at each
protocol in more detail.

The npipe protocol
The npipe (and its secure version spipe) protocol uses Windows named pipes man-
aged by the SMB redirector and the Named Pipe File System (NPFS). The client
must authenticate to the SMB server as any other client would, using the system pro-
vided command-line utility, as follows: 

net use \\RemoteServer\IPC$

The npipe protocol requires users to have a set of credentials in the domain on which
the debugger server runs. 
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NOTE The debugger server can interpret up to two formatting commands, %d or %x, that
replace them with the debugger process identifier and the debugger thread identifier. This
capability is handy when you want to attach a debugger without human intervention and
ensure name uniqueness. For example, the following command lines are expanded as shown: 

C:\> ntsd -server npipe:pipe=pid(%d)tid(%d) notepad

C:\> ntsd -server npipe:pipe=pid(%d) notepad

C:\> cdb -QR \\AWD-TEST

Servers on \\AWD-TEST:

Debugger Server - npipe:Pipe=pid(296)tid(608)

Debugger Server - npipe:Pipe=pid(3188)

TCP
TCP and its secure version SSL use the TCP/IP stack and are best used when authen-
tication is neither possible nor desired. The debug server allows you to specify a spe-
cific port or to enable the system to select one for you. Alternatively, you can specify
a range, and the debugger selects the first one from that range. 

0:000> * remote using  a specified port

0:000>.server tcp:port=5000

0:000> * remote using the first free port 

0:000> .server tcp:port=

0:000> * remote using a range and ask the debugger to pick the fist one available in

the range

0:000>.server tcp:port=5000:6000

The servers started on the system were in this case. (Note that the .servers com-
mand offers the same functionality as the <debuggers> -QR command line, but from
within the debugger server console.)

0:000> .servers

On the client, use <path>\<debugger>.exe -remote <options>

0 - Debugger Server - tcp:Port=5000,Server=AWD-TEST

1 - Debugger Server - tcp:Port=4488,Server=AWD-TEST

2 - Debugger Server - tcp:Port=5001:6000,Server=AWD-TEST

The TCP protocol offers another option, clicon=<client_host>, useful in debug-
ging a server behind firewalls when the debugger client accepts an inbound TCP/IP
connection. The following line starts the debugger server and tells it to try to connect
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to AWD-TEST on port 5000, and the next line starts the debugger client to wait for
the connection request on port 5000. 

c:\> ntsd -server tcp:port=5000,clicon=AWD-TEST notepad 2

c:\> ntsd -remote tcp:port=5000,clicon=AWD-TEST

Other Commands
Other useful commands in remoting scenarios are listed here. (A few have already
been used earlier in the chapter.)

■ .endsrv <server_id> stops a debugger server. 
■ .servers lists the debugger servers started by this debugger.
■ .clients lists the current connected clients.
■ .remote_exit exits the current debugger client.
■ .echo is useful to send text messages to other users connected to the same

debugging session.

Process and Kernel Server
So far you’ve seen the remote debuggers in action, and you should have a good under-
standing of them and how to use them. The previous methods require having an oper-
ator with full access to the remote system to find the proper process identifier,
attaching the debugger in server mode, reattaching if the process exits, and so on. In
some cases, it is not feasible to have the operator doing all this, and there is a better
way to resolve the problem. The solution is represented by stand-alone debugger
servers: a user mode debug server, known as a process server, is implemented in
dbgsrv.exe; and the kernel mode debug server, known as a KD connection server, is
implemented in kdsrv.exe. We describe the user mode debug server in more detail
because the same idea applies to the kernel mode debug server. 

A process server runs on the target system and, in essence, does nothing more
than accepting commands from the remote smart clients. The accepted commands
are similar to what the debugger engine supports, and they offer the capability to
debug processes on the target system similar to the way we debug local processes.
The process server takes the transport option as a parameter, which is visible when
querying the target system as a Remote Process Server. 

C:\>dbgsrv -t npipe:pipe=smart_um

C:\>cdb -QR 127.0.0.1

Servers on 127.0.0.1:

Remote Process Server - npipe:Pipe=smart_um
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After the process server starts, you can use any user mode debuggers as a smart client
by using the -premote option followed by the same transport protocol used to start
the process server. After the transport sequence, we specify the command line to be
used by the debugger, as the debugger will run locally on the target system. In the fol-
lowing, there are two examples of using a smart client to start two debugging sessions:
In the first case, the process server starts the new process; and in the second case, it
attaches to a running process. 

C:\>cdb -premote npipe:server=localhost,pipe=smart_um notepad

C:\>cdb -premote npipe:server=localhost,pipe=smart_um –p PID

Contrary to the remote server scenarios, the smart client performs all the activities
that influence the symbol and source resolution. The symbol source files are accessed
directly by the smart clients. Most of the extensions are unaware of the smart client
environment and work normally, with the exception of a few dedicated commands—
the most notable being the .send_file command. 

WinDbg behaves in an extremely interesting fashion when it is started in smart
client mode, without specifying a debugger target. It starts normally, but all existing
menu commands, such as the Open Executable menu item or the Attach to a process
menu item in the File menu, are working against the remote process server, effec-
tively abstracting the remoteness relation. 

If this is not enough, any smart client can also be started as a debugger server and
can accept remote connections from ordinary clients. This last setup is known as
“symbols in the middle scenario” because neither the debugger operator nor the tar-
get system has physical access to symbol or source files, but the system in the middle
can have access to them. 

The KD connection server works in the same way, except for the method of pass-
ing the connection string required on the server side. The option used by the kernel
debugger to become a smart client is kdsrv, as exemplified here: 

C:\>kdsrv -t npipe:pipe=smart_kd

C:\>cdb -QR 127.0.0.1

Servers on 127.0.0.1:

Remote Kernel Debugger Server - npipe:Pipe=smart_kd

C:\>kd -k kdsrv:server=@{npipe:server=localhost,pipe=smart_kd},

trans=@{com:port=com1}
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Symbol Resolution in Remote Debugging Scenarios
Remote debugging success is dependent on the symbols available to the debugger
and sometimes on the source’s code availability. Because remote debugging involves
a server and a client running in a different logon session, in most of the cases on dif-
ferent computers, it is very important to understand where and how the symbol res-
olution takes place or how the source is seen by the debugger. 

Because the symbols are loaded by the debugger server engine, the engine inter-
preting the symbols and interacting with the image, these symbols files must be visi-
ble and accessible to that debugger server session. When the debugger console is
shared using remote.exe, it is clear that the debugger server runs where the debug-
ger process starts. For an alternative remote debugging method, where the server is
started by the debugger –server command, the debugger server is running where
the server runs. If the smart client is connected to the process server, the debugger
engine runs on the smart client, and the symbol files must be accessible to them. 

Figure 2.6 shows the relation between the debugger client, the debugger server,
and the symbol location. 2.
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Remote /c server notepad_cdb

Cdb -remote tcp: server=server, port=5000

windbg -remote tcp:server=server,port=5000

cdb -premote npipe:server=127.0.0.1,pipe=smart_um

windbg-premote npipe:server=127.0.0.1, pipe=smart_um

kd -k kdsrv:server=@{npipe:server=localhost,pipe=smart_kd},
trans=@{com:port=com1}
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ClientClientClient

Remote /s “cdb notepad” notepad_cdb

Cdb-server tcp:port=5000

dbgsrv -t npipe:pipe=smart_um

kdsrv -t npipe:pipe=smart_kd

Symbols

ServerServerServer

Figure 2.6 Remote debugging and symbol resolution 
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When the debugger target is deployed to the remote server without the correspon-
ding symbol file and the symbol is required locally, we must find ways to make it avail-
able to the server. In most cases, we cannot authenticate the remote server to our
client by using the .shell net use \\client\ipc$ /U:user password
because it requires us to type the password into the shared debugger console. One
solution is to copy the symbol files to a remote location visible from the server with-
out entering new credentials. 

An interesting way of combining all the remote capabilities is to use a combina-
tion of normal clients and smart clients to push the symbols on the remote box. The
scenario is as before, and the client debugger is connected to the debug server. 

1. Start a process server from within the debugger using the .shell command,
using a transport different from the one used by the current debugger server.  

0:000>.shell start dbgsrv.exe -t tcp:port=5001

2. Start a smart client with the command to attach none interactively to the
process we are currently debugging: in this case, a process having the PID
equal to 3204.

C:\>ntsd -premote tcp:server=AWD-TEST1,port=5001 -pvr -p 3204

3. Use the smart client to resolve all the symbols required for debugging and send
them to the server, using the .send_file command, into the symbol path
used by the server. The target path is local to remote debugger server. 

0:000> .send_file -s c:\temp

Copying C:\symbols\02sample.pdb\DE4335BC88FD4EA1A1714350C33B84281\02sample.pdb

(155 KB)

Copying c:\symbols\msvcrt.pdb\62B8BDC3CC194D2992DCFAED78B621FC1\msvcrt.pdb (395

KB).

Copying c:\symbols\kernel32.pdb\75CFE96517E5450DA600C870E95399FF2\kernel32.pdb

(1.52 MB)......

Copying c:\symbols\msvcp60.pdb\3CF541551\msvcp60.pdb (489 KB).

Copying c:\symbols\ntdll.pdb\DCE823FCF71A4BF5AA489994520EA18F2\ntdll.pdb (1.16

MB)....

4. Going back to the original debugger, point the symbol path to the location used
in step 3, and reload the symbols. 

0:000> !sympath c:\temp

Symbol search path is: c:\temp
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0:000> !reload -f

Reloading current modules

.....

0:000> lml

start    end        module name

00400000 00404000   02sample        (private pdb symbols)  c:\temp\02sample.pdb

77ba0000 77bfa000   msvcrt     (pdb symbols)          c:\temp\msvcrt.pdb

77e40000 77f42000   kernel32   (pdb symbols)          c:\temp\kernel32.pdb

780c0000 78121000   msvcp60    (pdb symbols)          c:\temp\msvcp60.pdb

7c800000 7c8c0000   ntdll      (pdb symbols)          c:\temp\ntdll.pdb

Source Resolution on Remote Debugging Scenarios
Sources are handled similarly to the way symbol files are handled; the system where the
debugger runs must have access to the source file. Not surprisingly, WinDbg is much
more powerful when working with source files. It supports the concept of a local source
path used when performing remote debugging. It loads the source file on the remote
client, which usually has more extensive access to the source file. The local source path
is supported by an additional set of commands, .lsrcpath and .lsrcfix, or by using
the Local check box on the Source File Path menu item in the File menu. 

Debugging Scenarios

What are the most common problems using the Windows debuggers? The most dif-
ficult situations seem to arise when it is not possible to interactively control the
debugger target lifetime. In such cases, the debugger must be started by the system,
and its configuration must be performed automatically. 

When the debugger starts the debugger target, we can run the debugger target
as many times as needed since it’s fully controllable. What if the process we have to
debug is started by another application that cannot be changed to start the process
under a debugger? In this case, the parent application must be started under the
debugger with the –o option that forces any new process spawned by the debugged
application to start under the same debugger, as shown here: 

C:\>windbg -o cmd.exe /c notepad.exe

The same debugger attaches to every new process. The current process can be
switched using the process set command, |<process number>s. The current
process number becomes a part of the debugger prompt, as in the following listing:
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1:001> |

0    id: 1dc8        create  name: cmd.exe

.  1    id: f44 child   name: notepad.exe

Another option implemented by the operating system requires changes in the Image
File Execution Option (known as IFEO) registry key. The IFEO registry key contains
multiple values influencing how the operating system starts the executable. One value
in the corresponding IFEO key represents the debugger values whose content is used
by the operating system to launch the executable. In the following example, Notepad
starts under the debugger with the –g –G command-line options:

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution

Options\notepad.exe]

“Debugger”=”c:\\debug.x86\\ntsd.exe –g -G”

As an alternative to changing the registries directly, we can use gflags.exe,
installed as part of the Debugging Tools for Windows. The previous IFEO can be set
by using the following command line:

C:\>gflags /p /enable notepad.exe /debug “c:\debug.x86\ntsd.exe -g –G”

After you complete your investigation, you can revert the changes in the registry using
the following:

C:\>gflags /p /disable notepad.exe

After these changes are written into the registry, each instance of notepad.exe starts
under the debugger. Instead of launching the application identified by the IFEO key,
the system launches the debugger and passes the application name as a parameter to
it. If the application is visible to the user, the debugger will be visible as well. If the
application runs on a noninteractive session, as is the case for all services, the debug-
ger starts but is not actionable, as it is not visible.

Debugging a Noninteractive Process (Service or COM Server)
Although IFEO represents a good option for interactive processes, most Win32 serv-
ices and COM servers run in a noninteractive station. The debugger started by the
system using IFEO is invisible, and we need to find methods to connect to the debug-
ger console. 
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The kernel debugger is the best option in this scenario, and the easiest option is
to just redirect the debugger console into the kernel debugger. The image file execu-
tion option is changed, as explained before, to use a different debugger command
line, ntsd -d.  

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\

myService.exe]

“Debugger”=”c:\\debug.x86\\ntsd.exe –d”

In several cases, the process name is not a good discriminator, as in the case of mod-
ules loaded by DllHost.exe, and you want to be able to debug only your module. In
this case, the debugger accepts a few commands from the command line, asking the
debugger to stop on the initial breakpoint (don’t use the –g option), to raise an excep-
tion on the module load, and to continue the execution. If the shared host never loads
our module, the breakpoint is never hit and the system runs normally. 

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\

dllhost.exe]

“Debugger”=”c:\\debug.x86\\ntsd.exe –d –G –c ”sxe ld <mymodule>;g””

Debugging a Noninteractive Process (Service or COM Server)
Without Kernel Debugger
When no kernel debugger is connected to the target system, the system can be
debugged using the user mode debugger’s remote capabilities. A debugger in server
mode is used as a debugger parameter in IFEO.

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\

dllhost.exe]

“Debugger”=” c:\debug.x86\ntsd.exe -server tcp:port=6000 -G”

The client connects to the debug server, after the server process was started, using a
specific connection string. 

C:\>windbg -remote tcp:port=6000,server=localhost

This method does not work well when the debugger target implements a Windows
service and the debugger exits without warning shortly after starting the debugging
session. That is Service Control Manager, also known as SCM, standard behavior if the
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service does not communicate the starting status back to it in 30 seconds. Fortunately,
this limit can be changed by modifying one registry setting, as shown here: 

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control

ServicesPipeTimeout = NewTimeoutInMiliseconds

What happens if the service is started multiple times on the system, as is the case for
the dllhost.exe process? Since each debugger instance opens the specified endpoint,
only the first process will start normally under the debugger; all the other instances
will fail when the debugger tries to open the endpoint and start the debugger server.
The solution is to defer the debugger server initialization until the target process
loading that module is identified. The option of specifying a command to be execut-
ed when the debugger prompts the user allows us to send the command to break the
execution when the specific DLL is loaded and only then starts the remote server. 

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\

dllhost.exe]

“Debugger”=”c:\\debug.x86\\ntsd.exe –d –G –c ”sxe ld <mymodule>;g;.server

tcp:port=6000””

All techniques described here can be combined with the CLICON option mentioned
in the “TCP” section to better synchronize the debugger server with the debugger
client.

When multiple processes share the same IEFO key and all processes must be
debugged using debugger servers, the endpoint must be dynamically created, but
names must be predictable. The named pipe name can be autogenerated by the
debugger, as shown in Listing 2.45, with a discoverable name that is used later on the
debugger client. The next listing represents the registry value causing each 
dllhost.exe process to start a named pipe debugger server, using the pipe name
\\.\pipe\dllHost_xyz. 

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\

dllhost.exe]

“Debugger”=”c:\debug.x86\ntsd.exe –d –G –c ”.server npipe:pipe=dllHost_%i;g””
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Summary

The Windows debuggers are powerful tools that can be used to troubleshoot software
problems throughout the whole software life cycle. In the initial development phase,
the debuggers are used to validate the correctness of the code, usually with the source
code available. Later, after the code is deployed, the software developers debug the
dump files generated each time the application crashes on the user system. 

Because of their flexibility, the Windows debuggers can be used in various com-
binations and can be extended to maximize the productivity of all engineers involved
in the development process. To effectively use the debugger, the user should have a
good grasp of some basic commands and must be willing to learn new commands or
options, as required by the debugging scenario at hand. The next chapters introduce
additional commands as required by the chapter scenarios. 
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C H A P T E R  3

DEBUGGERS UNCOVERED

The Microsoft Debugging Tools for Windows package comes with very powerful tools
that were designed with the goal of providing total control over the debugger target
while keeping the overhead of exercising it at a minimal level. Every command
entered in the command windows is executed without asking for confirmation, mak-
ing the user fully responsible for the command consequences. As with any tool, the
more knowledge you have about it, the more likely you are to understand the side
effects and predict the final result of its application. In our experience, we encounter
multiple situations in which an application is stopped in the debugger in one critical
spot and any further application progress irreversibly changes the state of the debug-
ger target. Losing a debugger session this way is not desirable, especially if the failure
scenario is very hard to reproduce. In a few other cases, the process being debugged
is part of a larger live system, and you must understand the effect the debugger has on
that process; otherwise, you most likely need to restart the service, or, in the worst-case
scenario, the internal structures are corrupted, resulting in unpredictable behavior.

This chapter reveals some of the magic offered by debuggers and explains the
underlying mechanism used to provide this magic. This chapter describes in detail
the interaction between the debugger and the operating system, as well as between
the debugger and the debugger target. In this chapter, we explore

■ How the debugger works and its relationship to the code execution. 
■ How the operating system and the debugger target generate the debugger

events, especially software exceptions.
■ How the operating system interacts with the exception handling code con-

tained in the application.
■ How the debugger controls the target and what to expect from each debugger

action entered by the debugger user. This enables you to fine-tune the debug-
ging technique appropriate to a particular debugging scenario.  

This chapter uses the 03sample.exe file, which exercises the basic operations per-
formed by a debugger in a fully automated mode. Instead of requiring user input
before proceeding to the next step, the pseudo-debugger displays information about
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the current state and continues in a preconfigured mode. The debugger target is
passed in as command-line parameter. The source code and binary are located in the
following folders: 

Source code: C:\AWD\Chapter3
Binary: C:\AWDBIN\WinXP.x86.chk\03sample.exe
The sample reuses the 02sample.exe introduced in Chapter 2, “Introduction to

the Debuggers,” as a debugger target.

User Mode Debugger Internals

As presented in Chapter 2, the Microsoft Debugging Tools for Windows contains
multiple user mode debuggers and kernel mode debuggers, all sharing the function-
ality provided in part by the operating system. Because user mode debuggers are the
primary tool used by software engineers to validate their assumptions about a code
sequence and to validate algorithms correctness, as well as to investigate unexpected
failures in their application, this chapter focuses on user mode debuggers’ internals.  

This section, and the majority of the current chapter, describes how user mode
debuggers work and highlights how to use each feature provided by the debuggers in
the most efficient way. 

User Mode Debugger Support from the Operating System
Windows provides a small set of Win32 APIs exposing the debugger support imple-
mented in the operating system. User mode debuggers combine debugger APIs with
other general-purpose Win32 APIs to provide the functionality expected from them. 

These Win32 APIs can be grouped into several categories based on the function-
ality they provide, as follows:

■ APIs to create the debugger target
■ APIs to handle the debugger events used in a debugger loop 
■ APIs to inspect and modify the debugger target, used when processing the

debugger event 

This section explores the usage of each group of APIs.   

Creating the Debugger Target
The live debugging session starts with the creation of the debugger target. User mode
debuggers can start a new process, or they can attach to a running process started
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using alternative mechanisms. After this step, that process becomes the new debug-
ger target to which all further action performed by the debugger is directed. The
operating system associates the debugger target with the current debugger, which is
maintained until the debugger target ceases to exist or the debugger explicitly breaks
the association. 

Debuggers start new debugger targets by passing the DEBUG_PROCESS flag to the
CreateProcess API call used to start the new process. The 03sample.exe samples
create the debugger target using the code sequence shown in Listing 3.1. The process
name, passed as the second parameter to CreateProcess API, is the first command-
line parameter represented by the variable argv[1].    

Listing 3.1 Sample code used to start a process under user mode debugger

STARTUPINFOA startupInfo={0}; 

startupInfo.cb = sizeof(startupInfo);

PROCESS_INFORMATION processInfo = {0};

BOOL res = CreateProcess(NULL, argv[1], NULL, NULL, FALSE,

DEBUG_PROCESS, NULL, NULL, &startupInfo, &processInfo);

A running process can enter at any time in the debug state if a debugger requests the
operating system to start debugging that process, by attaching to it, using the
DebugActiveProcess API. Regardless of the method used to create the debugger tar-
get, attaching to an existing process or starting it for the purpose of debugging it, fur-
ther interaction between the debugger and the operating system is performed in the
same way. The debugger process connected to the debugger target this way is called
the active debugger. Each debugger target can have only one active debugger. 

Debugger Loop
When a process is being debugged, notable operations encountered by this process
are signaled to the debugger. Dynamic library loading and unloading, new thread cre-
ation, thread exiting, and an exception thrown by the code or by the processor are all
considered special events of interest to debuggers. When such an event must be sent
to a debugger, the Windows kernel suspends all the threads in the process, notifies
the active debugger about the event encounter, and waits for a continuation com-
mand from it. 

Most of the time, the debugger waits for the kernel to return new data in
response to the WaitForDebugevent API, data generated only if the debugger tar-
get encounters one of the special debugging events described previously. The
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WaitForDebugEvent API returns the event information into a DEBUG_EVENT struc-
ture, which contains a union of all possible event types needed by the debugger to
further interpret the event. While the debugger examines the DEBUG_EVENT struc-
ture, the process state does not change, as every thread is suspended. 

After the event has been properly interpreted and processed, the debugger
resumes debugger target execution by calling the ContinueDebugEvent API. In
response, Windows kernel continues the process execution, taking into account the
ContinueDebugEvent API parameters. Depending on the event type, the kernel
might immediately dismiss the event and cancel its processing for the current event
and, if the event is not an exception, resume the execution of all threads from the
point they were left when the event was generated.

This sequence of operations, called a debugger loop, continues until the debug-
ging session ends, either because the debugger target no longer exists or because the
debugger detaches from the target. Listing 3.2 exemplifies such a debugger loop.

Listing 3.2 Standard user mode debugger loop

for(DWORD endDisposition = DBG_CONTINUE;endDisposition != 0;)

{

DEBUG_EVENT debugEvent = { 0 } ;

WaitForDebugEvent(&debugEvent, INFINITE);

endDisposition = ProcessEvent(debugEvent);

ContinueDebugEvent(debugEvent.dwProcessId, debugEvent.dwThreadId, endDisposi-

tion);

}

Debugger Event Processing
After the debugger loop retrieves a new event, the debugger needs to interpret the
information from the DEBUG_EVENT structure, possibly handing the control over the
debugger target to the engineer using that debugger before returning to the debug-
ger loop. Listing 3.3 shows a very simple processing function, ignoring any informa-
tion from within the DEBUG_EVENT structure and returning DBG_CONTINUE for every
type of event, except for the EXIT_PROCESS_DEBUG_EVENT type, when it returns
zero. For simplicity, the return code is used both to end the loop and as a parameter
to the ContinueDebugEvent API. 
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Listing 3.3 Simple debugger events processing

DWORD ProcessEvent(DEBUG_EVENT& dbgEvent)

{

switch (dbgEvent.dwDebugEventCode)

{

case EXCEPTION_DEBUG_EVENT:    

break;

case CREATE_THREAD_DEBUG_EVENT:

break;

case CREATE_PROCESS_DEBUG_EVENT:

break;

case EXIT_THREAD_DEBUG_EVENT:

break;

case EXIT_PROCESS_DEBUG_EVENT:

break;

case LOAD_DLL_DEBUG_EVENT:

break;

case UNLOAD_DLL_DEBUG_EVENT:

break;

case OUTPUT_DEBUG_STRING_EVENT:

break;

case RIP_EVENT:

break;

}

return DBG_CONTINUE ;

} 

In the following sections, several cases from the switch statement in Listing 3.3 are
detailed with the automated handling code, designed with the idea of providing rea-
sonable default action. Cases not described in the book are covered in
03sample.exe, and their understanding is left as an exercise for the reader. Please
note that a full-fledged debugger allows the user to examine and change the debug-
ger target state before calling the ContinueDebugEvent API.

Processing OUTPUT_DEBUG_STRING_EVENT
Software engineers often use debug output commands in their code with the goal of
providing an easy-to-use tracing required to troubleshoot their code. The exact syntax
used differs between languages, but most syntax ends up calling one of the Windows-
provided debugging APIs, such as OutputDebugStringA or OutputDebugStringW.
The string output generated in such ways by the debugger target can be displayed by
the debugger using event processing code similar to that shown in Listing 3.4. The
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DEBUG_EVENT structure contains an OUTPUT_DEBUG_STRING_INFO structure, which
in turn contains message-specific information. The lpDebugStringData member
contains the address, relative to the debugger’s target address space, of the string to be
displayed, whereas nDebugStringLength contains the length of this string, and
fUnicode tells if the characters are Unicode or ANSI characters. The code uses the
handle to the process where the event originated to read the message from the debug-
ger target address space. 

Listing 3.4 Processing output debug string event

case OUTPUT_DEBUG_STRING_EVENT:

//typedef struct _OUTPUT_DEBUG_STRING_INFO {

//    LPSTR lpDebugStringData;

//    WORD fUnicode;

//    WORD nDebugStringLength;

//} OUTPUT_DEBUG_STRING_INFO, *LPOUTPUT_DEBUG_STRING_INFO;

{

OUTPUT_DEBUG_STRING_INFO& OutputDebug = dbgEvent.u.DebugString;

WCHAR * msg = ReadRemoteString(hTargetProcessHandle, OutputDebug.lpDebugString-

Data, OutputDebug.nDebugStringLength, OutputDebug.fUnicode);

std::wcout << L”OutputDebugStringEvent\nMessage:\t”;

std::wcout <<<< msg << std::endl;

delete[] msg;

break;

}

The ReadRemoteString function used in Listing 3.4 is a helper function abstracting
the character size and string length from the OUTPUT_DEBUG_STRING_INFO struc-
ture, built around kernel32!ReadProcessMemory. It reads the string from the
debugger target address space and converts it to a null-terminated Unicode string as
required by 03sample.exe. The ReadRemoteString implementation is listed in
Listing 3.5. 

Listing 3.5 Read a specific length string from the debugger target space

WCHAR * 

ReadRemoteString(HANDLE process,LPVOID address,WORD length,BOOL unicode)

{

WCHAR * msg = new WCHAR[length];

if (!msg) return NULL;

memset(msg, 0, sizeof(WCHAR)*(length));
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if ( unicode )

{

ReadProcessMemory(process, address ,msg, length*sizeof(WCHAR),NULL);  

return msg;

} 

else

{

CHAR * originalMsg = new CHAR[length];

if (!originalMsg)

{

delete[] msg;

return NULL;

}

memset(originalMsg, 0, sizeof(BYTE)*(length));

ReadProcessMemory(process, address ,originalMsg, length,NULL);    

for (WORD i = 0; i < length; i++)

{

msg[i] = originalMsg[i];        

}

delete[] originalMsg; 

return msg;

}

}

After the resulting string is displayed in the debugger console, the debugger loop con-
tinues. The debugger target continues execution after the debugger enters back into
the loop. This additional activity performed by the debugger target changes the appli-
cation execution timing, which can hide or expose race conditions in the application. 

Processing EXCEPTION_DEBUG_EVENT
The debugger target can generate several exceptions in the whole lifetime—each
type of exception being treated differently by the debugger. Some exceptions have a
special meaning to the debugger itself, whereas others have runtime meaning for the
debugger target. A debugger exception handler can be very complex. This section just
reveals the basics as required to understand the exception processing done by the
debugger. 

In the case of an EXCEPTION_DEBUG_EVENT, the DEBUG_EVENT structure contains
an EXCEPTION_DEBUG_INFO structure containing a copy of the exception information
packed as the EXCEPTION_RECORD structure in the ExceptionRecord member, as
described in Listing 3.6. From EXCEPTION_RECORD, the debugger obtains the exception
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code, the address at which the exception was raised, and exception arguments. The
EXCEPTION_DEBUG_EVENT second member, the dwFirstChance flag, tells the debug-
ger whether this is the first notification about this exception. The whole aspect of first-
versus second-chance (exception) notification is treated in detail later in this chapter. 

From the Windows operating system perspective, the debugger must interpret
the exception and use either DBG_CONTINUE or DBG_EXCEPTION_NOT_HANDLED as
the parameter to ContinueDebugEvent. In the first case, Windows assumes that the
exception has been properly dismissed, the condition causing the exception is no
longer present, and the execution can continue at the address that caused the excep-
tion. In the second case, Windows behaves as if the debugger is not even present and
continues its normal dispatching procedure.  

Listing 3.6 shows the minimal handler used in the 03sample.exe sample design,
so it does not affect the Windows exception mechanism for most of the exceptions.
Because the Windows operating system notifies the debugger about other special
operations using an STATUS_BREAKPOINT exception, our exception handler returns
DBG_CONTINUE for such exceptions. 

Listing 3.6 Processing exception debug event

case EXCEPTION_DEBUG_EVENT:

//typedef struct _EXCEPTION_DEBUG_INFO {

//    EXCEPTION_RECORD ExceptionRecord;

//    DWORD dwFirstChance;

//} EXCEPTION_DEBUG_INFO;

std::cout << “ExceptiondebugEvent\nException Code:\t “ << std::hex <<

dbgEvent.u.Exception.ExceptionRecord.ExceptionCode;

std::cout << “\tFirstChance:\t” << dbgEvent.u.Exception.dwFirstChance

<<std::endl;

switch (dbgEvent.u.Exception.ExceptionRecord.ExceptionCode)

{

case EXCEPTION_BREAKPOINT:

case EXCEPTION_SINGLE_STEP:

return DBG_CONTINUE;

}

return DBG_EXCEPTION_NOT_HANDLED;

The return code from the handling routine is returned to Windows as the last param-
eter of the ContinueDebugEvent API, having the dwContinueStatus name. 
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Debugger Events Order
In the time interval between the moments the debugger loop returns from the
WaitForDebugEvent API until the call to ContinueDebugEvent API is made, the
debugger target does not run, and its state remains unchanged. While the target is sus-
pended, a full debugger implementation would enter into an interactive mode accept-
ing user commands and would execute them using various means. As part of the
execution, the debugger can use debugger APIs to find out more information about
the debugger target and the debugger event, it can examine the symbol files associat-
ed with the debugger target modules, and it can use any other Win32 API to provide
any functionality the user requests. When the command entered on the debugger
input lines is an execution command, the debugger calls ContinueDebugEvent and
waits for the next event. 

With all this information and code available in the sample, it is time to obtain the
list of all events generated by the debugger target using our 03sample.exe. Listing 3.7
contains the console output generated by running the sample, which uses xcopy.exe
as a parameter and debugger target. 

Listing 3.7 Debugger events generated by a simple process execution (xcopy.exe)

C:\>C:\AWDBIN\WinXP.x86.chk\03sample.exe xcopy.exe

DebugEvent from PID.TID=33308.32256

EventType:      CreateProcessDebugEvent

PID:    33308

DebugEvent from PID.TID=33308.32256

EventType:      LoadDllDebugEvent

Mapped address: 7C900000

ImageName:       ntdll.dll

DebugEvent from PID.TID=33308.32256

EventType:      LoadDllDebugEvent

Mapped address: 7C800000

ImageName:       C:\WINDOWS\system32\kernel32.dll

... More LoadDllDebugEvent ...

DebugEvent from PID.TID=33308.32256

EventType:      LoadDllDebugEvent

Mapped address: 77920000

ImageName:       C:\WINDOWS\system32\setupapi.DLL

DebugEvent from PID.TID=33308.32256
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EventType:      ExceptiondebugEvent

Exception Code:  80000003       FirstChance:    1

DebugEvent from PID.TID=33308.32256

EventType:      LoadDllDebugEvent

Mapped address: 5CB70000

ImageName:       C:\WINDOWS\system32\ShimEng.dll

... More LoadDllDebugEvent ...

DebugEvent from PID.TID=33308.32256

EventType:      LoadDllDebugEvent

Mapped address: 5D090000

ImageName:       C:\WINDOWS\system32\comctl32.dll

Invalid number of parameters

0 File(s) copied

DebugEvent from PID.TID=33308.32256

EventType:      ExitProcessDebugEvent

ExitCode:       4

Listing 3.7 shows the order of events and deserves some comment. The first event
received by the debugger when starting the debugger target is
CreateProcessDebugEvent, followed by a series of LoadDllDebugEvents, one
for each dynamic library the process depends on. Because LoadDllDebugEvent is
not generated for the process image itself, CreateProcessEvent contains the infor-
mation present in LoadDllDebugEvent, such as the handle to the executable file, the
image starting address, the debug info pointers, and the executable image name—plus
event-specific information, such as the process handle, the first thread’s handle, or the
start address. The event is generated after the module has been mapped to the process
space, and it can be used to set breakpoints in the process code or to examine global
variables.    

After all modules are mapped in the debugger target, the debugger target is ready
to run, and the debugger is notified that the process is ready to run. This is the best
opportunity to set breakpoints before the process actually starts. The debugger is noti-
fied by the kernel using a STATUS_BREAKPOINT exception (identified by the
0x80000003 exception code). 

At this point, the 03sample.exe sample application returns DBG_CONTINUE,
enabling the debugger target to start process execution. Process execution continues

Listing 3.7 Debugger events generated by a simple process execution (xcopy.exe) (continued)
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by loading a few other dynamic libraries into the process space, generating the cor-
responding LoadDllDebugEvents. 

Finally, the process executes its task, and the output is combined in the console
output. After the process execution completes, the target generates
ExitDebugProcessEvent as the last event before the process goes away. 

It is important to understand the order of debugger events or to recognize the sit-
uations in which the debugger does not receive an event. For example, when the
process terminates, the debugger does not receive an UnloadDllDebugEvent for all
dynamic libraries still loaded in the process. It is also very important to recognize the
meaning of each exception and the situations in which the Windows operating system
raises a STATUS_BREAKPOINT exception to notify the debugger about a special event.
Knowing the debugger events and the order in which they are received during the
debugger target lifetime, we use the windbg.exe debugger with 02sample.exe as the
debugger target for the remainder of this chapter. 

Controlling Exceptions and Events from the Debugger
Not all events are created equally, and not all are treated equally. The Windows debug-
gers intercept all debugger events, but the way these events are handled by the debug-
ger or how they are controlled by the user varies across event types and even from
event to event. Most debugger events are pure notification events that the debugger
can ignore. The debugger does so and automatically continues its execution, some-
times after printing a brief description of the event. The debugger can also stop at that
event if the user asks it to do so, enabling the user to interact with the system. 

Although most debugger events shown previously are generated by the Windows
operating system independent of the debugger target execution, the debugger target
generates debugger exception events as part of normal execution. The interaction
between the exception-handling code and debugger is designed to minimize the run-
time execution flow impact while providing the debugger maximum flexibility.
Debuggers can choose to treat exceptions in the same fashion as any other debugger
event; they can ignore them, they can print exception information on the screen, or
they can break into the debugger. An EXCEPTION_DEBUG_EVENT debugger
exception event can be generated more than once for the same exception, as described
later in this chapter. First-event occurrence, called first-chance exception, is sent as
debugger aid, while the second event generated for the same exception, called second-
chance exception, implies that the operating system or the application cannot handle
that exception. Since second-chance exceptions become unhandled exceptions that
terminate the process, it is essential to investigate and understand the legitimacy of
each such exception and reevaluate the application’s desired behavior in such cases.  
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Windows operating systems use a structured exception handling (SEH) mecha-
nism to propagate the exceptions raised by the processor, into the kernel, and into
user mode applications. Each SEH exception type is uniquely identified by an
unsigned integer representing the exception code, assigned to it when the exception
is raised in the system. The exceptions raised by the operating system use well-known
exception codes, defined by the operating system developers (exceptions such as
access violation or breakpoint exception). Other exceptions, such as C++ exceptions,
are also represented in the system as structured exceptions using a specific exception
code. The C++ exception information is managed by the runtime provided by the
compiler.  

For example, C++ exceptions have 0xE06D7363 code, access violation excep-
tions have 0xC0000005 code, and breakpoint exceptions have 0x80000003 code. The
common exception codes, expected to be used by all software engineers developing
code targeting Windows, can be found in the <ntstatus.h> headers in the WDK as
constants defined having the STATUS_<NAME> form name, such as 

#define STATUS_BREAKPOINT          ((NTSTATUS)0x80000003L)    

You might ask why this is relevant for any engineer debugging Windows code. The
answer is to be able to use the tools at maximum capacity. The truth is that software
developers have been used to working only with symbolic names and ignoring the
value behind the name. This indirection layer between their code and the operating
system isolates them from changes in the operating system and makes their applica-
tion code easy to read and understand. Because symbol files have no references to the
original symbolic names, the debuggers display raw numbers represented by symbol-
ic names in the source code. Since this situation is unlikely to change in the near
future, and it does not change for the systems created today, it is important to become
familiar with some of the “magic” numbers seen over and over in this book. More
importantly, you need to understand how to find their meaning by yourself. Most
exception-symbolic names used can also be found in the debugger help, including the
source header or the raw value (help topic Specific Exception). 

Events Alias
Because it is hard to remember the exception codes, the Windows debuggers have
friendly aliases mapped to them that can be used to control the debugger behavior.
Alias names resemble the exception type and can be used interchangeably with
exception codes in the commands managing debugger events. For example, a hard-
to-remember C++ exception code, 0xE06D7363, is aliased by eh, whereas the break-
point exception code 0x80000003 is aliased by bpe. 
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DEBUGGER EVENTS AS EXCEPTIONS Some debugger events are actually exceptions
raised by the code implementing the event behavior, as is the case for initial breakpoint
exceptions or for output debug string events. In those cases, we should use other hints, such
as the stack, to find out the break reason.  

Inspecting Events Break and Handling
The built-in events-handling command, sx, issued without parameters, enables the
user to inspect event-handling settings used in the respective debugging session (see
Listing 3.8). The command output is grouped into three areas: events-handling inter-
action with the respective handling mode, followed by the second group with the
standard exceptions interaction and handling behavior, and last, user-defined excep-
tions interaction and handling behavior. 

Listing 3.8 Displaying the current event-handling state

0:000> sx

ct - Create thread - ignore

et - Exit thread - ignore

cpr - Create process - ignore

epr - Exit process - break

ld - Load module - output

ud - Unload module - ignore

ser - System error - ignore

ibp - Initial breakpoint - break

iml - Initial module load - ignore

out - Debuggee output - output

av - Access violation - break - not handled

asrt - Assertion failure - break - not handled

aph - Application hang - break - not handled

bpe - Break instruction exception - break

bpec - Break instruction exception continue - handled

eh - C++ EH exception - break - not handled

clr - CLR exception - second-chance break - not handled

clrn - CLR notification exception - second-chance break - handled

cce - Control-Break exception - break

cc - Control-Break exception continue - handled

cce - Control-C exception - break

cc - Control-C exception continue - handled

dm - Data misaligned - break - not handled
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dbce - Debugger command exception - ignore - handled

gp - Guard page violation - break - not handled

ii - Illegal instruction - second-chance break - not handled

ip - In-page I/O error - break - not handled

dz - Integer divide-by-zero - break - not handled

iov - Integer overflow - break - not handled

ch - Invalid handle - break

hc - Invalid handle continue - not handled

lsq - Invalid lock sequence - break - not handled

isc - Invalid system call - break - not handled

3c - Port disconnected - second-chance break - not handled

sse - Single step exception - break

ssec - Single step exception continue - handled

sbo - Stack buffer overflow - break - not handled

sov - Stack overflow - break - not handled

vs - Verifier stop - break - not handled

vcpp - Visual C++ exception - ignore - handled

wkd - Wake debugger - break - not handled

wob - WOW64 breakpoint - break - handled

wos - WOW64 single step exception - break - handled

* - Other exception - second-chance break - not handled

Exception option for:

12345678 - break - not handled

Adjusting Event Break and Handling
Since the exceptions are useful if we can break the program execution when the event
is happening, this section shows you how to control debugger behavior from an inter-
active prompt. In its most generic form, this command’s syntax is the following: 

sx{e|d|i|n} [-c “Cmd1”] [-c2 “Cmd2”] [-h] {Exception|Event|*} [parameter]

where,

■ sxe (set exceptions enable) is used to enable the debugger break on the
events.

■ sxd (set exceptions disable) is used to disable the debugger break on the
events. Although the first-chance exception does not break, the second chance
breaks on the debugger and the message is displayed on the screen as usual for
that specific event. 

Listing 3.8 Displaying the current event handling state (continued)
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■ sxn (set exceptions notify) is used to disable the debugger break (either first-
or second-chance exception) but still prints the message to the screen. A side
effect is that the debugger enters in a continuous loop. The operation system
notifies the debugger for a first chance exception; the debugger prints a mes-
sage and continues the target execution. If no handler is found, the debugger
receives a second-chance notification. On continuation, the debugger again
receives the first-chance exception, and the process repeats until the debugger
receives another event.   

■ sxi (set exceptions ignore) is used to completely “ignore” the exception (either
first- or second-chance exception); the exception is handled exactly as in the
sxn case. 

■ -c is a parameter that contains a command to be executed when a new debug-
ger event is received by the debugger. When this event is an exception event,
the parameter affects first-chance exception only. Since the command is exe-
cuted before the event is processed by the debugger, it should never contain a
‘g’ (go) statement. 

■ -c2 is a parameter that contains the command to be executed when a second-
chance exception is dispatched to debugger. Since the command is executed
before the event is processed by the debugger, it should never contain a ‘g’ (go)
statement.

■ Exception|Event|* represents the event alias, exception alias, or exception
code, such as ct for create thread event or av (or 0xC0000005 if the excep-
tion code is used instead) for access violation exception. The star (*) character
represents all other exceptions identified by the exception code and not by an
alias.   

■ parameter contains parameters specific to the event. For example,
DllLoadEvent can be restricted to one or more dynamic libraries specified in
the parameter. To break the application when ole32.dll is loaded, the
DllLoadEvent event must be configured using the following command. 

0:000>sxe ld:ole32.dll

■ -h is a parameter that instructs the debugger to change the handling behavior
instead of the break behavior. As described at the beginning of this chapter,
after receiving an exception event, the debugger must return handling state to
the operating system, so-called continuation disposition. Because no explicit
option exists to specify the handling state, this is inferred from the command
as follows: sxe means that the exception is handled; anything else means that
the exception is not handled by the debugger. 
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Another interactive command, sxr (structured exception reset), must be used to
reset all event breaks and handlings to the default values. 

WHAT IS THE DIFFERENCE BETWEEN SSE AND SSEC? After a careful inspection of
all the possible events, we can see exception pairs, such as sse (single step exception) fol-
lowed by ssec (single-step exception continuation). This separation does not have support
from the operating system, being interpreted only by the debugger engine, and is created
just to expose the break and handling state easily on the command line as two different
events. 

Adjusting Event Break and Handling from the Windbg GUI
Although the command window gives all the flexibility in the world, most people pre-
fer to use the WinDbg UI to change the event break and handling state. The options
can be accessed by selecting the Event Filters menu item in the Debug menu from
any debugger session performed using Windbg, as you can see in Figure 3.1. 

Figure 3.1 WinDbg.exe Event Filters window
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All options available on the command line are also available in the Event Filters win-
dow. Event command strings (-c and -c2) can be changed by clicking the
Commands button, break status can be changed using the Execution radio buttons,
handling state can be changed using the Continue radio buttons, and the event
parameters can be added using the Argument button. The commands to change the
event break and handling state affect the event selected from the main list. New
exception codes can also be added or removed from the main list using the Add and
Remove buttons, respectively, if the debugger target uses exception codes not shown
in this list. 

Adjusting Event Break and Handling Defaults
Knowing how to control event break and handling state in interactive mode enables
adjustment of the debugging environment to suit the debugging needs at any time. In
some cases, the default event-handling settings are not adequate to the debugging sit-
uation. For example, an arbitrary module used to manage media licenses in a Digital
Rights Management (DRM) system cannot be debugged using the normal debugger
settings, as it uses various anti-debugging tricks, such as handled access violations,
handled debug breakpoints, and so on and cannot be debugged using the normal
debugger settings. Not surprisingly, such anti-debugging tricks leverage the side
effects introduced in the process behavior by the debugger. 

In this case, the software engineer must use other ways to adjust the event break
and handling defaults to match the specific debugging needs. The most common way
to adjust the defaults is through the use of the command-line parameters described
in Table 3.1. The table contains the command-line option and the equivalent interac-
tive command, along with the command description. 

Table 3.1 Command-Line Parameter Mapped to Interactive Commands

Parameter Interactive Command Description

-g sxd ibp Don’t break at process start-up
-G sxd epr Don’t break at process termination
-xe <event> sxe <event> Break on <event> occurrences
-xd <event> sxd <event> Don’t break on <event> occurrences
-xi <event> sxi <event> Ignore all <event> occurrences
-xn <event> sxn <event> Notify on <event> occurrences
-x sxd av Don’t break on access violation
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To exemplify the mapping between the command-line parameters and interactive
commands, the next command line has the following effect:

C:\>windbg –g -xe ld:kernel32* -xd av <debugger target>

■ -g disables the initial breakpoint.
■ -xd av disables access violation breaks.
■ -xe ld:kernel32 breaks after kernel32.dll is mapped to the address

space. The library name can contain wildcards. For example, the string
ld:msvc* matches all various versions and flavors of the C runtime library.  

The other option for setting the initial debugging environment for the command-line
debugger is through the initialization file read by debugger on start-up. The initial-
ization file is named tools.ini, and its folder location is indicated by an environment
variable named INIT. For example, to obtain the same behavior as the previous com-
mand line for ntsd.exe, tools.ini must contain the lines shown in Listing 3.9.

Listing 3.9 Tools.ini content

[NTSD]

sxd: av

sxd: ibp

sxe: ld kernel32.dll 

The Windbg debugger loads those defaults, as well as other runtime parameters, from
the workspace file created either explicitly by the users or implicitly when the debug-
ger session ended. The workspaces are very well covered in the debugger reference
(help topic Workspaces).

SAVING THE ENVIRONMENT WinDbg saves the last debugger settings and reloads
them when a new session starts. While this is not really a way of controlling the environ-
ment, it offers a pretty nice experience to casual debugger users.   

Debugger Events
This section takes a few events from Listing 3.8, analyzes them in the debugger con-
sole, notes any peculiarities, and provides tips on using them. Because the next sec-
tion is dedicated to exceptions, the focus is on actionable debugger events: creating a
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process debug event, exiting a process debug event, loading a DLL debug event,
unloading a DLL debug event, creating a thread debug event, and exiting a thread
debug event. 

Create a Process Event (cpr)
The cpr event, not to be confused with the initial breakpoint event, is handled auto-
matically by the Windows debuggers. If needed, the automatic handling can be dis-
abled from the debugger command line. This event is raised before the dynamic
libraries that the process depends on are loaded into the process address space. At
this point, all global variables requiring explicit initialization are not yet initialized,
while plain old data variables are filled with their default values. This is the first
chance the debugger’s user has to execute various commands, such as setting break-
points or unassembling functions on the process image. This is the typical time to
enable the load notification for a dynamic library the process depends on. 

Initial Breakpoint Event (ibp)
After the dependent libraries are loaded in the process, the system generates anoth-
er exception signifying the initial breakpoint. The initial breakpoint is raised right
before the process execution starts. At this point, we can set a breakpoint in the con-
structor used to initialize one global variable or set breakpoints in any function imple-
mented in the process image, such as the main function. 

If the initial breakpoint is not desired, we can overwrite event handling by using
the –g command line parameter. The “Debugging Scenarios” section in Chapter 2
has a good example of how the initial breakpoint can be used to facilitate automation
tasks. We should notice that the initial breakpoint does not look different from a reg-
ular breakpoint, and the event must be identified by inspecting the stack at the cur-
rent breakpoint, as shown in Listing 3.10. The first two numbers displayed by the
.lastevent command are the process identifier and the thread identifier raising the
event. 

Listing 3.10 Initial breakpoint stack trace for any process started under debugger

0:000> .lastevent

Last event: 13b4.184: Break instruction exception - code 80000003 (first chance)

0:000> k

ChildEBP RetAddr

0007fb1c 7c93edc0 ntdll!DbgBreakPoint

0007fc94 7c921639 ntdll!LdrpInitializeProcess+0xffa

0007fd1c 7c90eac7 ntdll!_LdrpInitialize+0x183

00000000 ntdll!KiUserApcDispatcher+0x7
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Exit a Process Event (epr)
Before the debugger target is terminated, the debugger gets a last notification in the
form of the epr event, the event recognized by the .lastevent command. The
.lastevent command uses the event information to display the process exit code,
as illustrated in Listing 3.11. The event is not handled by default, but this can be over-
ridden by starting the debugger using the -G command-line parameter. 

Listing 3.11 Final event for any process started under debugger

0:000> .lastevent

Last event: 1674.c80: Exit process 0:1674, code 0

0:000> k

ChildEBP RetAddr

0007fde4 7c90e89a ntdll!KiFastSystemCallRet

0007fde8 7c81ca5e ntdll!NtTerminateProcess+0xc

0007fee4 7c81cab6 kernel32!_ExitProcess+0x62

0007fef8 77c39d45 kernel32!ExitProcess+0x14

0007ff04 77c39e78 msvcrt!__crtExitProcess+0x32

0007ff14 77c39e90 msvcrt!_cinit+0xee

0007ff28 01007522 msvcrt!exit+0x12

0007ffc0 7c816d4f notepad!WinMainCRTStartup+0x185

0007fff0 00000000 kernel32!BaseProcessStart+0x23

Load a Module Event (ld)
ld is generated by the Windows operating system immediately after a dynamic library
is mapped to process memory but before executing the library initialization code.
This is the only opportunity to set breakpoints in library initialization code, including
global variables initialization or to understand why this specific library is brought into
the process space. The latter can be understood by inspecting the call stack of this
event, as shown in Listing 3.12. 

Listing 3.12 The stack trace after loading a dynamic link library

0:000> .lastevent

Last event: 43c.b18: Load module C:\WINDOWS\system32\ShimEng.dll at 5cb70000

0:000> k

ChildEBP RetAddr

0007f72c 7c90dc61 ntdll!KiFastSystemCallRet

0007f730 7c91c3da ntdll!NtMapViewOfSection+0xc

0007f824 7c916071 ntdll!LdrpMapDll+0x330
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0007fae4 7c924a07 ntdll!LdrpLoadDll+0x1e9

0007fb10 7c9216b6 ntdll!LdrpLoadShimEngine+0x28

0007fc94 7c921639 ntdll!LdrpInitializeProcess+0x1079

0007fd1c 7c90eac7 ntdll!_LdrpInitialize+0x183

00000000 00000000 ntdll!KiUserApcDispatcher+0x7

Unload a Module Event (ud)
The ud event is generated after a dynamic library is unmapped from the address
space as a result of a call to FreeLibrary (see Listing 3.13). This event can be use-
ful to track the dynamic link library unload order if needed. 

Listing 3.13 Evaluating an ud event

0:000> .lastevent

Last event: 138c.cbc: Unload module C:\WINDOWS\System32\MSXML3.DLL at 74980000

0:000> k

ChildEBP RetAddr

0007fc28 7c90e96c ntdll!KiFastSystemCallRet

0007fc2c 7c91e7d3 ntdll!NtUnmapViewOfSection+0xc

0007fd1c 7c80aa7f ntdll!LdrUnloadDll+0x31a

0007fd30 77513442 kernel32!FreeLibrary+0x3f

0007fd3c 77513456 ole32!CClassCache::CDllPathEntry::CFinishObject::Finish+0x2f

0007fd50 77530729 ole32!CClassCache::CFinishComposite::Finish+0x1d

0007fe10 7752fd6a ole32!CClassCache::CleanUpDllsForProcess+0x1b2

0007fe14 7752fee4 ole32!ProcessUninitialize+0x37

0007fe28 774fee88 ole32!wCoUninitialize+0x11b

0007fe44 01035966 ole32!CoUninitialize+0x5b

0007ff44 0103caab WMIC!wmain+0x8af

0007ffc0 7c816d4f WMIC!wmainCRTStartup+0x125

0007fff0 00000000 kernel32!BaseProcessStart+0x23

Create a Thread Event (ct)
The ct event is generated when a new thread is created (see Listing 3.14).
Unfortunately, there is no useful information in this event, such as the thread creator
stack or the creator thread identifier. This event, however, can be very useful for
debugging thread lifetime issues in thread pool code. However, a breakpoint set on
kernel32!CreateThread calls is often enough to determine the execution path leading
to the thread creation.  
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Listing 3.14 Evaluating a ct event

0:001> .lastevent

Last event: 1494.1220: Create thread 1:1220

0:001> k

ChildEBP RetAddr

0007cea4 00090178 kernel32!BaseThreadStartThunk

WARNING: Frame IP not in any known module. Following frames may be wrong.

0007cea4 00000000 0x90178

Exit a Thread Event (et) 
The et event is generated when a running thread is terminated. Its stack back-trace
gives clues why the thread is getting terminated. For example, the thread from Listing
3.15 exits naturally when determined by the ole32.dll thread pool idle-detection mech-
anism.

Listing 3.15 Evaluating an et event

0:003> .lastevent

Last event: 1494.11ac: Exit thread 3:11ac, code 0

0:003> k

ChildEBP RetAddr

011eff50 7c90e8af ntdll!KiFastSystemCallRet

011eff54 7c80cd04 ntdll!NtTerminateThread+0xc

011eff94 7c80cebf kernel32!ExitThread+0x8b

011effa0 774fe45d kernel32!FreeLibraryAndExitThread+0x28

011effb4 7c80b50b ole32!CRpcThreadCache::RpcWorkerThreadEntry+0x34

011effec 00000000 kernel32!BaseThreadStart+0x37

Structured Exception-Dispatching Mechanism
An exception is an event that occurs during code execution either as a result of an
event encountered by the CPU while executing the code, events known as hardware
exceptions, or by explicit instructions to raise an exception, known as software excep-
tions. Hardware exceptions are the mechanisms used by the CPU to signal errors
encountered while executing the instruction stream, such as encountering an invalid
instruction or executing a breakpoint statement. Because no explicit statement exists
to raise the exception in the code, compiler documentation often refers to such hard-
ware exceptions as asynchronous exceptions. 
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On the other hand, software exceptions are raised by passing the exception infor-
mation along with the desired handling mode to the user mode API
kernel32!RaiseException. High-level languages, such as C++ or .NET languages, use
this mechanism to throw exceptions and rely on the operating system to properly dis-
patch them. Because the compilers know that the throw statement introduces a dis-
continuity in code execution, such exceptions are known as synchronous exceptions. 

The rest of this chapter uses 02sample.exe as the debugger target. The sample is
a collection of bad practices; the code accesses invalid addresses, it raises exceptions
and does not handle them, and so on. Each such bad behavior can be selected from
the application menu. For example, by using the option ‘3,’ the sample simulates an
unhandled C++ exception situation. 

Exception Structures
To make the exception handling mechanism uniform across the entire operating sys-
tem, Windows operating systems unify both concepts and treat all exceptions as struc-
tured exceptions, regardless of their source. This uniformity starts with using
common data structures to pass exception record information between the operating
system and exception handlers. The structure _EXCEPTION_POINTERS, defined
in <winnt.h>, contains a pointer to the exception record and another one to the
processor context, when the exception has been raised, as follows: 

struct _EXCEPTION_POINTERS {

EXCEPTION_RECORD *ExceptionRecord,

CONTEXT *ContextRecord }

EXCEPTION_RECORD is defined in <winnt.h> and is listed in Listing 3.16. The same
structure is later passed by the operating system to the debugger, where the infor-
mation stored inside the structure is used to interpret and present exception infor-
mation to the user. 

Listing 3.16 EXCEPTION_RECORD structure, as defined in <winnt.h> header

typedef struct _EXCEPTION_RECORD {

DWORD    ExceptionCode;

DWORD ExceptionFlags;

struct _EXCEPTION_RECORD *ExceptionRecord;

PVOID ExceptionAddress;

DWORD NumberParameters;

ULONG_PTR ExceptionInformation[EXCEPTION_MAXIMUM_PARAMETERS];

} EXCEPTION_RECORD; 
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Because most exceptions are nonfatal, notably debugger breakpoint statements, the
operating system needs to capture the processor state at the exception location to
resume code execution if requested to do so. The processor state is stored in a proces-
sor architecture-specific structure called exception context that contains all the regis-
ter values, and is defined in <winnt.h>. The first member of the structure describes
the type of CONTEXT structure (see Listing 3.17). 

Listing 3.17 CONTEXT structure, as defined in MSDN

typedef struct _CONTEXT {

DWORD ContextFlags;

...

} CONTEXT,

The ContextFlags field takes a value from the constants defined in the same
<winnt.h> header. For example, the possible constant values for the x86 family of
processors is shown in Listing 3.18. A complete exception context for a typical appli-
cation running on an x86 processor always starts with 0x0001003f, which represents
the CONTEXT_ALL constant. That kind of signature is very useful when searching
stack content and trying to understand the meaning of a specific memory block. We
can set the context recognized this way as the current thread context to understand
what the processor state was before raising the exception. 

Listing 3.18 x86 context flags values

#define CONTEXT_i386    0x00010000    // this assumes that i386 and

#define CONTEXT_CONTROL         (CONTEXT_i386 | 0x00000001L) // SS:SP, CS:IP, FLAGS,

BP

#define CONTEXT_INTEGER         (CONTEXT_i386 | 0x00000002L) // AX, BX, CX, DX, SI,

DI

#define CONTEXT_SEGMENTS        (CONTEXT_i386 | 0x00000004L) // DS, ES, FS, GS

#define CONTEXT_FLOATING_POINT  (CONTEXT_i386 | 0x00000008L) // 387 state

#define CONTEXT_DEBUG_REGISTERS (CONTEXT_i386 | 0x00000010L) // DB 0-3,6,7

#define CONTEXT_EXTENDED_REGISTERS  (CONTEXT_i386 | 0x00000020L) // cpu-specific

extensions

#define CONTEXT_FULL (CONTEXT_CONTROL | CONTEXT_INTEGER |\

CONTEXT_SEGMENTS)

#define CONTEXT_ALL (CONTEXT_CONTROL | CONTEXT_INTEGER | CONTEXT_SEGMENTS |

CONTEXT_FLOATING_POINT | CONTEXT_DEBUG_REGISTERS | CONTEXT_EXTENDED_REGISTERS)
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Exception Life Cycle
A hardware event forcefully transfers the processor control from the current executed
program to system routines that handle interrupt events. Those routines are called
interrupt handlers, which are installed by the operating system. After the processor
state switches into kernel mode, the kernel saves the processor state into a trap con-
text, which can be used to inspect the processor state before transition. Listing 3.19
shows the call stack of a thread immediately after it raised an exception. The process
throwing the exceptions has been started under the user mode debugger using the
windbg.exe 02sample.exe command line. The exception is raised by selecting option
‘3.’ The process then stops in the debugger, which in turn waits for user input. The
thread is in fact blocked while the Windows operating system dispatches the exception
information to the debugger, as we can see by using the kernel mode debugger in this
state. We identify the process by using the !process extension command and
the!thread extension command to interpret the stack of the single process’s thread. 

Listing 3.19 Exception dispatched to the user mode debugger

kd> !process 0 4 02sample.exe

PROCESS ff68a020  SessionId: 0  Cid: 0a7c    Peb: 7ffdd000  ParentCid: 0a70

DirBase: 03912000  ObjectTable: e180e158  HandleCount:   7.

Image: 02sample.exe

THREAD ffa7d868 Cid 0a7c.0a78  Teb: 7ffdf000 Win32Thread: 00000000 WAIT

kd> !thread ffa7d868

THREAD ffa7d868  Cid 0a7c.0a78  Teb: 7ffdf000 Win32Thread: 00000000 WAIT: (Executive)

KernelMode Non-Alertable

SuspendCount 1

f7cf3490  SynchronizationEvent

Not impersonating

DeviceMap                 e19f85a0

Owning Process            ff68a020       Image:         02sample.exe

Wait Start TickCount      14796478       Ticks: 1035 (0:00:00:10.364)

Context Switch Count      44

UserTime                  00:00:00.0000

KernelTime                00:00:00.0290

Win32 Start Address 02sample!mainCRTStartup (0x0040183d)

Start Address kernel32!BaseProcessStartThunk (0x7c810867)

Stack Init f7cf4000 Current f7cf3414 Base f7cf4000 Limit f7cf1000 Call 0

Priority 10 BasePriority 8 PriorityDecrement 0 DecrementCount 16

ChildEBP RetAddr  Args to Child

f7cf342c 804dc6a6 ffa7d8d8 ffa7d868 804dc6f2 nt!KiSwapContext+0x2e ()

f7cf3438 804dc6f2 00000000 ffa7d868 f7cf3488 nt!KiSwapThread+0x46 
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f7cf3460 8065879b 00000000 00000000 00000000 nt!KeWaitForSingleObject+0x1c2 

f7cf3540 80659903 ff68a020 00000000 f7cf3578 nt!DbgkpQueueMessage+0x17c 

f7cf3564 8060fed2 f7cf3578 00000001 f7cf3d64 nt!DbgkpSendApiMessage+0x45 

f7cf35f0 804fc914 f7cf39d8 00000001 00000000 nt!DbgkForwardException+0x8f 

f7cf39b0 804fcbfe f7cf39d8 00000000 f7cf3d64 nt!KiDispatchException+0x1f4 

f7cf3d34 804e297d 0006fe48 0006fb64 00000000 nt!KiRaiseException+0x175 

f7cf3d50 804df06b 0006fe48 0006fb64 00000001 nt!NtRaiseException+0x31

f7cf3d50 7c81eb33 0006fe48 0006fb64 00000001 nt!KiFastCallEntry+0xf8 (TrapFrame @

f7cf3d64)

0006fe98 77c2272c e06d7363 00000001 00000003 kernel32!RaiseException+0x53 

0006fed8 004012c5 0006feec 00401d38 004012b0 msvcrt!_CxxThrowException+0x36 

0006fef0 00401471 00011970 7c9118f1 7ffdd000 02sample!RaiseCPP+0x25 

0006ff44 0040196c 00000002 00262588 00262a58 02sample!wmain+0xe1 

0006ffc0 7c816d4f 00011970 7c9118f1 7ffdd000 02sample!mainCRTStartup+0x12f 

0006fff0 00000000 0040183d 00000000 78746341 kernel32!BaseProcessStart+0x23 

kd> .trap f7cf3d64

ErrCode = 00000000

eax=0006fe48 ebx=7ffdd000 ecx=00000000 edx=002625b0 esi=0006fed8 edi=0006fed8

eip=7c81eb33 esp=0006fe44 ebp=0006fe98 iopl=0         nv up ei pl nz na pe nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000206

kernel32!RaiseException+0x53:

001b:7c81eb33 5e              pop     esi

kd> k

*** Stack trace for last set context - .thread/.cxr resets it

ChildEBP RetAddr

0006fe98 77c2272c kernel32!RaiseException+0x53

0006fed8 004012c5 msvcrt!_CxxThrowException+0x36

0006fef0 00401471 02sample!RaiseCPP+0x25

0006ff44 0040196c 02sample!wmain+0xe1

0006ffc0 7c816d4f 02sample!mainCRTStartup+0x12f

0006fff0 00000000 kernel32!BaseProcessStart+0x23

The handler uses the trap information and possibly other information retrieved from
the processor to create two pieces of information: an exception record, describing the
exception encountered and an exception context, containing the state of the proces-
sor at the time the processor encountered that exception. Please note that the trap
frame information (shown in the first kernel function from the previous stack as
TrapFrame) captured at the transition into the kernel mode point can be used as con-
text information to the .trap command, as shown in Listing 3.19. 

Listing 3.19 Exception dispatched to the user mode debugger (continued)
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Software exceptions are initiated by an explicit call into a kernel mode, using the
undocumented API ntdll!NtRaiseException called by the public API kernel32!
RaiseException. ntdll!NtRaiseException creates the exception record and captures the
process state in an exception context. With the exception record and the exception
context, the kernel is ready to dispatch the exception using the exception-dispatching
mechanism, similar to the hardware exceptions. 

The dispatching process starts in kernel mode and continues later in user mode or
kernel mode, matching the mode active when the exception was encountered. All
exceptions encountered in kernel mode should be handled; otherwise, that exception
causes a bug check (also known as blue screen errors or BSOD), such as the following:

bug check 0x8E: KERNEL_MODE_EXCEPTION_NOT_HANDLED 

With the exception information captured as described previously, the operating sys-
tem starts the exception-dispatching routine. As part of this routine, the Windows
operating system performs several activities, such as

■ Attempts to call all registered handlers until the exception is handled
■ Provides additional functionality such as exception logging
■ Ultimately decides what to do with any unhandled exception 

This complex functionality, provided by the Windows operating system, is performed
almost silently. We use “almost” because the exception dispatching is relatively expen-
sive when compared to normal code execution. As long as no exceptions are raised as
part of the normal execution flow, the overall cost of dispatching the exception is neg-
ligible. 

Exception Dispatching
The Windows operating system takes debugger availability into account when an
exception is dispatched—that is, a user mode debugger attached to the process gen-
erating the exception or a kernel mode debugger attached to the system causing the
exception. The scope of this section is limited to exceptions encountered while exe-
cuting user mode code. 

When the Windows operating system starts to process user mode exceptions, it first
asks the user mode debugger attached to the process, if any, to handle the exception. If
no debugger is attached to the process, the kernel examines a global flag controlling the
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dispatching process and dispatches the exception according to the flag. Bit 0 of
nt!NTGlobalFlag controls exception-dispatching behavior and is named
StopOnException (soe). When the StopOnException flag is set, all exceptions
encountered on a process, not attached to a user mode debugger, are first dispatched to
the kernel debugger attached to the target system. When the flag is not set, the kernel
mode debugger does not interfere with exception-dispatching code, unless the exception
has special debugging meanings, such as STATUS_BREAPOINT and STATUS_
SINGLE_STEP. 

The best option to use for decoding the flags is the !gflag extension command,
which deciphers the contents of nt!NTGlobalFlag, as shown in Listing 3.20. 

Listing 3.20 Deciphering kernel global flags

kd> dc nt!NtGlobalFlag l1

80540aec  00000001                             ....

kd> !gflag

Current NtGlobalFlag contents: 0x00000001

soe - Stop On Exception

This flag, just as all other kernel flags, can be changed from the debugger console.
The flags can also be changed using the gflags.exe utility installed with Debugging
Tools for Windows. Listing 3.21 shows an example of temporary or permanently
enabling the StopOnException flag using gflags.exe. 

Listing 3.21 Changing kernel flags using command line gflags.exe

c:\> gflags -k +soe

Current Running Kernel Settings are: 00000000

soe - Stop On Exception

c:\> gflags -r +soe

Current Boot Registry Settings are: 00000001

soe - Stop On Exception

However, for a better interactive experience, the user can start gflags.exe without a
parameter and change the kernel flags in the graphical user interface, as shown in
Figure 3.2.  
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Figure 3.2 Changing kernel flags using GUI gflags.exe

Regardless of how the StopOnException flag is changed, the exception behavior is
affected in the same way. The next section focuses on the steps taken by the kernel to
dispatch an exception, taking into consideration the StopOnException flag as well.
The logic used to dispatch a user mode exception is described in the following. Figure
3.3 presents this logic in a flow chart format.  

Dispatching a user mode exception can be summarized as follows:

1. When a new exception is raised, the Windows kernel tries to dispatch the
exception to the user mode debugger if available. If available, the exception-
dispatching flow continues from step 6. When a kernel debugger is attached to
the host, the exception dispatching flow continues in step 2; otherwise, it con-
tinues from step 4. 

2. Exceptions that have meaning for the debugger, such as STATUS_
BREAKPOINT or STATUS_SINGLE_STEP, are sent as debugger notifica-
tion to the kernel debugger. When the StopOnException flag is set, all other
exceptions are also sent as debugger notifications to the kernel debugger; oth-
erwise, the exception-dispatching flow continues in step 4. The system is
“frozen,” waiting for a reply to the kernel debugger notification. 
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3. The kernel debugger examines the exception and, depending on the debugger
settings, it can handle the exception. In this case, the exception is dismissed,
and the code execution continues from the exception location when the kernel
debugger replies to the debugger notification. For unhandled exceptions, the
dispatching flow continues from step 4. 

4. The Windows kernel searches for an exception handler by evaluating all functions
from the call stacks for the presence of a frame-based exception handler.
Exception handler filters found in this phase are called, starting with the most
recent function from the stack, until one filter returns EXCEPTION_
EXECUTE_HANDLER. Starting with Windows XP and Windows Server 2003, the
developer can register additional filters to be called prior to starting the search
process using a vectored exception handler mechanism. With the exception han-
dler found earlier, the kernel starts to roll back the execution stack to the function
owning the handler, executing all the final handlers registered within the func-
tions traversed—a process called stack unwinding. Finally, the code execution
continues with the exception handler in the target function. 

5. What if the current thread stack contains no handler capable of handling the cur-
rent exception? Each thread guards the procedure code with a built-in filter and
handler designed to handle all exceptions not handled by user-provided code.
This filter, generically called the unhandled exception filter, takes the necessary
steps to terminate the process by calling the kernel32!UnhandledExceptionFilter
API when an exception is not handled. The logic used by unhandled exception fil-
ters is described in Chapter 13, “Postmortem Debugging.” 

6. When a user mode debugger is attached to the process, it receives the excep-
tion notification, and it can handle it or not based on the debugger settings.
(See the previous section “Controlling Exceptions and Events from the
Debugger” regarding exception handling settings.) This notification is referred
to in the debugger documentation as first chance exception. Handling of
exceptions unhandled by the debugger continues by searching an exception
handler for the exception and unwinding the stack when this is available, as in
the process described in step 4. Exceptions handled by the user mode debug-
ger, such as STATUS_BREAKPOINT, continue by executing the code from
the location that generated the exception after any adjustment is made by the
debugger. 

7. If the debugger does not handle the exception and no handler is found in step
6, the Windows kernel makes a second attempt to have the exception handled
by the debugger, a notification process known as second chance exception. If
the exception is still not handled by the debugger, the process simply restarts
the sequence from step 6 until the exception is handled. 



153User Mode Debugger Internals

Figure 3.3 Exception dispatching logic

The next section shows, in practical ways, the effects of various debugger configura-
tions for different exceptions, using the logic described previously. 

Exception Reflected in Different Debugger Configurations
The sample 02sample.exe is once again used to illustrate the user mode exception dis-
patching logic. Various options invoke code paths with different exception-handling
behaviors. In the C language, exception handlers are created using __try/__except
keywords, a Microsoft extension to the company compilers designed to generate the
exception filters and handler required by the operating system. This section details
several aspects of the exception-handling mechanism implemented by the Windows
operating system. Listing 3.22 shows the code exercised by each option described in
the subheadings, code compiled in the executable 02sample.exe. 
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Listing 3.22 Code exercising the exception dispatching logic

Code causing an access violation exception, exercised by option ‘1’
void RaiseAV()

{

_alloca(1); //Force the compiler to generate a stack frame

char* invalidAddress = 0;

*invalidAddress = 0;

}

Code causing a break point exception, exercised by option ‘2’ 
void RaiseBP()

{

_alloca(1); //Force the compiler to generate a stack frame

DebugBreak();

}

Code handling an access violation exception, exercised by option ‘b’
__try

{

RaiseAV();

}

__except(EXCEPTION_EXECUTE_HANDLER)

{

}

Code handling a break point exception, exercised by option ‘c’
__try

{

RaiseBP();

}

__except(EXCEPTION_EXECUTE_HANDLER)

{

}

Each function, shown previously, runs in different environments. All relevant infor-
mation pertaining to the interaction between the code and the Windows operating
system (or the interaction with the debuggers if any are attached) is detailed next. The
entire exercise is done under the assumption that the system configuration was not
altered by any program installed on that system, especially a debugger toolkit or a
development suite with debugging capabilities. 

The same executable runs under four different configurations, as follows:

■ The first configuration does not use a debugger, which is representative of a
real user environment. We call this a normal configuration. 
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■ The second configuration has a kernel debugger connected to the host, com-
monly used in software testing phase. We call this a kernel mode debugger or
KD configuration. 

■ The third configuration has a kernel debugger connected to the host and has
the StopOnException global flag enabled. We call this a KD with SOE con-
figuration.

■ In the fourth configuration, the executable runs under a user mode debugger,
a configuration popular in the development phase. We call this a user mode
debugger or UM configuration. 

Unhandled Access Violation Exception (STATUS_ACCESS_VIOLATION)
The first option generates the most familiar exception, having 0xC0000005 code
representing an access violation exception, also known as a protection fault. The
first function described in Listing 3.22 must be used in each of the preceding con-
figurations. The behavior across all configurations is as follows:

■ Normal configuration
Without a debugger available, exception-dispatching code evaluates all avail-
able filters in step 4 of the “Exception Dispatching” section described previ-
ously. After not finding any, the exception-dispatching code invokes
kernel32!UnhandledExceptionFilter, causing the application to report the
error and exit. This process is described in Chapter 13.

■ KD configuration
With a kernel debugger connected to the system, the system behavior does not
change and the application exits in the same way as in the normal configuration. 

■ KD with SOE configuration 
In this configuration, exception-handling code forwards the exception to the ker-
nel mode debugger and waits for the handling disposition. The system resumes
the execution after entering the g command with the exception-handling code
described in the normal configuration.

■ UM configuration 
The user mode debugger is notified about the exception encountered since the
debugger is normally configured to stop on the first-chance exception. After
entering the g command, the exception handling code searches for a frame
handler for that exception, and because no handler is available, the exception
notification is sent one more time to the debugger as a second-chance excep-
tion. Handling the exception in the debugger does not help because the con-
dition causing the access violation is still present and the failing instruction is
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executed again. As a result, the system again raises the exception as a first-
chance exception, and the cycle continues until the condition disappears.
This cycle can be seen in action by starting the faulty code under the debug-
ger and instructing it to just notify the user about access violation exceptions
instead of waiting for user input: 

c:\>windbg.exe -g -G -xn av C:\AWDBIN\WinXP.x86.chk\02sample.exe

Unhandled-Breakpoint Exception (STATUS_BREAKPOINT Exception)
As seen at the beginning of this chapter, this STATUS_BREAKPOINT exception
has special meaning for the debugger, and the system behavior is changed slightly
when compared to the access-violation exception.

■ Normal configuration 
The system exhibits the same behavior as with an access-violation exception.
Any int 3 processor instruction (executed from within the DebugBreak() or
assert() statement) is perceived by the system and user as any other exception.
Contrary to what we see in the debugger, the code execution does not contin-
ue immediately after the int 3 statement. 

■ KD configuration 
Because the exception is characteristic of the debugging process, the kernel
debugger stops and handles this exception. Upon continuation, the execution
resumes from the instruction following the int 3 statement. 

■ KD with SOE configuration
Because the STATUS_BREAKPOINT exception is already handled by the ker-
nel mode debugger, the StopOnException flag does not add further changes.

■ UM configuration 
The debugger stops at the breakpoint instruction and handles the exception.
Upon continuation, the execution resumes from the instruction following the
int 3 statement. 

Handled Access-Violation Exception The code used in this case is similar to
what we used to test unhandled-access violations, except that it provides a frame-
based exception handler for the exception.  

■ Normal configuration
As expected, the exception is handled, and the code continues normally after
the handler is executed. 
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■ KD configuration 
As expected, the exception is handled, and the code continues normally, with-
out kernel mode notification.   

■ KD with SOE configuration 
In this configuration, the exception-handling mechanism forwards the excep-
tion to the kernel mode debugger and waits for a continuation disposition.
Upon continuation (after the g command), the exception is handled in the user
mode code, which continues normally.

■ UM configuration
The debugger stops at the first-chance exception notification according to the
debugger default exception-handling settings. Upon continuation, the excep-
tion handler is handling the exception, and the process execution continues
normally. 

Handled-Breakpoint Exception What is different when the exception is a 
debugging-specific exception, such as the STATUS_BREAKPOINT exception or
the STATUS_SINGLE_STEP exception? All debuggers try to understand and han-
dle such exceptions. 

■ Normal configuration
As expected, the exception is handled and the code continues normally. 

■ KD configuration
Because the exception is specially used in debugging, the kernel debugger
stops and handles this exception. 

■ KD with SOE configuration 
In this configuration, the exception-handling code forwards the exception to
the kernel mode debugger and waits for a disposition of it. Upon continuation
(after the g command), the execution resumes from the instruction following
the int 3 statement and the process finishes normally. 

■ UM configuration
The debugger stops at the first-chance exception notification according to the
debugger default exception-handling settings. Upon continuation, the execu-
tion resumes from the instruction following the int 3 statement and the process
finishes normally. 

After testing all such configurations using different exception codes, several interest-
ing conclusions can be drawn and used in day-to-day work, as follows.
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■ By default, any unhandled exception generates, using Windows Error
Reporting (WER), a crash report that can be used for postmortem debugging.
The customers can centralize such reports at the enterprise level using the
Microsoft Corporate Error Reporting or the newer Agentless Exception
Monitoring server. The customer can also have them uploaded to the WER
site to be investigated by Microsoft developers or by the participating software
vendors. Chapter 13  describes how independent software vendors can partic-
ipate in analyzing WER reports and provide solutions to the commonly report-
ed problems. 

■ Although users of any software solution don’t have a pleasant experience when
encountering unhandled exceptions, from the developer perspective, these
exceptions provide the necessary feedback loop required to fix all software flaws
present in the applications. The alternative technique of hiding all exceptions by
“handling” them, irrespective of the types or source, so the user doesn’t see
them, creates long-term reliability problems that are hard to diagnose and
sometimes are never fixed, as there is no “visible” impact on users. 

■ In the development and testing phases, the kernel debugger is a very powerful
tool and should be used to monitor a percentage of the systems used in prod-
uct testing if it does not conflict with the application. 

■ Distributed applications propagating errors from one process to another are
usually difficult to debug since the source of the original error is not known in
advance. If the error was initially an exception raised on any constituent
process, it is easy to stop the system execution in that spot using the KD with
SOE configuration and the appropriate sx command in the kernel debugger. 

■ Good developers are usually asserting the state of the process by using various
assert techniques. Unfortunately, most of the asserts are disabled in the
released version of the product, the most likely target of the testing phase, and
one big opportunity to make sure that the code works as expected is wasted.
Really important asserts can be replaced with code that raises a breakpoint and
handle intermediately. This breakpoint causes the code to stop in the debug-
ger if present or continues the execution with a small performance hit (as the
condition asserted should always be true).  

Knowing how the exception is handled by the system in various configurations
enables developers to understand why the code stopped where it stopped.
Developers can use this knowledge to define the error-handling strategy for their
product, to rely on an unhandled exception filter to collect crash data, or to handle
few exceptions by themselves and collect some information from the process. In the
development phase, the code can be instrumented and the testing environment can
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be adjusted to bring valuable feedback into the development process. Ideally, the
developers should not change the unhandled exception filter behavior and rely on
WER feedback mechanism. 

ANTI-DEBUGGING TECHNIQUES Please be aware that several anti-debugging tech-
niques use the exception mechanism to check if the environment is running without debug-
gers and to discourage people from debugging the code protected this way. An exception
raised in a product dealing with data protection, rights management, or license manage-
ment is not always what it appears to be.   

Frame-Based Exception Handler
As we have seen in this section, the Windows exception-handling mechanism is quite
flexible. It enables any function from the call stack to filter all the exceptions raised when
executing the current function or any function called by it. Depending on the exception
type or other factors determined by the filter, the function can handle the exception, fix
the condition generating the exception and retry the execution, or ignore the exceptions.
The function can also set a termination handler to be called when the current function
returns. This section explains the underlying mechanism used by the applications to sup-
port the exception-dispatching mechanism. Understanding this mechanism is useful
when debugging problems encountered in the exception-handling code itself. 

Although the mechanism described in this section is specific to the x86 architecture,
it represents a good case for learning how the system deals with exceptions and how to
debug such code. The system requirements for a function to participate in an exception-
handling mechanism are minimal. The application must provide an exception handler
with a well-defined function signature and register it with the process-unwinding mech-
anism for the duration of the function execution. Each registration represents a new
exception frame. This handler is invoked by the Windows operating system when the
function might terminate the execution because of an exception. Although it is possible
to handcraft exception handlers that interact directly with the native exception-handling
mechanism, we use C/C++ compilers to build exception frames. 

On x86 architectures, the exception handlers are organized in a single linked list, pri-
vate to each thread, adjusted dynamically by the code running on that thread. When a
new handler must be added to the list, this handler’s node becomes the head of the list,
which is then stored in the thread environment block (TEB). Each node stores the
exception handler for the corresponding function plus the link to the next node corre-
sponding to a caller with an exception handler. Figure 3.4 illustrates the list organization. 
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Figure 3.4 Exception handler list 

Because each function provides one exception handler at most, the list length cannot
exceed the length of the call stack. Most functions do not require participation in the
exception-dispatching logic and do not provide a handler into the exception chain.
Listing 3.23 demonstrates the use of information described in Figure 3.4: finding the
exception handler list head and printing the entire exception list using the !slist
extension command. The Windows debugger team recognizes that this process is
cumbersome, so they provided an extension command, !exchain, to do all this plus
the necessary function handlers deciphering when possible. Listing 3.23 uses those
commands to investigate the exception handler chain at the debugger stop caused in
the function invoked by option ‘d’ of the sample 02sample.exe. 

Listing 3.23 Investigating x86 exception handler list

0:000> !teb

TEB at 7ffdf000

ExceptionList:        0006ff28

0:000> * Obtain the exception chain type information 

Exception list

Other TEB members

Frame exception handler

Next frame (0x00000000)

Frame exception handler

Next frame

Frame exception handler

Next frame



161User Mode Debugger Internals

0:000> dt nt!_NT_TIB ExceptionList

+0x000 ExceptionList : Ptr32 _EXCEPTION_REGISTRATION_RECORD

0:000> !slist $teb _EXCEPTION_REGISTRATION_RECORD 0

SLIST HEADER:

+0x000 Alignment          : 700000006ff28

+0x000 Next               : 6ff28

+0x004 Depth              : 0

+0x006 Sequence           : 7

SLIST CONTENTS:

0006ff28

+0x000 Next             : 0x0006ff90 _EXCEPTION_REGISTRATION_RECORD

+0x004 Handler          : 0x010020d2     _EXCEPTION_DISPOSITION

02sample!_except_handler4+0

0006ff90

+0x000 Next             : 0x0006ffdc _EXCEPTION_REGISTRATION_RECORD

+0x004 Handler          : 0x010020d2     _EXCEPTION_DISPOSITION

02sample!_except_handler4+0

0006ffdc

+0x000 Next             : 0xffffffff _EXCEPTION_REGISTRATION_RECORD

+0x004 Handler          : 0x77b88bf2     _EXCEPTION_DISPOSITION

ntdll!_except_handler4+0

Ffffffff

+0x000 Next             : ????

+0x004 Handler          : ????

0:000> !exchain /f

0006ff28: 02sample!_except_handler4+0 (010020d2)

0006ff90: 02sample!_except_handler4+0 (010020d2)

0006ffdc: ntdll!_except_handler4+0 (77b88bf2)

...

In this case, each function uses the same exception handler, and the !exchain exten-
sion command does not understand the exception frame or show additional informa-
tion about it. In such situations, we have to manually decode the exception frames.
Because the handlers are generated by the compiler tools in most cases, the next sec-
tion goes into the details of the generated code, using Microsoft C/C++ compilers as
models. The compiler provides this support by a nonstandard extension in the form
of the __try/__except and __try/__finally constructs. 

Generating a Frame-Based Exception Handler
We start with a simple function containing an exception handler and an exception han-
dler filter that always evaluates to EXCEPTION_EXECUTE_HANDLER. The code pro-
tected by the exception handler accesses an invalid memory location that generates an
access violation exception. The source for this function is shown in Listing 3.24. 
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Listing 3.24 Simple function using __try/__except constructs

void try_except()

{

__try

{

*((int *) 0) = 0;

}

__except(ex_filter())

{

global = 1;

}

}

The generated code for this function can be inspected in the debugger after starting
02sample.exe. Listing 3.26 contains the annotated code corresponding to the function
shown in Listing 3.25. 

Listing 3.25 Generated code for a simple function using __try/__except support

0:000> uf 02sample!try_except

02sample!try_except:

...

01001d75 6afe            push     0FFFFFFFEh                   ;Set the block counter

01001d77 68d02a0001      push     offset 02sample!_CT??_R0H+0x60 (01002ad0)

01001d7c 68d2200001      push     offset 02sample!_except_handler4 (010020d2)

01001d81 64a100000000    mov      eax,dword ptr fs:[00000000h] ;Retrieve the head

01001d87 50              push     eax                          ;Save the old head

...

01001d99 8d45f0          lea      eax,[ebp-10h]

01001d9c 64a300000000    mov      dword ptr fs:[00000000h],eax ;Save the new head

01001da2 8965e8          mov      dword ptr [ebp-18h],esp

01001da5 c745fc00000000  mov      dword ptr [ebp-4],0          ;Block change

01001dac c7050000000000000000 mov dword ptr ds:[0],0

01001db6 c745fcfeffffff  mov      dword ptr [ebp-4],0FFFFFFFEh

01001dbd eb1a            jmp      02sample!try_except+0x69 (01001dd9)

02sample!try_except+0x69:

01001dd9 8b4df0          mov      ecx,dword ptr [ebp-10h] ; Get old head

01001ddc 64890d00000000  mov      dword ptr fs:[0],ecx         ; restore old head

...

01001dea c3              ret

0:000> dc 01002ad0 l8

01002ad0  fffffffe 00000000 ffffffd8 00000000  ................

01002ae0  fffffffe 01001dbf 01001dc5 00000000  ................
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The compiler splits the function into multiple regions with different handler func-
tionality, and it generates an aggregate structure containing a filter and a handler for
each region. To link this information with the standard unwinding mechanism, the
compiler registers a generic handler at the beginning of the function call and dereg-
isters it at the end of the function call. The handler common to all functions in the
module evaluates the exception using the filter function and invokes the user code
handling the exception matching the current executed block. The handler is imple-
mented in the compiler runtime library, also known as the CRT. 

How does the generic handler know which block is currently executing?
Microsoft C/C++ compilers on x86 processors use a local counter indicating which
region is currently executing. The local counter is changed by compiler-generated
code when the execution crosses the region borders.

Plain assembly code limits the capability of understanding the exception-handling
code and the transformation happening in the compilation process. To reduce the gap
between the familiar C/C++ source code and assembly code, the compiler can gener-
ate an intermediate file called an assembly listing. An assembly listing contains the
assembly code annotated with the original source code and suggestive labels instead of
just addresses. This is often used to understand the role of a specific processor instruc-
tion in the original C/C++ source code. Listing 3.26 contains the assembly listing cor-
responding to the function try_except shown previously in plain assembly language. 

In the annotated code shown in Listing 3.27, we can see that the exception infor-
mation block, identified by the $__sehtable$?try_except@@YGXXZ label, contains
pointers to the exception filter $LN5@try_except and to the exception handler
$LN6@try_except function. The generic exception-handling function, the
__except_handler4 function imported from the MSVCRT library, is stored on the
stack immediately after the exception information block at the address 0000c. 
The region index, referred to using the __$SEHRec$[ebp+20] label, is changed from
–2, meaning that the function is outside any exception region without anything to exe-
cute on exception, to 0 after starting the __try block execution on the offset 00035.
When the protected region execution completes, the index is changed back to –2, indi-
cating that the code execution is outside any protected region. The exception handlers
list is referred to by fs:0. 

Listing 3.26 Assembly listing generated for the function from Listing 3.24

PUBLIC    ?try_except@@YGXXZ                ; 

xdata$x    SEGMENT

__sehtable$?try_except@@YGXXZ DD 0fffffffeH

DD    00H
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DD    0ffffffd8H

DD    00H

DD    0fffffffeH

DD    FLAT:$LN5@try_except

DD    FLAT:$LN6@try_except

xdata$x    ENDS

_TEXT    SEGMENT

?try_except@@YGXXZ PROC                    ; try_except, COMDAT

...

00005  6a fe         push     -2 ; fffffffeH

00007  68 00 00 00 00     push     OFFSET __sehtable$?try_except@@YGXXZ

0000c  68 00 00 00 00     push     OFFSET __except_handler4

00011  64 a1 00 00 00 00     mov     eax, DWORD PTR fs:0

...

00029  8d 45 f0            lea     eax,   DWORD PTR __$SEHRec$[ebp+8]

0002c  64 a3 00 00 00  00 mov     DWORD PTR fs:0, eax

00032  89 65 e8            mov     DWORD PTR __$SEHRec$[ebp], esp

; 29   :     __try

00035  c7 45 fc 00 00 00 00 mov     DWORD PTR __$SEHRec$[ebp+20], 0

; 30   :     {

; 31   :         *((int *) 0) = 0;

0003c  c7 05 00 00 00 00 00 00 00 00  mov     DWORD PTR ds:0, 0

; 32   :     }

00046  c7 45 fc fe ff ff ff mov     DWORD PTR __$SEHRec$[ebp+20], -2 ; fffffffeH

0004d  eb 1a           jmp     SHORT $LN4@try_except

$LN5@try_except:

$LN10@try_except:

; 33   :     __except(ex_filter())

0004f  e8 00 00 00 00       call ?ex_filter@@YGKXZ    ; ex_filter

$LN7@try_except:

$LN9@try_except:

00054  c3                  ret     0

$LN6@try_except:

00055  8b 65 e8              mov     esp, DWORD PTR __$SEHRec$[ebp]

; 34   :     {

; 35   :     global = 1;

00058  c7 05 00 00 00 00 01 00 00 00     mov     DWORD PTR ?global@@3HA, 1 ; global

; 36   :     }

00062  c7 45 fc fe ff ff ff mov     DWORD PTR __$SEHRec$[ebp+20], -2 ; fffffffeH

$LN4@try_except:

; 37   : }

00069  8b 4d f0             mov     ecx, DWORD PTR __$SEHRec$[ebp+8]

Listing 3.26 Assembly listing generated for the function from Listing 3.24 (continued)
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0006c  64 89 0d 00 00 00 00 mov     DWORD PTR fs:0, ecx

...

0007a  c3                   ret     0

?try_except@@YGXXZ ENDP                    ; try_except

_TEXT    ENDS

How did we generate this code? The process is dependent on the development envi-
ronment used to build the application. Within the WDK build environment, the
process of generating annotated code is straightforward; the annotated code file is just
another target of the compilation process, the target identified by extension .cod.
For example, the file FuncAV.cpp (containing the code for this section) can be com-
piled to the annotated file by nmake-ing the target file FuncAV.cod, as exemplified
in Listing 3.27. 

Listing 3.27 Generating annotated assembly file from the source file

C:\AWD\CHAPTER2>nmake FuncAV.cod

Microsoft (R) Program Maintenance Utility   Version 7.00.8882

Copyright (C) Microsoft Corp 1988-2000. All rights reserved.

cl -nologo @objfre_wxp_x86\i386\clcod.rsp /Fc /FC .\FuncAV.cpp

FuncAV.cpp

The fs:0 label, representing the exception handler list head, is evaluated to the
address fs:[0], the first pointer from TEB. Because the fs selector has the same
value for all threads, the question you might ask is what’s happening in a multithread
environment; how does the exceptions list not get corrupted when all exception han-
dler heads are stored at the same address? 

The operating system uses only the fs selector to address thread-specific infor-
mation, which provides the indirection required to access different addresses using
the same “handle.” Although the selector value stays the same for all threads in the
process, thread separation is achieved by the operating system by changing the seg-
ment descriptor pointed by the fs selector each time a new thread is scheduled for
execution on a processor. Listing 3.28 shows the segment descriptor corresponding to
the fs selector having the value 0x3b, for two threads in the same process. The base
column represents the virtual address where TEB starts.
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Listing 3.28 Thread environment block on two different threads in the same process

0:000> dg @fs

P Si Gr Pr Lo

Sel    Base     Limit     Type    l ze an es ng Flags

-- ---- ---- ----- - - - - - ----

003B 7ffdf000 00000fff Data RW Ac 3 Bg By P  Nl 000004f3

0:001> dg @fs

P Si Gr Pr Lo

Sel    Base     Limit     Type    l ze an es ng Flags

-- ---- ---- ----- - - - - - ----

003B 7ffdd000 00000fff Data RW Ac 3 Bg By P  Nl 000004f3

After this overview of the entire exception mechanism, you should understand what
code is executed when the exception passes through your functions, and you should
be able to set up the breakpoints in exception filters or exception handlers when nec-
essary. At other times, you might be in a situation in which the source code handles
the exception properly but the executable code does not, and you might discover that
the handler was added after that executable was compiled and you have the means to
prove it. 

As a side effect, by examining the exception handler list head stored in the TEB,
we can find out which functions from the current stack are using exception handlers.
This information is priceless when the stack is corrupted or not available, as in some
kernel debugging situations in which the stack is not resident in memory. 

Debugger Event Handling from the Kernel Debugger
The concept of using debugger events to communicate between the debugger target
and the debugger client is extended in a natural way to kernel debuggers, with the
main difference being the communication mechanism between the debugger and the
debugger target. The communication protocol is not documented, but curious minds
can see some of the communication between the kernel debugger and the debugger
target after pressing the CTRL+D key combination in the debugger console and
watching the verbose tracing of the entire protocol. 

As discussed previously, user mode developers can rarely benefit from kernel
debugger events, since there are not as many useful events for them. Without a
doubt, the most useful one is the EXCEPTION_BREAKPOINT exception event,
raised when any piece of code executes from user mode an int 3 statement called by
DebugBreak() or various assert APIs. Second in importance are the exception
events sent when all user-mode exceptions are funneled to the kernel debugger by
using the StopOnException flag. 
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Finally, the Windows kernel can send notifications when user modules are
mapped into the memory. This functionality is enabled by setting the
KernelSymbolLoad(kls) flag in the same global variable as nt!NTGlobalFlag
using the gflags.exe utility or the !gflag extension command. 

After enabling the flag, we activate the notification by entering the sxe ld:
<module> command in the kernel mode debugger. The debugger is notified when
the module is mapped in memory, which presents a good opportunity to debug the
process loading it, from kernel mode. Listing 3.29 uses the kls flag to detect the first
instantiation of the notepad.exe process.  

This feature is very powerful to debug modules loaded in early stages of Windows
start-up or when it is hard to predict which process will load the module of interest.
However, this notification is not sent if the module is already cached in the system
memory. 

Listing 3.29 Using kls flag for detecting a user mode module mapping

kd> !gflag +kls

New NtGlobalFlag contents: 0x00040000

ksl - Enable loading of kernel debugger symbols

kd> sxe ld notepad

kd> g

nt!DebugService2+0x10:

8050b897 cc              int     3

kd> k

ChildEBP RetAddr

f3b7da24 8050b8d9 nt!DebugService2+0x10

f3b7da48 805d536c nt!DbgLoadImageSymbols+0x42

f3b7da98 805d5212 nt!MiLoadUserSymbols+0x169

f3b7dadc 8057bc22 nt!MiMapViewOfImageSection+0x4b6

f3b7db38 80503a0b nt!MmMapViewOfSection+0x13c

f3b7db94 80588c21 nt!MmInitializeProcessAddressSpace+0x337

f3b7dce4 80588635 nt!PspCreateProcess+0x333

f3b7dd38 804df06b nt!NtCreateProcessEx+0x7e

f3b7dd38 7c90eb94 nt!KiFastCallEntry+0xf8

WARNING: Frame IP not in any known module. Following frames may be wrong.

0013fa88 00000000 0x7c90eb94

kd> !process -1 0

PROCESS 82f5a020  SessionId: 0  Cid: 0000    Peb: 00000000  ParentCid: 0544

DirBase: 0de15000  ObjectTable: e1b12638  HandleCount:   1.

Image: notepad.exe
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Controlling the Target

After this overview of the mechanisms provided by the operating system to debug any
running target process, one step is still required to understand how the debugger is
capable of doing all its magic. This section describes some of the levers used by
debuggers to control the debugger target and how each lever influences the debug-
ger target. 

How Breakpoints Work
An exception having the code STATUS_BREAKPOINT is used all through this book,
especially in this chapter, without a clear explanation of the way this exception is
raised. It is time to explain how the process generates this exception. 

The x86 instruction set contains a special instruction named int 3 introduced to
facilitate debugging by generating a STATUS_BREAKPOINT hardware exception on
the processor executing this instruction. In response to the STATUS_BREAKPOINT
exception, the processor executes the interrupt handler registered for the interrupt
vector 3. The interrupt handler converts the hardware exception into a software
exception raised at the address containing the statement. The instruction is repre-
sented in the instruction stream, representation called Operation Code or opcode, by
a single byte with the value 0xCC. Without a debugger available, the software excep-
tion is treated as a regular exception; otherwise, the Windows operating system
instructs the debugger to break right at the instruction’s address. 

The debugger uses the 0xCC opcode when setting a breakpoint. To set the break-
point, the debugger changes the protection on the memory block containing the
breakpoint address so that it can write an int 3 statement at that address. The old
value, along with the information about the breakpoint number, is then saved in the
debugger memory.  

A breakpoint address must be the address of a valid opcode in the instruction
stream, which is always the first byte of a machine language instruction. A breakpoint
set to any other address in the machine language instruction changes the instruction
meaning, without triggering a STATUS_BREAKPOINT hardware exception when
that instruction is generated. Needless to say, running the application containing a
wrong machine language instruction is dangerous and unpredictable.  

The changes in memory should not be visible to the user, as those changes can
influence the results of unassambling code functions. Therefore, when the debugger
stops, it always replaces the original memory values for each breakpoint set by the
debugger before doing any kind of processing. Regardless of the magic used to hide
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the breakpoints, when the debugger targets start to run again, int 3 opcodes are
inserted back into the target image. 

To demonstrate this mechanism, we start the favorite debugger target
notepad.exe under the debugger. At the initial breakpoint, we set a breakpoint at any
address, notepad!WinMain start address in this case, and we examine that address
content from another debugger attached noninteractively to the same process. This
setup allows us to find the real memory content owned by the debugger target. 

While the user mode debugger waits for user input at the command prompt, the
memory contains the original instruction stream. When executing the debugger tar-
get, we enter g in the interactive user mode debugger command window to change
the memory, as shown in the second section of Listing 3.30.  

Listing 3.30 Examining the process memory from a noninvasive debugger

Before setting the breakpoint
0:000> u 010028e4

010028e4 85c0             test    eax,eax

010028e6 7594             jnz     0100287c

010028e8 e8c3efffff       call    010018b0

After setting the breakpoint
0:000> u 010028e4

010028e4 cc               int     3

010028e5 c07594e8         shl     byte ptr [ebp-0x6c],0xe8

010028e9 c3               ret

010028ea ef               out     dx,eax

The kernel mode debugger follows the same model when setting the breakpoint with
minor differences imposed by the operating system memory-management mecha-
nism. In the Windows operating system, most pages containing the executable code
are shared between all processes using that module, a feature used by common DLL
libraries loaded in two different processes. When the user mode debugger enables a
new breakpoint, it changes the page protection from read-only to read-write. The
new page, generated using the Copy-On-Write (COW) technique, becomes a private
page for the debugged process and can be changed without impact on other process-
es sharing the page. Because the kernel mode debugger is unable to generate a pri-
vate page using the COW technique, it directly sets the breakpoint on the shared
page. 

The kernel mode breakpoints are reflected on all running processes sharing the
page. Furthermore, depending on the memory available in the system, the kernel
mode breakpoints can persist in system memory after the debugged process finishes
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execution. The side effects are hard to predict in real debugging situations, as the
Windows memory management is greatly influenced by memory load and by the
overall system activity. However, we can draw a few conclusions regarding kernel
mode breakpoints, as follows.

■ Setting a breakpoint on a page shared by many processes breaks in many
processes. Because the kernel debugger processes the breakpoints relatively
slowly, especially over serial cables, it must never be used for frequently called
functions, such as ntdll!RtlAllocateHeap. We can reduce the number of times
the debugger stops by using an EPROCESS address or a KTHREAD address
to reduce the breakpoint scope. Unfortunately, the debugger still gets notified
for each hit, and it handles the breakpoint automatically for all nonmatching
processes.  

■ After the process previously debugged from the kernel debugger terminates,
all user mode breakpoints must be removed to avoid any conflict with other
running processes. (Shared pages might remain in memory for an undeter-
mined time period, with all breakpoints previously set, even if the process is
restarted.)

■ When the user mode debugger is used together with the kernel mode debug-
ger, the breakpoints must always be set from the user mode debugger.
Otherwise, the breakpoint exception is dispatched to the user mode debugger.
Because it is unaware of the fact that int 3 is a breakpoint and not an explicit
int 3 instruction, the execution flow is compromised. Needless to say, the
instructions stream executed after entering g is completely wrong, ending most
likely with a long stream of access violation exceptions or single step exceptions
in one of the debuggers.  

How Breakpoints on Access Work
In addition to standard breakpoint instruction, all processors supported by the
Windows operating system are capable of generating a break when a specific address
is read, written, or executed from. The ba command uses this processor functionali-
ty to implement the break on access functionality. The processor capability is con-
trolled by a set of eight registers (again, we focus on the x86 architecture), named
DR0-DR7. The usage of these processor registers is well documented in the processor
manufacturer documentation. In short, the first four registers DR0-DR3, known as
address-breakpoint registers, contain virtual addresses monitored by the processor,
and DR7, known as the debug control register, contains control information about
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each such address in part (the length of the block, the type of access being monitored,
and the enabled state). Listing 3.31 shows debug registers before and after hitting a
breakpoint in a kernel mode debugger.

Listing 3.31 Debug registers on a normal processor

Before setting a breakpoint on access
kd> rM 20

dr0=00000000 dr1=00000000 dr2=00000000

dr3=00000000 dr6=ffff0ff0 dr7=00000400 cr4=00000699

ntdll!RtlAllocateHeap+0x5:

001b:77f57bb3 68781cf577  push    0x77f51c78 

After setting a breakpoint on access (for execution)
kd> ba e1 77f57bae

kd> g

Breakpoint 0 hit

ntdll!RtlAllocateHeap:

001b:77f57bae 6808020000  push    0x208

kd> rM 20

dr0=77f57bae dr1=77f57bae dr2=00000000

dr3=00000000 dr6=ffff0ff1 dr7=00000501 cr4=00000699

ntdll!RtlAllocateHeap:

001b:77f57bae 6808020000  push    0x208

kd> .formats @dr7

Evaluate expression:

Hex:     00000501

Decimal: 1281

Octal:   00000002401

Binary:  00000000 00000000 00000101 00000001

Chars:   ....

Time:    Wed Dec 31 16:21:21 1969

Float:   low 1.79506e-042 high 0

Double:  6.32898e-321

In this case, the debug control register has only two bits set—bit 0 and bit 8—meaning
that breakpoint 0 is enabled. Based on Intel processor specifications, when there is no
additional information, such as the length of the breakpoint to be watched or the access
mode to be monitored, the breakpoint is considered to be an execution access break-
point.

As with normal breakpoints, the kernel debugger access breakpoints are shared
by all processes running on the system, and they will interfere with any user mode
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debugger running in the same system. If the breakpoint is encountered by a user
mode debugger unaware of the reason for this break, that debugger raises a 
STATUS_SINGLE_STEP exception. 

Processor Tracing 
Tracing at the assembly level, another commonly used feature in the debuggers, is
achieved using the native processor-tracing capabilities. On x86 processors, tracing is
enabled using the trap flag, identified as tf flags in the debugger console. When the
flag is set, the processor executes only the current statement followed by raising a
STATUS_SINGLE_STEP exception. For example, when we type the t command in the
debugger console, the debugger sets the trap flag in the thread context and continues
the thread execution. When the new thread context is loaded and the processor rais-
es the STATUS_SINGLE_STEP exception, the debugger recognizes the exception,
resets the trace flag, and stops after the last instruction. The behavior can be easily
reproduced by setting the trap flag and enabling the debugger target to execute, as
shown in Listing 3.32. In this case, the debugger is unaware of the “request” to per-
form a single-step operation, and it just shows the exception on the console. 

Listing 3.32 Simulating code tracing after attaching to a running project

0:001> r tf=1

0:001> g

(608.6bc): Single step exception - code 80000004 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=7ffdf000 ebx=00000001 ecx=00000002 edx=00000003 esi=00000004 edi=00000005

eip=77f5f31f esp=0084ffd0 ebp=0084fff4 iopl=0         nv up ei pl zr na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=0038  gs=0000             efl=00000246

ntdll!DbgUiRemoteBreakin+0x2d:

77f5f31f eb07             jmp     ntdll!DbgUiRemoteBreakin+0x36 (77f5f328)

In addition to single-step tracing, newer processors are continuously improving the
debugger capabilities by implementing additional tracing capabilities, such as trace to
next branch. 

Thread State Management in Live Debugging
Although tracing is a simple-to-use mechanism for single-threaded processes, it adds
a level of unpredictability on multithreaded processes; when multiple threads are
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involved, the debugger enables all other threads to run free while the current thread
executes the instruction expected to step over. If a thread context switch happens, the
user types t in the debugger, and it hits another breakpoint already set in the debug-
ger instead of stopping at the next instruction. The code execution no longer follows
a single execution path, making it hard, if not impossible, to follow a single execution
thread performing a specific scenario. We really want to see a single thread in the
process, allowing us to control it using the commands we are familiar with instead of
using a series of breakpoints scoped to a single thread and so on. 

To minimize the chance of having multiple threads executing the same code
sequence, it is possible to temporarily suspend the execution of noninteresting
threads and leave a single running thread in the process. How exactly does this work? 

Each time a new debugger event must be delivered to the user mode debugger,
all running threads in the process are automatically suspended by the Windows ker-
nel for the entire duration of the event processing. When the debugger decides to
continue execution, after processing that event, the kernel resumes the execution of
all threads in the process. The threads shown in Listing 3.33 have a suspend count
associated with each thread, along with a Frozen/Unfrozen state. 

Listing 3.33 Dumping the thread state

0:001> ~

0  Id: 1370.fc0 Suspend: 1 Teb: 7ffdf000 Unfrozen

.  1  Id: 1370.101c Suspend: 1 Teb: 7ffde000 Unfrozen

The thread’s suspend count represents the value recognized by the Windows kernel,
controlled by the SuspendThread and ResumeThread API. The suspend count can
also be controlled from the debugger using the ~n or ~m command. The thread hav-
ing a <tid> identifier can be suspended by using the following command: 

~<tid>n

The thread having a <tid> identifier can be resumed by using the following 
command:

~<tid>m

If any such commands are used, as shown in Listing 3.34, make sure that the suspend
count is balanced with the number of resumes commands before detaching the
debugger from the process. A suspended thread remains suspended forever. It is also
important to understand the side effect of suspending a particular thread for the
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entire process. For example, most graphic user interface applications use a single
thread to retrieve and dispatch windows messages corresponding to user interactions.
Suspending that thread practically freezes the whole application. Suspending a thread
that owns a resource causes all other threads waiting on the same resource to block
until the thread is resumed. As before, this unbound wait is perceived as an applica-
tion hung. 

Listing 3.34 How to suspend and resume threads

0:001> * Suspend the thread zero

0:001> ~0n

0:001> ~

0  Id: 1370.fc0 Suspend: 2 Teb: 7ffdf000 Unfrozen

.  1  Id: 1370.101c Suspend: 1 Teb: 7ffde000 Unfrozen

0:001> * Resume the thread zero

0:001> ~0m

0:001> ~

0  Id: 1370.fc0 Suspend: 1 Teb: 7ffdf000 Unfrozen

.  1  Id: 1370.101c Suspend: 1 Teb: 7ffde000 Unfrozen

The Frozen/Unfrozen state discussed previously is different from the suspend state
described in the preceding section. The Frozen state is a pure debugger concept
without support from the Windows operating system. For each frozen thread, the
debugger remembers that state and increases its suspend count before resuming
debugger event processing. The suspend count is later decreased when the new event
is processed, so the suspend count looks unchanged.  

The thread having a <tid> identifier can be frozen by using the following command: 

~<tid>f

The thread having a <tid> identifier can be unfrozen by using the following command:

~<tid>u

Listing 3.35 shows an example of each command in action. Because a frozen thread
impacts the normal process execution, the debugger reminds the user about the num-
ber of frozen threads each time a new event is processed. The freeze commands must
be matched by unfreeze commands, in the same way as suspend-resume commands.
Interestingly enough, when the last running thread in the process is frozen, the
debugger terminates the target process, as there are minimal chances for any further
activity to happen in that process. 
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Listing 3.35 How to freeze or unfreeze threads

0:001> * Freeze thread number one

0:001> ~1f

0:001> * Dump thread status

0:001> ~

0  Id: 1098.1418 Suspend: 1 Teb: 7ffdf000 Unfrozen

.  1  Id: 1098.143c Suspend: 1 Teb: 7ffde000 Frozen

0:001> * Let the debugger target run

0:001> g

System 0: 1 of 2 threads are frozen

System 0: 1 of 3 threads were frozen

System 0: 1 of 3 threads are frozen

System 0: 1 of 3 threads were frozen

(1098.15fc): Break instruction exception - code 80000003 (first chance)

eax=7ffd9000 ebx=00000001 ecx=00000002 

edx=00000003 esi=00000004 edi=00000005

eip=7c901230 esp=0092ffcc ebp=0092fff4 

iopl=0         nv up ei pl zr na po nc

cs=001b  ss=0023  ds=0023  es=0023  

fs=0038  gs=0000             efl=00000246

ntdll!DbgBreakPoint:

7c901230 cc               int     3

0:001> * Unfreeze thread number one

0:002> ~1u

0:001> * Dump thread status

0:002> ~

0  Id: 1098.1418 Suspend: 1 Teb: 7ffdf000 Unfrozen

1  Id: 1098.143c Suspend: 1 Teb: 7ffde000 Unfrozen

.  2  Id: 1098.15fc Suspend: 1 Teb: 7ffdd000 Unfrozen

Last, the debugger offers the capability to replace the current executing thread with
any other thread within the process. This change is a temporary one, and it is in effect
until the new thread loses the execution quantum by either execution preemption, by
voluntary releasing the remaining of the execution quantum time, or by entering a
wait state. As you can see in Listing 3.36, the current thread has a dot (.) in front of
the thread identifier. If the current thread is different from the active thread (the
thread generating the current event), the active thread is marked with a pound sign
(#) in front of the thread identifier. The thread having the <tid> identifier can be
made the active thread by using the following command: 

~<tid>s

3.
D

EBUGGERS
U

N
CO

VERED



176 Chapter 3 Debuggers Uncovered

Listing 3.36 Changing the current thread

0:001> ~

0 Id: 3edc.1970 Suspend: 1 Teb: 7ffdf000 Unfrozen

.  1  Id: 3edc.44e8 Suspend: 1 Teb: 7ffde000 Unfrozen

0:001> ~0s

eax=0043de20 ebx=008f0507 ecx=00420000 edx=a4011de2 esi=0007fefc edi=77d491c6

eip=7c90eb94 esp=0007febc ebp=0007fed8 iopl=0         nv up ei pl zr na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000246

ntdll!KiFastSystemCallRet:

7c90eb94 c3               ret

0:000> ~

.  0  Id: 3edc.1970 Suspend: 1 Teb: 7ffdf000 Unfrozen

#  1  Id: 3edc.44e8 Suspend: 1 Teb: 7ffde000 Unfrozen

Changing the current thread affects the scope of all the commands dependent on the
current thread and is extremely useful for complex commands, such as the kb com-
mand or the !teb extension command. 

Suspending a Thread Using Kernel Mode Debugger
Currently, the kernel debugger does not offer a similar way of altering the execution
pattern, such as suspending a thread, resuming a thread, or even scheduling another
thread for execution instead of the current one. This is not available for multiple rea-
sons, ranging from the complexity of providing such support to the safety of such a
mechanism. Even more important, such support has limited usefulness in kernel
space, as the number of threads is relatively large. 

However, it is possible to simulate this functionality with the support already
available in the kernel debugger, provided that several conditions are met. The sce-
nario calling for this functionality is presented in the rest of this section.

We assume that one process of interest stops in the kernel mode debugger as a
result of executing a DebugBreak() statement. The process cannot continue after
the break has been encountered, and any attempt to continue the execution past the
breakpoint terminates the process. The break is often a direct result of breaking one
process invariant, such as heap integrity or perhaps the value of a global variable
falling out of the expected range. The virtual address space containing break clues is
not currently loaded in RAM but is available in the page file. The .pagein command
can be used to bring the necessary pages back into memory. The debugger target
must run to schedule a thread that will do the actual page-in operation. Because of
the nondeterministic nature of the page-in process, the former thread causing the
break can execute and terminate the process. 
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A solution to avoid this scenario is stopping the failing thread from executing the
termination code by putting it in a waiting state. With this thread waiting, .pagein
can be called countless times without fear of losing the current live debug session.
The thread can be easily put in a waiting state by changing its current instruction
pointer and forcing the thread to execute the kernel32!Sleep API. This API takes
a single parameter representing the sleep duration in milliseconds. 

The currently running thread stack must be changed to simulate the state before
invoking a standard API call with one parameter. The context must be changed to
match the updated stack pointer, and the instruction pointer must be updated to
match the called API start address. When the thread continues its execution, it enters
into sleep mode for the duration retrieved from the stack, as shown in Listing 3.37. 

Listing 3.37 Simulating a kernel32!Sleep call

kd> r

eax=0040136f ebx=7ffdf000 ecx=004011d0 edx=00262649 esi=00000002 edi=00000000

eip=77f75a58 esp=0006fee8 ebp=0006fef0 iopl=0

nv up ei pl nz na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=0038  gs=0000             efl=00000206

ntdll!DbgBreakPoint:

001b:77f75a58 cc          int     3 

kd> ed esp-4 <time>

kd> ed esp-8 .

kd> resp=@esp-8

kd> reip=kernel32!Sleep

kd> .pagein <address>;g

... 

For the entire sleep duration, the debugger can be used to page in multiple pages
without fear of losing the process or having the state changed in an unexpected way.
If necessary, in this state, it is possible to even start a user mode debugger and debug
the failing process from within the target system if the system is accessible. 

Regardless of the method used to complete the investigation, the thread returns
to its initial location after the timeout has expired. Even if registers normally pre-
served in __stdcall are preserved in this case, the attempt to continue the process exe-
cution beyond this point is dangerous. 
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Summary

In this chapter, you learned how the debugger interacts with the operating system
while debugging a process and how to effectively control all debugger events and
exceptions to your advantage. You then learned how the system reacts when it
encounters various exceptions and how to use this information in day-to-day debug-
ging. Last, we investigated the mechanisms available to control the thread state using
both the debugger support and manual changes in the process state. 

With this information, it is possible to define a clear debugging strategy for vari-
ous situations and use the debugging facilities to your advantage.
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C H A P T E R  4

MANAGING SYMBOL AND SOURCE
FILES

Imagine for a moment that your company flagship product experiences a problem on
a small but significant set of systems, and you are asked to resolve the problem, using
memory dump files sent by the customer. You load the memory dumps in a debugger
to find out what is wrong. Because the debugger has limited functionality without the
proper symbol files, you must find the symbol files matching the application version,
generated at the application build time. If those symbol files cannot be found, the
only option is to go back to the customer and provide excuses instead of solutions.

Symbol management is proven to save time for engineers debugging software sys-
tems, and its importance should not be underestimated; the timesaving continues to
pay during the entire product lifetime. A carefully designed symbol management pol-
icy provides indirect business value compared to an ad hoc or nonexisting policy. With
a solid symbol management policy, the company stays behind its products, it fixes the
problems in a timely manner, and it releases a more stable future version. 

Microsoft Debugging Tools for Windows provides the tools necessary to set up a
symbol server and prepares the symbols to support source server mechanism. The
cost of setting up a symbol server is proportional to the storage cost, which continues
to decrease dramatically. In this chapter, we will explore

■ How to set up and maintain a private symbol server on an ongoing basis
■ How to set up and maintain a public symbol server on an ongoing basis
■ How to prepare the symbol file for supporting the source server on an ongo-

ing basis

All debuggers installed with Microsoft Debugging Tools for Windows use those
servers. All Visual Studio .NET versions are capable of using the symbol server. The
source server is supported by Visual Studio 2005 Professional and Visual Studio Team
Editions. The symbols are, and should always be, understood by all debugging tools
available on a specific platform. This way, the engineers can switch from one tool to
another, confident that they have all the information they need. 
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Managing the Symbols for Debugging

In Chapter 2, “Introduction to the Debuggers,” the importance of using the correct
symbol files was stressed on multiple occasions—from setting the right symbols to
validating them. Easier debugging after the product has been released is the whole
reason for implementing a strong symbol management policy. As a general rule, every
binary installed on different systems for a period of time longer than the immediate
testing should have its symbol file indexed on a symbol server outliving the binary.  

The symbol management process starts from the moment of building the set of
binaries that are part of your product to be installed and used for a longer period of
time. If the developers are sure that there is no bug in the product, or the product
does not need to be supported and the next version does not use any of the current
code, the process can stop here. Anyone else starts a process of preparing the gener-
ated symbol files for long-term maintenance. 

Along with the binary files, the compiler generates the associated symbol files, in
PDB format, containing all private symbols. Those symbol files contain references to
all the source files used to build the product. Each symbol corresponding to an exe-
cutable address in the binary file contains a reference to the source code line used to
generate it. Most companies, Microsoft included, believe that such detailed informa-
tion discloses the intellectual property embedded in the product, so they choose to
disclose only a part of it, in the form of public symbols. Therefore, those companies
keep both file types in two different locations. The private symbol files are stored in
a secured location, whereas the public symbol files are typically stored on a publicly
accessible HTTP server. This allows application users to get a grip on why the appli-
cation crashes when it does, which is sometimes enough to tell what must be done to
fix the problem. 

Microsoft publishes the public symbols for most applications on the symbol serv-
er located at http://msdl.microsoft.com/download/symbols. 

Generating Public Symbols
In this chapter, we demonstrate how to integrate the symbol file management into a
build process—in this case, the process used to build the book sample files. We start
by creating the stripped symbol files, called public symbol files, from the private sym-
bol files. We use the binplace.exe utility, installed with the Windows WDK, which also
helps us organize the binary files after building them. If the additional functionality
offered by binplace.exe is not needed, you can use the pdbcopy.exe tool provided with
the Debugging Tools for Windows to generate the public symbol files. 

http://msdl.microsoft.com/download/symbols
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The following steps are performed from the command prompt shortcut created by
the Windows WDK. Other tools, such as the debugger tool, are assumed to be pres-
ent in the path, as required in the listings in the chapter. In this chapter, we will reuse
the source code and binary for 03sample.exe introduced in the previous chapter. 

Binplace.exe is a powerful tool that is extremely useful for large projects. It can run
at the end of the build phase to move files into various locations (hence the binplace
name) and to process symbol files. In this section, we use binplace.exe to place the bina-
ry files in a single location and extract the public symbol information from the private
symbol, generated by the compiler. Binplace.exe uses a processing instruction file,
where each line is treated as an instruction stating how to process that file. Listing 4.1
shows the content of the placefil.txt file, used to post process our sample binaries.

Listing 4.1

C:\>type c:\awd\placefil.txt

02sample.exe retail

03sample.exe retail 

The binplace.exe command is invoked for each binary file, which is passed as a
parameter to the command. The binary filename is used as a index into the process-
ing instructions file. The matching is done by comparing the binary name to the
names stored in the first column. In our case, we have a line for each EXE or DLL
followed by the special retail string that indicates the placement location in the
output binary folder.

To help us understand all the options available, WDK help has a few topics ded-
icated to the binplace.exe command, describing place file syntax and all command-
line options, as well as all environment variables observed by binplace.exe. A wealth
of information can be found on the MSDN Web site when searching for the binplace
string (without the .exe extension).  

As with most command-line tools, binplace.exe behavior is affected by the environ-
ment variables—few variables being required. Other parameters are passed in as com-
mand-line arguments. In our scenario, the tool depends on the following parameters:

■ The target binary location, provided through the environment variable,
_NT386TREE, _NTAMD64TREE, or _NTIA64TREE, depending on the
platform targeted by the binary files processed with binplace.exe. The target
folder specified contains all the resulting binary files.

■ The placefile.txt location, provided through the environment variable
BINPLACE_PLACEFILE, contains the processing instruction for all project files. 
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■ The private symbol files target, passed in as an argument for the –n command-
line switch, represents the location holding the private symbol files.

■ The public symbol files target, passed in as an argument for the –s command
switch, represents the location holding the private symbol files.

■ Other command-line switches—-a and –x—tell binplace.exe to remove pri-
vate symbols from the public symbol file and to remove any symbol from the
binary file itself.

■ The binary file location we are about to process, passed in as the last parameter.

Listing 4.2 is taken from the command-line prompt used to set these variables and
execute the bin place operation. In response, binplace.exe shows the name of a
successfully bin placed file. Please note that there is no output in case of an error. 

Listing 4.2

C:\> set _NT386TREE=C:\AWDBIN\WinXP.x86.chk

C:\> set BINPLACE_PLACEFILE=C:\awd\placefil.txt

C:\> binplace -a -x -s %_NT386TREE%\sym.pub -n %_NT386TREE%\sym.pri

chapter3\objchk_wxp_x86\i386\03sample.exe

binplace C:\awd\chapter3\objchk_wxp_x86\i386\03sample.exe

The binplace.exe utility is called repeatedly for each binary. In the end, the target
folder contains all binaries, all private symbol files, and all public symbol files. The
entire process can be automated, as you can see in the release.cmd batch file,
installed with the sample files. The target folder tree created after this operation looks
similar to the one in Listing 4.3. 

Listing 4.3

C:\AWD>tree c:\AWDBIN\WinXP.x86.chk /F/A

Folder PATH listing

Volume serial number is 00310030 B817:38E9

C:\AWDBIN\WinXP.X86.CHK

+--03sample.exe

|

|   +--sym.pri

|      \--retail

|          \--exe

|              \--03sample.pdb

\--

\--sym.pub
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|   \--retail

|       \--exe

|             03sample.pdb 

During the bin-placing process, the content of the debug directory stored in the exe-
cutable headers is adjusted, and the original symbol file location is removed. The
debug directory can be visualized by the link.exe command, as shown in Chapter 2.
Listing 4.4 shows the content of the debug directories before the bin place operation,
and Listing 4.5 shows it after the operation.  

Listing 4.4

C:\AWD>link -dump -headers 

c:\AWD\chapter3\objchk_wxp_x86\i386\03sample.exe

Microsoft (R) COFF/PE Dumper Version 8.00.50727.220

Copyright (C) Microsoft Corporation.  All rights reserved.

Dump of file c:\awd\chapter3\objchk_wxp_x86\i386\03sample.exe

... 

Debug Directories

Time Type       Size      RVA  Pointer

----  ---       ----     ----     ----

45A417D2 cv           49 00001810      C10    Format: RSDS, {B10B7ACC-81C5-4533-

AFEA-5AF20D9B7A09}, 1, c:\awd\chapter3\objchk_wxp_x86\i386\03sample.pdb

...

Listing 4.5

C:\AWD>link -dump -headers c:\AWDBIN\WinXP.x86.chk\03sample.exe

Microsoft (R) COFF/PE Dumper Version 8.00.50727.220

Copyright (C) Microsoft Corporation.  All rights reserved.

Dump of file c:\AWDBIN\WinXP.x86.chk\03sample.exe

...

Debug Directories

Time Type       Size      RVA  Pointer

----  ---       ----     ----     ----

45A417D2 cv           25 00001810      C10    Format: RSDS, {B10B7ACC-81C5-4533-

AFEA-5AF20D9B7A09}, 1, 03sample.pdb

...
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Storing Symbols in the Symbol Store
After processing each binary file using binplace.exe, the public symbol folder contains
a tree with all the public symbol files, and the private symbol folder contains a tree
with all the private symbol files. Although it looks feasible to store each version of such
a tree in a different location and refer to its files when debugging any module created
by that build version, the process is tedious and inefficient. A lot of bookkeeping must
be done to ensure that no symbol is ever lost. Any group doing daily builds on multi-
ple platforms finds this process very laborious and will try to automate it. Fortunately,
the whole process of organizing the symbol files and discovering them when needed is
already automated by a set of tools and technologies called symbol server. This section
describes how to organize the symbols to create the symbol server information.    

Debugging Tools for Windows provides a symstore.exe tool, which scans a folder,
collects all executable modules with their associated symbols, and organizes them in
a structure recognized by the symbol server client running in the debugger. The sym-
bol files are organized based on their names and the GUID stored after the RSDS string
shown in Listing 4.5. The binary files are indexed based on their name and the com-
pilation time stamp. 

Because there are two categories of symbols, the tool can be used to generate two
symbol stores—one having public and one having private symbol files. The tool is
very rich in options, all well described in the Windows debugger help. In this section,
we invoke symstore.exe with the following parameters:

■ /f indicates the binary folder used as an argument to binplace.exe.
■ /s indicates the symbol store location.
■ /r tells symstore.exe to recursively scan all files in the folder.
■ /z indicates what types of symbols to extract: pri means private symbols and

pub is for public symbols.

The result of running the command twice, once for public and once for private fold-
er, is shown in Listing 4.6. The command displays the statistics about the operation
that must be analyzed for error. The files ignored from Listing 4.6 are the symbols not
matching the required type: a public symbol file when only private symbols files were
requested and vice versa. 

Listing 4.6

Creating public symbol store
C:\AWD>symstore.exe add /F C:\AWDBIN\WinXP.x86.chk /S 

C:\AWDBIN\symstore.pub /t book /r /z pub

Finding ID...  0000000001
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SYMSTORE: Number of files stored = 2

SYMSTORE: Number of errors = 0

SYMSTORE: Number of files ignored = 1

Creating private symbol store 
C:\AWD>symstore.exe add /F C:\AWDBIN\WinXP.x86.chk /S 

C:\AWDBIN\symstore.pri /t book /r /z pri

Finding ID...  0000000001

SYMSTORE: Number of files stored = 2

SYMSTORE: Number of errors = 0

SYMSTORE: Number of files ignored = 1

As a result of executing these commands, two very simple symbol stores are created
on the local file system. Even with just one file version stored in the symbol server,
when you set it, the debugger automatically picks the correct symbol file. After
rebuilding the project several times, it is easy to understand why the automatic sym-
bol management is so simple compared to the manual bookkeeping process. Instead
of keeping all files separated by using some manually determined keys, everything is
done by the tools. The process is repeated each time we build the product—once for
each processor architecture or compilation settings. All symbol files are stored in the
same symbol server. The tree structure for one of the stores can be examined in
Listing 4.7. 

Listing 4.7

C:\AWD>tree c:\AWDBIN\symstore.pri /F/A

Folder PATH listing

Volume serial number is B817-38E9

C:\AWDBIN\SYMSTORE.PRI

+--pingme.txt

|

| +--000Admin

|       0000000001

|       0000000002

|       0000000003

|       history.txt

|       lastid.txt

|       server.txt

|

|   \--03sample.exe

|      \--45A417D214000

|         \--03sample.exe

|            \--refs.ptr
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|   

|   +---45A4624314000

|       \---03sample.exe

|         \---refs.ptr

|    

|   +---45A4625414000

|       \---03sample.exe

|         \---refs.ptr

|

+---03sample.pdb

|   +---A69EEFF7C43B400799E03BF7BCF55A9B1

|       \---03sample.pdb

|          \---refs.ptr

|   

|   +---B10B7ACC81C54533AFEA5AF20D9B7A091

|       \---03sample.pdb

|           \---refs.ptr

|   

|   +---FF76A7EC166D489C943F238F76FCB32F1

|        \---03sample.pdb

|           \---refs.ptr

The private and public symbol store structure is identical, but their content is differ-
ent. This simple organization model works for a small to medium project requiring
reasonable disk usage. For larger projects, symstore.exe has various other options that
enable the symstore.exe tool to generate a more complex store, such as stores with
symbol files stored in multiple locations or with compressed files. The sysmstore.exe
help describes the various options supported by the tool, which can be used for cre-
ating such complex stores. 

The private symbol folder can then be stored on a file share and used by all users
through the share UNC, something similar to \\symserver\symbols. This UNC
location becomes the symbol server used as a symbol path in the debuggers, as follows:

0:000> !sympath srv*\\symserver\symbols

Symbol search path srv*\\symserver\symbols

Each symbol indexing operation gets a transaction identifier that can be used for fur-
ther symbol management operations. Normally, the transaction identifier is used to
delete from the symbol store all symbol files corresponding to intermediate releases.
For example, in Listing 4.8, we use the symstore.exe tool to remove the file added in
the transaction 0000000001 shown in Listing 4.6. 

Listing 4.7 (continued)
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Listing 4.8

C:\AWD> symstore del /i 0000000001 /s c:\awdbin\symstore.pri

Finding ID...  0000000004

SYMSTORE: Number of references deleted = 0

SYMSTORE: Number of files/pointers deleted = 2

SYMSTORE: Number of errors = 0

We can now publish the public symbol files on an Internet server. This process is
described in the next section. 

Sharing Public Symbols on an HTTP Server
The last step is to make the public symbols really public, by making them available using
an HTTP symbol server. Although it might seem to be a daunting task, it’s actually quite
simple. The public symbols store folder created before must be added as a virtual direc-
tory in the web server storing the symbols. The HTTP server must be configured to
deliver the symbol files as application/octet-stream, as shown in Figure 4.1. 
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Step-by-step instructions are available in the symhttp.doc document, installed with the
Debugging Tools for Windows in the symproxy folder. The new server URL, assuming
that the symbols are located in the symbols virtual folder, can be used as follows:

0:000> !sympath srv*http://127.0.0.1/symbols

Symbol search path is: srv*http://127.0.0.1/symbols

After reading this section, you know what tools can be used to automate the symbol
file management with minimal overhead. The next section goes even further and
describes how to prepare the symbol files with source server information. 

Managing Source Files for Debugging

While the initial triage of most problems can be performed with access only to the
correct private (or even public) symbols, engineers must validate the problem by ana-
lyzing the source files as well. When the source files in question have gone through
multiple changes, it is important to find the exact file used to generate the binary file.
This is exactly what we show how to solve in this section. 

Unless the product is built and released just once—in which case, each binary has
a single set of source files associated with it—the sources are usually managed by a
source revision control system. Multiple options exist—ranging from open source
products, such as Concurrent Versions System (CVS) or its successor Subversion
(SVN), to commercial systems, such as ClearCase from IBM, Visual SourceSafe from
Microsoft, or Perforce from the company with the same name. The Debugging Tools
for Windows provides a mechanism by which some information associated with
source files is stored in a symbol file as part of the build process, and it is used later,
when the corresponding module is loaded in the debugger. 

Gathering Source File Information
The mechanism is called Source Server, and it works in conjunction with a source
revision control system. The Debugging Tools for Windows has built-in support for
Perforce, Visual SourceSafe, and Subversion, but it can be extended to another
source revision control system. The next section demonstrates how to use this mech-
anism. The source revisions are controlled with Visual SourceSafe. This section
requires a working knowledge of Visual SourceSafe to re-create the steps related to
the interaction with the source revision control system. The steps are similar, if not
simpler, with Perforce or Subversion. The process of generating the source informa-
tion is illustrated in Figure 4.2. 
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Figure 4.2

The source server tools are based on Perl, which needs to be installed prior to run-
ning the process. In our case, we used ActivePerl, which can be downloaded, free of
charge, from the www.ActiveState.com site. The source server tools are installed by
selecting the SDK option as part of installing the Debugging Tools for Windows. In
the installation folder, the sdk\srcsrv\srcsrv.doc document describes the entire process
in detail. The source server location, as well as the location of the Visual SourceSafe
installation, must be present in the path, set by the following command line (depend-
ent on the installation location):

C:\awd>set PATH=%PATH%;C:\Program Files\Microsoft Visual

SourceSafe;C:\debug.x86\sdk\srcsrv

The next step is to set the SSDIR environment variable to point to the Visual
SourceSafe database, which maintains the project file as follows, assuming that the
database is stored in the C:\AWD\VSS folder:

C:\awd>set SSDIR=C:\AWD\VSS

For simplicity, we assume that all files stored in the VSS database have a structure
similar to the folder structure on disk.
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Before storing the symbol files in the symbol server, we must process them to
inject the source file information that the debugger will use to retrieve the file from
the source revision control system. This process is achieved by running the source
server indexing tool, ssindex.cmd, provided in the source server folder. ssindex.cmd
requires several parameters that are inherited from the environment or are passed in
as command arguments: the most important being the source revision control system
name, VSS in this case, and the location of the symbol files. 

To work properly, the srcsrv.ini file located in the source server folder must be
updated with a single line that contains the location of the VSS database. The left side
of the equals sign represents the project name, and the right side, the source revision
control address. In this case, the whole line is

AWD=C:\AWD\VSS

When using VSS, ssindex.cmd requires passing a revision label as the parameter
because it cannot be inferred from the source files. The command is executed from
the project root folder that corresponds to the root location in the VSS database,
where each subfolder is a project in the same database. The files were being labeled
with a revision number using the command-line tool ss.exe provided by Visual
SourceSafe, as in the following listing:

C:\AWD>ss cp \

Current project is $/

C:\AWD>ss Label

Label for $/: VERSION1

Comment for $/: Advanced Windows Debugging source code

After associating all the files with the version information manually chosen, we can
launch the indexing command for all the files stored in the bin place location, as follows: 

C:\AWD>ssindex /SYSTEM=VSS /LABEL=VERSION1 /SYMBOLS=%_NT386TREE%

-----------------------------------

ssindex.cmd [STATUS] : Server ini file: 

d:\debug.x86\sdk\srcsrv\srcsrv.ini

ssindex.cmd [STATUS] : Source root    : C:\AWD

ssindex.cmd [STATUS] : Symbols root   : C:\AWDBIN\WINXP.X86.CHK\sym.pri

ssindex.cmd [STATUS] : Control system : VSS

ssindex.cmd [STATUS] : VSS Server     : C:\AWD\VSS

ssindex.cmd [STATUS] : VSS Client Root: C:\AWD

ssindex.cmd [STATUS] : VSS Project    : $/

ssindex.cmd [STATUS] : VSS Label      : VERSION1

-----------------------------------

ssindex.cmd [STATUS] : Running... this will take some time...

ssindex.cmd [STATUS] : Processing vssdump.exe output ...
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The result of this process can be inspected using the srctool.exe command, which is
capable of showing the source server information stored in the symbol file. The 
srctool.exe tool can also be used to extract the raw source information from the PDB
file and to retrieve the source file from the version control system. It is good practice
to periodically use the tool to validate the correctness of the source indexing process.

The srctool.exe tool shows the name of the original source file, as well as the com-
mand line required to extract this exact file from the source revision control system.
The result of processing 03sample.pdb is shown in Listing 4.9.

Listing 4.9

C:\AWD>SrcTool.exe %_NT386TREE%\sym.pri\retail\exe\03sample.pdb

[c:\awd\chapter3\spydbg.cpp] cmd: ss.exe get - 

GL”C:\AWD\AWD\chapter3\spydbg.cpp\

VERSION1” -GF- -I-Y -W 

“$/chapter3/spydbg.cpp” -V”VERSION1”

c:\AWDBIN\WinXP.X86.chk\sym.pri\retail\exe\03sample.pdb: 1 source files are indexed -

494 are not

If the source gathering failed and the previous listing is empty, ssindex.cmd can be
started with the /debug parameter to find out what part of the source indexing
process fails. When the source files are controlled by VSS, the vssdump.exe tool can
also be used to understand what revision label is associated with the source files. 

The pdbstr.exe tool is then used for extracting or changing the information stored
in the symbol file. For example, the following command line extracts the source serv-
er information shown in Listing 4.10. The source server information is stored under
the srcsrv stream name, which is passed as a value to the –s option to pdbstr.exe. 

C:\>pdbstr –r –p:%_NT386TREE%\sym.pri\retail\exe\03sample.pdb –s:srcsrv

Listing 4.10

SRCSRV: ini ------------------------

VERSION=1

INDEXVERSION=2

VERCTRL=Visual Source Safe

DATETIME=Mon Jan  8 00:04:15 2007

SRCSRV: variables ---------------------

SSDIR=C:\AWD\VSS

SRCSRVENV=SSDIR=%AWD%

VSSTRGDIR=%targ%\%var2%\%fnbksl%(%var3%)\%var4%
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VSS_EXTRACT_CMD=ss.exe get -GL”%vsstrgdir%” -GF- -I-Y -W “$/%var3%” -V”%var4%”

VSS_EXTRACT_TARGET=%targ%\%var2%\%fnbksl%(%var3%)\%var4%\%fnfile%(%var1%)

AWD=C:\AWD\VSS

SRCSRVTRG=%VSS_extract_target%

SRCSRVCMD=%VSS_extract_cmd%

SRCSRV: source files --------------------

c:\awd\chapter3\spydbg.cpp*AWD*chapter3/spydbg.cpp*VERSION1

SRCSRV: end ------------------------

Using Source File Information
Each symbol file processed by ssindex.cmd contains the commands required to
extract each source file from the source revision control system. The command line
stored in the symbol file shown in Listing 4.8 can retrieve the file from Visual
SourceSafe. 

This information is primarily used by the Debugging Tools for Windows that
implement this functionality in symsrv.dll, accessible through the DbgHelp function
SymGetSourceFile. Windbg uses the source server information to extract the source
from any source revision control system. The console debuggers, ntsd.exe, cdb.exe,
and kd.exe, can use only source files stored in the UNC share or HTTP server organ-
ized as a source server, as described in the next section, “Source Server Without
Source Revision Control.” 

The source server mechanism is enabled when the debugger source path contains
the SRV* string, set by using the .srcpath SRV* command at the prompt or using
the Source symbol Path menu item in the File menu, in the case of windbg.exe. The
debuggers examine the symbol file matching the current execution address from
which extracts the source information associated with that symbol. If present, the
source server information is used to retrieve a local copy of the source file cached in
the SRC folder, under the debugger installation folder. 

How is the file extracted? If the debugger has not been customized, it directly
executes the command displayed in Listing 4.8. This requires that the source revision
control system is installed and properly configured on the system used for debugging.
It also requires access to the source revision control system to execute the command
retrieving the file, as seen in Figure 4.3.

Listing 4.10 (continued)
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Figure 4.3

Although those limitations slightly impact the productivity in some scenarios, espe-
cially when the application is debugged without proper access to the source revision
control systems, they are ensuring protection for the source code. Because the com-
mand used to extract the file is retrieved from a file that resides on a symbol server,
most likely an HTTP server, the debugger requests user permission for executing the
command.  

The security warning dialog box, shown in Figure 4.4, contains the command line
ready to be executed. It must be evaluated before accepting it, especially when the
symbol server or the PDB origin is not trusted. After the source file has been cached,
no further dialogs are shown for this file version, regardless of what other components
are using that source file. 
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Source Server Without Source Revision Control
When the authorization to the source code is not controlled by a source revision sys-
tem, the source files can be stored to a simple UNC share or an HTTP server. The
access to the source code is then restricted using the authorization mechanism sup-
ported by the backend storage. 

The access to an HTTP server can be restricted using different mechanisms,
ranging from basic authentication to client certificate authentication, all being sup-
ported by the debuggers. Moving the source location from the source revision system
to an HTTP server can be achieved in three steps, as follows:

1. We first extract all source files from the source revision control system, using
the source server information stored by the source indexing process described
in the earlier section “Gathering Source File Information.” The file extraction
is performed by using srctool.exe with the –x option for each PDB file gener-
ated. The source server tool set provides a helper batch file, walk.cmd, that can
enumerate all files from a specific folder and pass each filename to another
command. The following line executes srctool.exe for all symbol files we have
in the public symbol folder. 

C:\>walk C:\AWDBIN\symstore.pri\*.pdb srctool -x -d:C:\AWDBIN\sources

The extracted sources are organized similarly to the tree shown in Listing 4.11,
in a structure that enables multiple file versions to be simultaneously stored in
the sources folder. This tool is very powerful; it can extract all source files that
were used to build the products.  

Listing 4.11

C:\AWD>tree c:\AWDBIN\sources /F/A

Folder PATH listing

Volume serial number is B817-38E9

C:\AWDBIN\SOURCES

+--AWD

|   \--chapter3

|       \--spydbg.cpp

|           \--VERSION1

|                   spydbg.cpp
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2. In the next step, we change the source file information stored in the symbol
files. The cv2http.cmd batch file, available in the source server installation
folder, can change the source server information to the location of choice. The
next line changes the source server information to the book’s HTTP site,
http://www.advancedwindowsdebugging.com:

C:\>walk C:\AWDBIN\symstore.pri\*.pdb cv2http.cmd HTTP_AWD

http://www.advancedwindowsdebugging.com/sources

If the desired source server location is an UNC path or an HTTPS address, this
address replaces the URL used in the previous command line. HTTP_AWD is
a simple variable that can be ignored in most cases. The source server docu-
mentation explains how to use this variable, if necessary. 

3. In the final step, the folder containing all sources is added to the HTTP serv-
er as a virtual directory, enabled for browsing. A snapshot of the virtual folder
settings is displayed in Figure 4.5, which was taken from the Internet
Information Services MMC snap-in running on Windows Vista. 
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Be aware that the symbol files prepared in this way have no trace of the original
source revision control system. If that is required, the original symbol files should be
preserved before starting the operation described in this section. 

Summary

Debugging Tools for Windows provides additional tools, enabling all Windows plat-
form developers to manage the symbol files and maintain the source server informa-
tion for their modules. A variation on the steps described in this chapter can be
integrated in the release management process of important release. This phase is
important in providing support for the application. 

Although it seems daunting at first glance, we want to assure you that the steps
required are trivial. For example, we created an entire process for all book samples
in the form of a very simple batch file, called release.cmd, that does it all. It creates
the binary for the specific processor architecture used to start the WDK console, and
it splits the symbols into private and public symbols that are stored in the respective
symbol stores. 

The private symbol files are later used to extract the source files from the source
revision control management. The source server information is replaced with the
HTTP server information. We then manually copied all the files from the symbol
servers and the source server folder to the book’s Web site. This process can be easi-
ly automated or integrated in your software release process.

Whether you use a very simple process or a specialized tool that integrates all
those steps, the process of indexing all those files must be done. Chapter 13,
“Postmortem Debugging,” describes how to integrate your product into the Windows
Error Reporting system. The rest of the chapters are full of information that will help
you to understand the cause of the crash reported through the WER mechanism.
Without the source file information in the symbol files, we can still retrieve a good
source file version from the source revision control system. That is not great, but it is
acceptable. Without a symbol file, the success rate of fixing a WER report drops clos-
er to zero. The customer will experience the problem over and over until the next ver-
sion of the product is released. Will the new version fix the problem? That question
is impossible to answer, but most probably the problem will remain.
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C H A P T E R  5

MEMORY CORRUPTION PART I—
STACKS

A memory corruption is one of the most intractable forms of programming error for
two reasons. First, the source of the corruption and the manifestation might be far
apart, making it difficult to correlate cause and effect. Second, symptoms appear
under unusual conditions, making it hard to consistently reproduce the error. 

Fundamentally, memory corruption occurs when one or both of the following are
true.

■ The executing thread writes to a block of memory that it does not own.
■ The executing thread writes to a block of memory that it does own, but cor-

rupts the state of that memory block.

To exemplify the first condition, consider this small application:

#include <windows.h>

#define BAD_ADDRESS 0xBAADF00D

int __cdecl wmain (int argc, wchar_t* pArgs[])

{

char* p =(char*)BAD_ADDRESS;

*p=’A’;

return 0;

}

This small application declares a pointer to a char data type and initializes the point-
er to an address for which it does not have access (0xBAADF00D). The net result of
running the application is a crash, and the dreaded Dr. Watson UI pops up. Although
it’s very clear that this simple application performs an invalid memory access, more
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complex systems can be trickier to figure out. For example, if the application allocat-
ed blocks of memory and made assumptions about the lifetime of those allocations,
premature deletion might cause a memory corruption because of stale pointers. The
best-case scenario for writing to memory that an application does not own is a crash.
But wait a minute, you say—a crash is the best-case scenario? Yes—for memory cor-
ruptions, a crash might immediately indicate where the source of the memory cor-
ruption is. In our preceding sample code, the memory being written to is invalid, and
a crash occurs. This is good news. We can very easily figure out why we have a point-
er that points to invalid memory. However, consider the scenario in which the invalid
pointer points to a block of memory in use by other parts of the application. The
symptoms in this particular case could be one of the following:

■ Application crashes: The main difference is that the crash might happen at a
later time. In the original preceding sample application, the code crashed
because the application wrote to memory designated as invalid by the operat-
ing system. In the changed scenario, however, the application writes to mem-
ory that the operating system considers valid, and the write is allowed to
proceed without errors. Subsequently, the application might try to use the
memory that was mistakenly written to, and a crash might occur (depending on
the nature of the memory access).

■ Non-crashing and unpredictable behavior: Much in the same way the previous
item allowed the application to write bad data to the memory owned by other
parts of the application, the net result does not have to be a crash. Other parts
of the application might very well continue using the memory that bad data has
been written to even though the state of that memory has been altered (and
usually never in a good way). Let’s take an example. Assume that we have a
class that represents a thread pool. In addition to being capable of queuing
requests to the thread pool, a method exists that sets a flag indicating that a
shutdown is in progress. The thread pool periodically checks this flag, and if it
ever equals true, a shutdown commences. A singleton instance of the thread
pool is instantiated and used by the application. Now, let’s say that the thread
pool is servicing 200 requests (credit card authorizations) when a thread in the
application mistakenly overwrites the shutdown flag to true. All of a sudden,
the thread pool shuts down, customers start getting errors on their credit card
transactions, and the phone calls start pouring in. This is a classic example of a
memory corruption in which the net effect of the thread corrupting memory
results in unpredictable behavior. Since the thread that overwrote the memo-
ry has already done the damage, the subsequent use of the memory can (and
most likely will) be unpredictable. Finding the source of these types of mem-
ory corruptions is extremely difficult. 
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It should be quite clear that, when faced with a memory corruption, we want to be
notified as soon as the offending thread writes to memory that it does not own rather
than having to backtrack from a strange application behavior that might surface days
after the invalid memory write took place. Short of getting lucky that the pointer
points to truly invalid memory (causing an access violation right away), most of the
memory corruptions surface in the form of strange application behaviors or crashes
after the memory has already been altered.

Fortunately, with the right strategy and a powerful tool set, we can maximize our effi-
ciency when analyzing a potential memory corruption and force the strategy of “crash
immediately” to make it easier to figure out the source of the memory corruption. 

Memory Corruption Detection Process

This section outlines the memory corruption detection process. It includes a graphi-
cal representation of the process, as well as a brief discussion of each step. It is impor-
tant to understand that figuring out the root cause of a memory corruption might
include several iterations of the process illustrated in Figure 5.1, depending on the
nature of the memory corruption.
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Figure 5.1

Step 1: State Analysis
The very first step in investigating a memory corruption is to assure yourself that the
failure you are looking at is indeed because of a memory corruption. This step can be
further broken down, as seen in Figure 5.2.
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Figure 5.2

As we mentioned earlier, memory corruption symptoms fall into two categories:
crashes and noncrashing and unpredictable behavior. This first step calls for an initial
analysis of the behavior seen by means of analyzing the state of the corrupted mem-
ory. How do we know which state to analyze? With crashes, finding the starting point
is pretty simple. The code that crashed did so because of some unexpected state, and
the code is well-known at crash time. By looking at the state of the memory when the
crash occurred in conjunction with focused code reviewing, we can make sound judg-
ment calls on the origins of the state. “Valid,” albeit buggy, code paths can lead to the
state. If that is the case, you are not experiencing a memory corruption, per se, but
rather an unexpected code path that erroneously wrote to the memory. If, however,
no code paths allow for the memory to get into that state, the only plausible explana-
tion is that someone overwrote that memory, and hence a memory corruption has
occurred.

If you are not experiencing a crash, but instead are seeing periodic strange behav-
iors in the application, finding which memory had its state potentially corrupted is not
as clear as with crashes. Typically, when unexpected behavior occurs, you would break
into the debugger and start with some initial analysis. For example, if clients are expe-
riencing error after error when trying to authorize credit cards, you might start by
investigating the thread pool state (which services all credit card authorizations) and
see why they are failing. If you notice that the thread pool is not accepting requests
due to being shut down, you would proceed to step 2 and the source code analysis to
identify a “valid” code path or (if one does not exist) conclude that a memory corrup-
tion has occurred.  

Step 2: Source Code Analysis
After you have identified (in step 1) that you are faced with a possible memory cor-
ruption bug, the next step is to do some source code analysis to see if the root cause
can be identified. A memory corruption might occur when a thread writes to a mem-
ory location that it does not own. A very important observation can be made from this
statement. The thread writes data to the memory block. Presumably, the data being
written is of interest to that particular thread, and, as such, if we could analyze the
data and make sense out of it, we could further narrow down the scope of possible

Identify Memory and
State

Source Code Analysis
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suspects. Let’s take an example. The code in Listing 5.1 shows a very simple console-
based application that presents the user with two choices: show the application infor-
mation (such as full name and version) and simulate memory corruption. Try not to
look at the full source code, rather only the code presented in Listing 5.1. 

Listing 5.1

int __cdecl wmain (int argc, wchar_t* pArgs[])

{

wint_t iChar = 0 ;

g_AppInfo = new CAppInfo(L”Simple console application”, L”1.0” );

if(!g_AppInfo)

{

return 1;

}

wprintf(L”Press: \n”);

wprintf(L”    1    To display application information\n”);

wprintf(L”    2    To simulate memory corruption\n”);

wprintf(L”    3    To exit\n”);

wprintf(L”\n\n> “);

while((iChar=_getwche())!=’3’)

{

if(iChar == ‘1’)

{

g_AppInfo->PrintAppInfo();

}

else if(iChar==’2’)

{

SimulateMemoryCorruption();

wprintf(L”\nMemory Corruption completed\n”);

}

else

{

wprintf(L”\nInvalid option\n”);

}

wprintf(L”\n\n> “);

}

delete g_AppInfo;

return 0;

}
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The source code and binary for Listing 5.1 can be found in the following folders:
Source code: C:\AWD\Chapter5\MemCorrupt
Binary: C:\AWDBIN\WinXP.x86.chk\05MemCorrupt.exe

Run the application using the following command line:

C:\AWDBIN\WinXP.x86.chk\05MemCorrupt.exe

The application consists of a class that encapsulate the application-specific informa-
tion (full application name and version). The main function allows the user to print
the application information, simulate a memory corruption, or exit the application. 

Press:

1       For application information

2       For simulated memory corruption

3       To exit

If you press 1, you will see the following:

> 1

Full application Name: Simple console application

Version: 1.0

If you press 2, you will see:

> 2

Memory Corruption completed

If you then press 1 again, you will see, not surprisingly, that the application crashes.
Now comes the interesting part. How can we find out which part of the application
caused the memory corruption (without stepping through the code for step 2)? First
things first. Run the application under the debugger and choose the same sequence
of choices as you did before. When you choose option 1 for the second time, the
debugger should break into the debugger with an access violation.

…

…

…

0:000> g

ModLoad: 5cb70000 5cb96000   C:\WINDOWS\system32\ShimEng.dll

Press:

1       To display application information

2       To simulate memory corruption
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3       To exit

> 1

Full application Name: Simple console application

Version: 1.0

> 2

Memory Corruption completed

> 1(bdc.8d8): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=72726f43 ebx=7ffd0073 ecx=00000007 edx=7ffffffe esi=00000020 edi=00000002

eip=77c43869 esp=0007fa68 ebp=0007fed8 iopl=0         nv up ei pl nz na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00010202

msvcrt!_woutput+0x695:

77c43869 66833800        cmp     word ptr [eax],0         ds:0023:72726f43=????

0:000> kb

ChildEBP RetAddr  Args to Child

0007fed8 77c42290 77c5fca0 01001208 0007ff28 msvcrt!_woutput+0x695

0007ff1c 01001448 01001208 72726f43 00032cb0 msvcrt!wprintf+0x35

0007ff30 010013b2 00032cb0 00032cb0 7ffd0031 memcorrupt!CAppInfo::PrintAppInfo+0x18

0007ff44 010015fa 00000001 00032bf0 00036880 05memcorrupt!wmain+0xb2

0007ffc0 7c816fd7 00011970 7c9118f1 7ffdf000 05memcorrupt!wmainCRTStartup+0x12f

0007fff0 00000000 010014cb 00000000 78746341 kernel32!BaseProcessStart+0x23

From the stack, we can see that our main function calls into the PrintAppInfo func-
tion of the CAppInfo class, which in turn makes a call to wprintf. Correlating what
we see in the debugger with the source code, this seems to make perfect sense. The
next question is why the wprintf function failed. If we look at what we pass to the
function from the source code, we see the following:

VOID PrintAppInfo()

{

wprintf(L”\nFull application Name: %s\n”, m_wszAppName);
wprintf(L”Version: %s\n”, m_wszVersion);

}

It stands to reason that the pointers (m_wszAppName and/or m_wszVersion) we are
passing must be invalid. The wprintf function assumes that the pointer passed in (in
our case, strings) represents a wide character string that is NULL terminated. If that
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assumption fails, the function might crash. We now turn our attention to analyzing the
state of the object in question. More specifically, let’s look at the CAppInfo state:

0:000> X 05memcorrupt!g_*

01002008 05memcorrupt!g_AppInfo = 0x00032cb0

0:000> dt CAppInfo 0x00032cb0

+0x000 m_wszAppName     : 0x72726f43 -> ??

+0x004 m_wszVersion     : 0x01747075 -> ??

The pointer values we are interested in are wszAppName and wszVersion. Let’s try
to dump each of the pointers to see what they point to:

0:000> dd 0x72726f43

72726f43  ???????? ???????? ???????? ????????

72726f53  ???????? ???????? ???????? ????????

72726f63  ???????? ???????? ???????? ????????

72726f73  ???????? ???????? ???????? ????????

72726f83  ???????? ???????? ???????? ????????

72726f93  ???????? ???????? ???????? ????????

72726fa3  ???????? ???????? ???????? ????????

72726fb3  ???????? ???????? ???????? ????????

0:000> dd 0x01747075

01747075  ???????? ???????? ???????? ????????

01747085  ???????? ???????? ???????? ????????

01747095  ???????? ???????? ???????? ????????

017470a5  ???????? ???????? ???????? ????????

017470b5  ???????? ???????? ???????? ????????

017470c5  ???????? ???????? ???????? ????????

017470d5  ???????? ???????? ???????? ????????

017470e5  ???????? ???????? ???????? ????????

The question marks indicate that the memory is not accessible. Quite interesting, isn’t
it? The first time we asked the application to print out the information, everything
worked fine. Now, the pointers seem to be pointing to inaccessible memory.
Somehow, the contents of the CAppInfo instance became corrupted. The object lay-
out of a simple C++ class instance consists of its data members, which in our case
includes the two pointers. If the object layout was overwritten, we could get into a sit-
uation in which we have corrupt pointers. Based on that, it would be worthwhile to
see what the actual instance pointer points to:

0:000> x 05memcorrupt!g_*

01002008 05memcorrupt!g_AppInfo = 0x00032cb0

0:000> dd 0x00032cb0

00032cb0  72726f43 01747075 abababab abababab



207Memory Corruption Detection Process

00032cc0  00000000 00000000 00040012 001c07f2

00032cd0  00500041 00440050 00540041 003d0041

00032ce0  003a0043 0044005c 0063006f 006d0075

00032cf0  006e0065 00730074 00610020 0064006e

00032d00  00530020 00740065 00690074 0067006e

00032d10  005c0073 0061006d 00690072 0068006f

00032d20  0041005c 00700070 0069006c 00610063

The memory dump shows us the pointer values we were looking at before. Instead of
using the dd command, we can try to dump out the instance pointer as text instead:

0:000> da 0x00032cb0

00032cb0  “Corrupt.........”

This looks much more interesting. It seems that the CAppInfo instance pointer was
overwritten with the string: “Corrupt”. We can now employ code reviewing to see
if any of the code in the application manipulates strings with the content being
“Corrupt”. As you already suspected, when we choose option 2 (simulate memory
corruption), the application forcefully overwrites the contents of the CAppInfo
instance pointer with a string (“Corrupt”).

How do we know in what form to try to dump data and make sense out of it? No
clear rule exists, only guidelines. The following strategies work well and should be
tried when analyzing memory contents.

1. Use the dc command to dump out the memory contents of the pointer. The dc
command dumps out the content as double-word values, as well as the ASCII
equivalent. If you see any strings in the output, use the da or du commands to
dump out the string.

2. Use the !address extension command to glean information about the mem-
ory. The !address extension command tells you the type of the memory (such
as private), the protection level (such as read and write), the state (such as
committed or reserved), and the usage (such as stack or heap memory).

3. Use the dds command to dump out the memory as double words and symbols.
This can help correlate the memory to a specific type.

4. Use the dpp command to dereference the specified pointer and dump out the
double-word contents of the memory. If any of the double words matches a
symbol, the symbol is displayed as well. This is a useful technique if the mem-
ory pointed to contains a virtual function table.

5. Use the dpa and dpu commands to display the memory pointed to in ASCII
and Unicode formats.
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6. If the memory content is a small number (in a multiple of 4), it might be a han-
dle; you can use the !handle extension command to dump out information
about the handle. 

7. If the previous steps yield nothing, you can try searching the entire address
space for references to the address of the memory block. 

This technique of recognizing data in a corrupted memory block is very useful when
trying to figure out the culprit code that corrupted the memory block. But, yet again,
it might not always be possible to find the offender using this technique. The next
step in the process is to use memory corruption detection tools that can make your
life a whole lot easier.

Step 3: Use Memory Corruption Detection Tools 
Before we proceed to describe these tools, it is important to understand that the tools
do not provide guarantees with regard to catching memory corruptions. The tools
merely help you catch a number of very common memory corruption scenarios.
Depending on which category of memory corruptions you are experiencing, different
tools are available. For stack-based corruptions, the best tool available is the compil-
er itself, as it can inject stack verification code in your application. When it comes to
heap-based memory corruptions, the best tool is Application Verifier (see Chapter 1,
“Introduction to the Tools”). Application Verifier has a ton of test settings to choose
from related to memory corruption. What both of these tools have in common is that
they attempt to trap common memory-related programming mistakes immediately, as
the memory corruption occurs, rather than later when the more troublesome side
effects might appear. We will examine how the compiler can aid us in stack corrup-
tions in this chapter and use Application Verifier when analyzing heap-based corrup-
tions in Chapter 6, “Memory Corruption Part II—Heaps.” 

Step 4: Instrument Source Code
If the previous steps haven’t helped you find the culprit, you are in for some hard
labor. The next step is to collect all the information you have gathered from the pre-
vious steps and theorize about possibilities. When you have come up with a few the-
ories, you can instrument your code to prove them right or wrong. Instrumentation
techniques vary from simple trace statements to operating system supported tracing. 
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Step 5: Define Avoidance Strategies
Last, and arguably most important, is to take what you have learned and define a
future avoidance strategy. Avoidance strategies can come in the form of utilizing tools
throughout the development to help catch common memory corruption problems, as
well as making sure that the code you are writing takes explicit steps to minimize the
risk of potential memory corruptions.

The remainder of the chapter walks through some common memory corruption
scenarios and shows you how the memory corruption process can be applied to fig-
ure out the reason behind the memory corruption. The scenarios in this chapter focus
on stack-based corruptions, and Chapter 6 focuses on heap-based corruptions. 

Stack Corruptions

The stack is one of the most common and well-known data structures around. Most
algorithm introductory classes begin with the study of the stack data structure. It’s
really a pretty simple and straightforward data structure that can be equated to a stack
of papers. Each piece of paper that you put (or push) onto the stack goes at the top
of the stack. Each piece of paper you take off (pop) the stack is taken from the top of
the stack. As such, both of the basic operations performed on a stack (push and pop)
always work from the top. Because each piece of paper put onto the stack or removed
from the stack works from the top, the algorithm is said to have last in first out (LIFO)
semantics. 

A stack, as related to executing code in Windows, is simply just a block of mem-
ory assigned by the operating system to a running thread. The purpose of the stack,
among other things, is to track the function call chain (allocation of local variables,
parameter passing, and so on). Any time a function call is made, another frame is cre-
ated and pushed on the stack. As the thread makes more and more function calls, the
stack grows bigger and bigger. Figure 5.3 illustrates the anatomy of a stack during a
function call.

We will see exactly how each element on the stack materializes in examples to fol-
low, but for the time being, Figure 5.3 illustrates the general stack layout during a
function call on the x86 architecture. 

To get a better understanding of how stacks work and how they can become cor-
rupted, let’s take a look at an example. The application in Listing 5.2 shows the start-
ing point of a new thread that makes a number of nested function calls, as well as
declaring local variables in each of the functions.
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Figure 5.3

NOTE If you are building the source code for this chapter, you need to make sure to dis-
able buffer overrun checks by setting the BUFFER_OVERFLOW_CHECKS environment vari-
able in your build window to 0.

Listing 5.2

#include <windows.h>

#include <stdio.h>

#include <conio.h>

DWORD WINAPI ThreadProcedure(LPVOID lpParameter);

VOID ProcA();

VOID Sum(int* numArray, int iCount, int* sum);

int __cdecl wmain ()

{

Function Parameter 1

Function Parameter 2

•
•
•

Function Parameter X

Function Return Address

Frame Pointer

Exception Handler Frame

Local Variable 1

Local Variable 2

•
•
•

Local Variable X

Function Saved Registers
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HANDLE hThread = NULL ;

printf(“Starting new thread...”);

hThread = CreateThread(NULL, 0, ThreadProcedure, NULL, 0, NULL);

if(hThread!=NULL)

{

printf(“success\n”);

WaitForSingleObject(hThread, INFINITE);

CloseHandle(hThread);

}

return 0;

}

DWORD WINAPI ThreadProcedure(LPVOID lpParameter)

{

ProcA();      

printf(“Press any key to exit thread\n”);

_getch();

return 0;

}

VOID ProcA()

{

int iCount = 3;

int iNums[] = {1,2,3};

int iSum = 0 ;

Sum(iNums, iCount, &iSum);

printf(“Sum is: %d\n”, iSum);

}

VOID Sum(int* numArray, int iCount, int* sum)

{

for(int i=0; i<iCount;i++)

{

*sum+=numArray[i];

}

}

The source code and binary for Listing 5.2 can be found in the following folders:

Source code: C:\AWD\Chapter5\StackDesc
Binary: C:\AWDBIN\WinXP.x86.chk\05StackDesc.exe
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A high-level overview of the code in Listing 5.2 shows the main function creating a
new thread using the CreateThread API and setting the starting function of that
thread to a function named ThreadProcedure. The ThreadProcedure function is
also the starting point of our stack investigation. According to our prior discussion
about stacks, each time a thread makes a function call, a new frame is pushed onto
the stack with the frame consisting of the data required to execute that function. Is
the ThreadProcedure function frame the first item on our newly created thread
stack? Not quite. Before our thread ever gets the chance to execute the
ThreadProcedure function, the operating system executes a series of function calls
as part of the thread creation. To get an idea of what is executed, build the sample
application in Listing 5.2, and run it in the debugger, setting a breakpoint at the start
of the ThreadProcedure function (as shown in Listing 5.3). After you enter Go, the
debugger stops at that function, and you can look at the stack of the executing thread.

Listing 5.3

…

…

…

0:000> X 05stackdesc!*ThreadProcedure*

01001210 05stackdesc!ThreadProcedure (void *)

0:000> bp 05stackdesc!ThreadProcedure

0:000> g

ModLoad: 5cb70000 5cb96000   C:\WINDOWS\system32\ShimEng.dll

Starting new thread...success

Breakpoint 0 hit

eax=00000000 ebx=00000000 ecx=002bffb0 edx=7c90eb94 esi=00000000 edi=00030000

eip=01001210 esp=002bffb8 ebp=002bffec iopl=0         nv up ei pl zr na pe nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000246

05stackdesc!ThreadProcedure:

01001210 55              push    ebp

0:001> kb

ChildEBP RetAddr  Args to Child

002bffb4 7c80b683 00000000 00030000 00000000 05stackdesc!ThreadProcedure

002bffec 00000000 01001210 00000000 00000000 kernel32!BaseThreadStart+0x37

As can be seen, our thread procedure is actually not the first function to execute;
rather, it is a function defined in kernel32.dll named BaseThreadStart followed by
a call to our thread function. The BaseThreadStart function is simply an intercep-
tor defined by the operating system that is invoked prior to all newly created thread
executions. 
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Now that we have reached the starting point of our thread, let’s take a closer look
at the stack itself to see how it is organized. As previously discussed, stack operations—
such as push and pop—work from the top of the stack, and, as such, a pointer needs
to be kept around that tells us where the top of the stack is. On x86 architectures, a
register named esp is used for that purpose. Before we dig in and examine the actual
contents of the stack, let’s take a look at the first few instructions of our function.
Listing 5.4 shows the assembly code starting at the ThreadProcedure function.

Listing 5.4

0:000> u 05stackdesc!ThreadProcedure

05stackdesc!ThreadProcedure:

01001220 8bff           mov     edi,edi

01001222 55             push    ebp

01001223 8bec           mov     ebp,esp

01001225 e826000000     call    05stackdesc!ProcA (01001250)

0100122a 68b0100001     push    offset 05stackdesc!`string’ (010010b0)

0100122f ff1550100001   call    dword ptr [05stackdesc!_imp__printf (01001050)]

01001235 83c404         add     esp,4

01001238 ff1548100001   call    dword ptr [05stackdesc!_imp___getch (01001048)]

Prior to the call to ProcA (fourth instruction from the top of the assembly code), a
number of interesting assembly instructions are executed. Specifically, the following
instructions are of interest when it comes to the anatomy of a call stack:

01001220 8bff             mov     edi,edi

01001222 55               push    ebp

01001223 8bec             mov     ebp,esp

The second instruction pushes the ebp register onto the stack. We will see how the
ebp register is used later on, but for now it is sufficient to view the ebp register as
always containing the base pointer to any given frame. Since the base pointer needs
to be retained for each frame, it gets pushed onto the stack prior to any new frame
creation (that is, call instruction). The next instruction moves the stack pointer to the
ebp register to establish the beginning of the new stack frame. These three instruc-
tions form the prologue of a function. In general, most functions that you encounter
follow a general outline:

■ Function prologue 
■ Function code
■ Function epilogue
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The function prologue ensures that the stack is prepared properly for the new func-
tion code to be executed. Following the prologue is the actual function code, and
finally the function epilogue makes sure that the stack is restored to the correct state
prior to returning to the caller.

We are now at a point at which we are ready to call to the ProcA procedure via
the call instruction. When a call instruction is executed, the stack also gets updated.
More specifically, during the execution of the call instruction, the return address of
the call (that is, the address of the next instruction after the call) is pushed onto the
stack. This is necessary because upon returning from the function just called, a ret
instruction is executed. The ret instruction should return to the next instruction
right after the call instruction. So that we know where this location is, the ret instruc-
tion pops the address from the stack and jumps to that location. Figure 5.4 shows the
current state of our thread stack prior to the call instruction.

Saved EBP

Return address from call

Top of the STACK

0x002bffb8

0x002bffb4

0x002bffb0

ESP=0x002bffb8

REGISTERS

EBP=0x002bffb4

ESP=0x002bffb0

push ebp

INSTRUCTIONS

mov ebp,esp

call simple!ProcA

Figure 5.4

It is important to note that the stack grows from top to bottom on the x86 architec-
tures. From Figure 5.4, you can see how the addresses of the stack decrease as a result
of pushing data onto the stack. The x86 push instructions are a two-step operation:

1. Decrements the stack pointer (esp) by the size of the operand
2. Transfers the source (ebp in Figure 5.4) to the stack

In Figure 5.4, esp started by pointing to stack location 0x002bffb8. When the push
instruction is executed, esp is first decremented by 4 bytes (0x002bffb4), followed
by transferring the value of ebp into that stack location. The mov instruction ensures
that ebp and esp point to the same location on the stack, which is also the base loca-
tion for the new call frame.

At this point, the stack has been prepped and set up for the actual call instruction
that will transfer the flow of execution to the next function called (ProcA). Positioned
on the call instruction, we continue the execution by entering t to trace into the next
function. Once in that function, we unassemble the code for the entire function, as
shown in Listing 5.5.
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Listing 5.5

0:000> uf 05stackdesc!ProcA

05stackdesc!ProcA:

01001250 8bff            mov     edi,edi

01001252 55              push    ebp

01001253 8bec            mov     ebp,esp

01001255 83ec14          sub     esp,14h

01001258 c745ec03000000  mov     dword ptr [ebp-14h],3

0100125f c745f401000000  mov     dword ptr [ebp-0Ch],1

01001266 c745f802000000  mov     dword ptr [ebp-8],2

0100126d c745fc03000000  mov     dword ptr [ebp-4],3

01001274 c745f000000000  mov     dword ptr [ebp-10h],0

0100127b 8d45f0          lea     eax,[ebp-10h]

0100127e 50              push    eax

0100127f 8b4dec          mov     ecx,dword ptr [ebp-14h]

01001282 51              push    ecx

01001283 8d55f4          lea     edx,[ebp-0Ch]

01001286 52              push    edx

01001287 e824000000      call    05stackdesc!Sum (010012b0)

0100128c 8b45f0          mov     eax,dword ptr [ebp-10h]

0100128f 50              push    eax

01001290 68d0100001      push    offset 05stackdesc!`string’ (010010d0)

01001295 ff1550100001    call    dword ptr [05stackdesc!_imp__printf (01001050)]

0100129b 83c408          add     esp,8

0100129e 8be5            mov     esp,ebp

010012a0 5d              pop     ebp

010012a1 c3              ret

The uf command is used to unassemble the entire function in one step rather than hav-
ing to use the u command which, by default, only unassembles the first eight instructions.

The first four instructions in this function are part of the function prologue:

01001250 8bff             mov     edi,edi

01001252 55               push    ebp

01001253 8bec             mov     ebp,esp

01001255 83ec30           sub     esp,0x14

The first three instructions are identical to the previous frame and simply make sure
that the base frame pointer and stack pointer are set up properly for the frame. The
last instruction (sub esp,0x14) looks very interesting. It seems to be subtracting
0x14 bytes (or decimal 20) from the stack pointer. Why is that subtraction taking place?
It is making room for local variables. As you can see from the source code for ProcA
in Listing 5.2, it allocates the following local variables on the stack:
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int iCount = 3;

int iNums[] = {1,2,3};

int iSum = 0 ;

The total size of these variables is

4 (iCount) + 12 (iNums) + 4 (iSum) = 20 bytes

When we subtract 20 bytes from the stack pointer, the apparent gap in the stack
becomes reserved for the local variables declared in the function. Figure 5.5 shows
the stack contents after the sub instruction has executed.

Saved EBP

Return address from call

Top of the STACK

0x002bffb8

0x002bffb4

0x002bffb0

REGISTERS

ESP=0x002bffb4

EBP=0x002bffb4

ESP=0x002bffb0

push ebp

INSTRUCTIONS
ThreadProcedure

ProcA

mov ebp,esp

call simple!ProcA

Saved EBP

Reserved for local variable:
iNums[2]

Reserved for local variable:
iNums[1]

Reserved for local variable:
iSum

Reserved for local variable:
iCount

0x002bffac

0x002bffa8

0x002bffa4

0x002bffa0

0x002bff9c

0x002bff98

ESP=0x002bffac

EBP=0x002bffac

ESP=0x002bff98

push ebp

mov ebp,esp

call esp, 0x14

Reserved for local variable:
iNums[0]

Figure 5.5

After the stack pointer esp has been adjusted to make room for the local variables,
the next set of instructions executed initializes the stack-based local variables to the
values specified in the source code:

05stackdesc!ProcA+0x8:

01001258 c745ec03000000  mov     dword ptr [ebp-14h],3

0100125f c745f401000000  mov     dword ptr [ebp-0Ch],1

01001266 c745f802000000  mov     dword ptr [ebp-8],2

0100126d c745fc03000000  mov     dword ptr [ebp-4],3

01001274 c745f000000000  mov     dword ptr [ebp-10h],0
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An important observation to be made with these mov instructions is that the ebp reg-
ister is used with an offset to reference the stack location where the local variable
resides. Why is the ebp register used instead of esp? Remember how we said that
the ebp register always points to the beginning of a call frame? The reason for that is
to always have a reference point from where we can access anything related to that
frame. By convention, the ebp register is used for that purpose. This is also the rea-
son why particular care is always taken to store the ebp register on the stack prior to
the creation of a new frame so that it can safely be restored when the frame goes away
(that is, function returns). In contrast, the esp register changes continually through-
out the execution of a function, and, as such, would be difficult (or at the very least
costly) to use as a base frame pointer.

Frame Pointer Omission

Frame pointer omission is an optimization technique in which the base frame pointer regis-
ter can be used as a general-purpose register rather than a reserved base frame pointer
shown in the chapter. Enabling the base frame pointer register to be used in this way
speeds up execution and enables the compiler to use the base frame pointer register as yet
another general-purpose register.

Following the initialization of the local variables comes a series of instructions
that gets the application ready to make another function call, as shown in Listing 5.6.

Listing 5.6

0100127b 8d45f0          lea     eax,[ebp-10h]
0100127e 50              push    eax
0100127f 8b4dec          mov     ecx,dword ptr [ebp-14h]
01001282 51              push    ecx
01001283 8d55f4          lea     edx,[ebp-0Ch]
01001286 52              push    edx
01001287 e824000000      call    05stackdesc!Sum (010012b0)

At a glance, it seems that a lot of data is pushed onto the stack prior to the call
instruction. If we look at the Sum function prototype, we see the following:

VOID Sum(int* numArray, int iCount, int* sum);
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Three parameters are passed to the function:

■ A pointer to an integer array, which contains the numbers we want to add
■ An integer that represents the number of items in the array
■ A pointer to an integer that will (upon success) contain the sum of all the num-

bers in that array

The way by which the parameters are passed from the ThreadProc function to the
Sum function is—you guessed it—the stack. Anytime a call instruction results in
calling a function with parameters, the calling function is responsible for pushing the
parameters onto the stack from right to left (using the standard calling convention).
In our case, the first parameter that needs to go on the stack is the pointer that will
contain the sum (sum). The first two instructions in Listing 5.6 show how the param-
eter is pushed on the stack. Once again, we see that the ebp register is used to refer-
ence the local variable of interest. Because we are passing a pointer, the lea
instruction (load effective address) is used. The remaining parameters are pushed
onto the stack in a similar fashion (remember—from right to left).

Saved EBP

Return address from call

Top of the STACK

0x002bffb8

0x002bffb4

0x002bffb0

REGISTERS

ESP=0x002bffb4

EBP=0x002bffb4

ESP=0x002bffb0

push ebp

INSTRUCTIONS
ThreadProcedure

ProcA

mov ebp,esp

call simple!ProcA

Saved EBP

Reserved for local variable:
iNums[2]

Reserved for local variable:
iNums[1]

Reserved for local variable:
iSum

Reserved for local variable:
iCount

0x002bffac

0x002bffa8

0x002bffa4

0x002bffa0

0x002bff9c

0x002bff98

ESP=0x002bffac

EBP=0x002bffac

ESP=0x002bff98

push ebp

mov ebp,esp

call esp, 0x14

ESP=0x002bff94

ECX=3

push eax

mov ecx,[ebp-0x14]

EAX=0x002bff9c lea eax,[ebp-0x10]

EDX=0x002bffa0

ESP=0x002bff8c

lea edx,[ebp-0xc]

push edx

ESP=0x002bff90 push ecx

Reserved for local variable:
iNums[0]

3
(Parameter: int iCount)

0x002bffa0
(Parameter int* numArray)

0x002bff94

0x002bff90

0x002bff8c

0x002bff9c
(Parameter: int* sum)

Figure 5.6
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I will leave it as an exercise to the reader to figure out what the stack looks like in the
new frame while calling the Sum function. Here is a hint: Because the parameters are
passed via the stack, an offset is used in conjunction with the ebp register to access
the passed-in parameters.

After the call has returned to the calling frame (ProcA), the stack pointer esp is
set to 0x002bff98, which is also the last stack slot used prior to pushing parameters
for the call to Sum. How did the stack pointer get adjusted back to that position? The
answer to that lies in how a frame returns from a function, as you will see when we
analyze the return from the ProcA function. Listing 5.7 shows the assembly instruc-
tions right after our call to Sum.

Listing 5.7

0100128c 8b45f0          mov     eax,dword ptr [ebp-10h]
0100128f 50              push    eax
01001290 68d0100001      push    offset 05stackdesc!`string’ (010010d0)
01001295 ff1550100001    call    dword ptr [05stackdesc!_imp__printf
(01001050)]
0100129b 83c408          add     esp,8
0100129e 8be5            mov     esp,ebp
010012a0 5d              pop     ebp
010012a1 c3              ret

The next call instruction on line 4 shows another call, this time to the printf func-
tion. This matches up well with our source code, as it tries to print out the result of
the call to Sum (stored in iSum). Once again, before calling the printf function, the
stack is set up for any parameters that might be needed during the call. More specif-
ically, two parameters are passed:

■ A string: “The sum is: %d\n”
■ The value of iSum

Remember that parameters are always passed from right to left, so we push the value
of iSum onto the stack first. The first two instructions of Listing 5.7 show how the
value of iSum is pushed onto the stack. Because iSum is a local variable on the ProcA
frame, it is accessed via the ebp register minus an offset of 0x10. From Figure 5.4,
we can see that ebp-0x10 indexes the iSum local variable. The last parameter that
should be pushed onto the stack is the string itself, and we can see that with the push
offset 05stackdesc!`string’ (010010d0) instruction. To validate that it is in
fact pushing the correct string onto the stack, we can use the da (dump ASCII) com-
mand:
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0:001> da 0x10010d0

010010d0  “Sum is: %d.”

This does indeed validate that the correct string is being passed.
After the call instruction has executed, the final few instructions in the ProcA

function ensure that the stack is restored to its original state prior to the call to ProcA,
as shown in Listing 5.8.

Listing 5.8

0100129b 83c408          add     esp,8
0100129e 8be5            mov     esp,ebp
010012a0 5d              pop     ebp
010012a1 c3              ret

The first instruction adds 8 to the stack pointer esp. What is the reason behind this
addition? Well, when the printf function returns, esp is set to the last parameter
that was pushed onto the stack in preparation for the call. Remember that each time
a frame makes a call, we need to ensure that the stack is restored to the state prior to
the call. Since we pushed two parameters onto the stack in order to call printf, we
need to add 8 bytes from the stack pointer esp in order to get back to the state we
had prior to the call (2*4 bytes = the size of the two parameters pushed onto the
stack). Once the state has been restored, we are just about ready to return from the
ProcA function. Since we allocated local variables in the ProcA function, the esp
register is pointing to the last local variable declared on the stack. As we return from
the function, we need to make sure that the esp register is reset to the value that it
was prior to making the call to the ProcA function. The key to accomplish this is to
remember what took place in the ProcA function prologue. More specifically, the
mov ebp,esp instruction in the prologue saved the value of the esp register into
ebp. To restore esp, we simply execute the mov esp,ebp instruction, as shown in
Listing 5.8. Figure 5.7 shows the current state of our stack.

Because the ebp register is used as the base frame pointer, it is as important to
restore that register as it is to restore the esp register. After we have returned from
the ProcA function, we want the calling function (ThreadProcedure) to be capable
of using the ebp register just as it was being used prior to the call to FuncA. Because
the next item on our stack is the saved ebp (that is, the frame pointer of the calling
function), we simply pop that value into the ebp register. Finally, we can issue the ret
instruction to return to the calling function. But, hold on—our esp register
(0x002bffb0) seems to be pointing to a return address that was pushed onto the
stack automatically when executing the call instruction. Do we have to do anything
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with that stack location prior to returning? The answer is yes and no: yes in the sense
that we need the return address to know where to return to, and no because we don’t
explicitly pop it from the stack. When the ret instruction is executed, the return
address is popped from the stack and control is transferred to that location so that
execution can resume. 
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Figure 5.7

As you can see, the stack is a very versatile data structure, and it is at the heart of
thread execution in Windows. It enables applications to transfer control back and
forth between functions in a very structured and ordered fashion. Because the com-
piler generates all the code that handles this control transfer (managing the stack,
passing parameters, addressing local variables, and so on), developers typically do not
worry too much about what actually goes on behind-the-scenes. For the most part,
developers should not have to worry, but some very frequent programming mistakes
can cause the thread stack to become corrupt. When it does, understanding how the
stack is managed can mean the difference between a successful application launch
and disaster. In the following sections, we detail some of the most common scenarios
that can lead to stack corruption and ways to apply the memory corruption detection
process to get to the root cause. 

The Mysterious mov edi,edi Instruction

A function prologue is responsible for setting up the current frame. As we have seen, the
general structure of a function prologue sets up the base frame pointer, pushes the base
frame pointer onto the stack, and reserves space for local variables. Here is an example of
the FindFirstFileExW function prologue:
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0:000> u kernel32!FindFirstFileExW

kernel32!FindFirstFileExW:

7c80ec7d 8bff             mov     edi,edi       � Useless instruction?

7c80ec7f 55               push    ebp           � Save away old base frame pointer

7c80ec80 8bec             mov     ebp,esp       � Set up new base frame pointer

7c80ec82 81eccc020000     sub     esp,0x2cc     � Reserve space for local 

variables

7c80ec88 837d0c01         cmp     dword ptr [ebp+0xc],0x1

7c80ec8c a1cc36887c       mov     eax,[kernel32!__security_cookie (7c8836cc)]

7c80ec91 53               push    ebx

7c80ec92 8945fc           mov     [ebp-0x4],eax

What we have not discussed yet is the very first and mysterious mov edi,edi
instruction. Every function prologue begins with this seemingly useless instruction. Most of
the time, the mov edi,edi instruction is simply a NOP (no operation), but under certain
circumstances, it might be used to enable hot patching. Hot patching refers to the capability
to patch running code without the hassle of first stopping the component being patched.
This mechanism is crucial to avoiding downtime in system availability. The basic principle is
that the 2-byte mov edi,edi instruction can be replaced by a jmp instruction that can
execute whatever new code is required. Because it is a 2-byte instruction, the only jmp
instruction that will actually fit is a short jmp, which enables a jump of 127 bytes in either
direction. This is typically not enough because chances are that you would jump to locations
where existing code is already located. To bypass this limitation, we have to look at the
instructions preceding the mov edi,edi instruction:

0:000> u kernel32!FindFirstFileExW-9

kernel32!OpenMutexW+a6:

7c80ec74 33c0             xor     eax,eax

7c80ec76 eb98             jmp     kernel32!OpenMutexW+0xad (7c80ec10)

7c80ec78 90               nop

7c80ec79 90               nop

7c80ec7a 90               nop

7c80ec7b 90               nop

7c80ec7c 90               nop

kernel32!FindFirstFileExW:

7c80ec7d 8bff             mov     edi,edi

The five bytes preceding the mov instruction are all 1-byte NOP instructions. By replac-
ing the mov edi,edi instruction with a short jump to the NOP instructions and replacing
those instructions with a long jump, we can easily hot patch to a location of choice. 



223Stack Corruptions

Stack Overruns
A stack overrun occurs when a thread indiscriminately overwrites portions of its call
stack reserved for other purposes. This can include, but is not limited to, overwriting
the return address for a particular frame, overwriting entire frames, or even exhaust-
ing the stack completely. The net effect of stack overruns ranges from crashes to
unpredictable behavior and even serious security holes. Stack overruns have become
one of the most common attack angles for malicious software, as they can potentially
allow the attacker to gain complete control of the computer on which the faulty soft-
ware runs. To exemplify the seriousness of stack overruns, we will look at a scenario in
which a stack overrun could result in a security hole. The seemingly innocent code in
Listing 5.9 shows an application that accepts a connection string on the command line
and attempts to use that connection string to establish a connection to a data source.

Listing 5.9

#include <windows.h>

#include <stdio.h>

#define MAX_CONN_LEN    30

VOID HelperFunction(WCHAR* pszConnectionString);

int __cdecl wmain (int argc, wchar_t* pArgs[])

{

if (argc==2)

{

HelperFunction(pArgs[1]);

wprintf (L”Connection to %s established\n”,pArgs[1]);

}

else

{

printf (“Please specify connection string on the command line\n”);

}

return 0;

}

VOID HelperFunction(WCHAR* pszConnectionString)

{

WCHAR pszCopy[MAX_CONN_LEN];

wcscpy(pszCopy, pszConnectionString);
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//

// ...

// Establish connection

// ...

//

}

The source code and binary for Listing 5.9 can be found in the following folders:

Source code: C:\AWD\Chapter5\Overrun
Binary: C:\AWDBIN\WinXP.x86.chk\05Overrun.exe

If we run this application and specify a few simple connection strings, everything
appears to be fine:

C:\AWDBIN\WinXP.x86.chk\05Overrun.exe MyDataSource

Connection to MyDataSource established

C:\AWDBIN\WinXP.x86.chk\05Overrun.exe MyRemoteDataSource

Connection to MyRemoteDataSource established

As the code seems to be working fine, everyone in the product group gets ready for
the ship party. A few weeks after the product is released, the product support group
starts getting a large number of complaints about application crashes. Even worse,
Internet rumors start circulating with claims that the application is vulnerable to a
security exploit that allows an attacker to inject and run arbitrary code in the process. 

To troubleshoot this problem, we need to gather data from product support to see
if it’s possible to reproduce the problem. Drilling deeper into the data set provided
from support shows that long connection strings seem to be the culprit. Sure
enough—specifying the following connection string seems to cause the application to
crash:

C:\AWDBIN\WinXP.x86.chk\05Overrun.exe ThisIsMyVeryExtremelySuperMagnificantConnec-

tionStringForMyDataSource

As per Figure 5.1, the first step in debugging the memory corruption process is to
analyze the state at the point of the crash. Let’s fire up the application under the
debugger and let it run until the crash occurs, as shown in Listing 5.10.

Listing 5.9 (continued)
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Listing 5.10

…

…

…

0:000> g

ModLoad: 5cb70000 5cb96000   C:\WINDOWS\system32\ShimEng.dll

(f80.d10): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=0007fefc ebx=7ffde000 ecx=0007ff86 edx=00034d5a esi=7c9118f1 edi=00011970

eip=00630069 esp=0007ff44 ebp=00660069 iopl=0         nv up ei pl nz na pe nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00010206

00630069 ??              ???

0:000> kb

ChildEBP RetAddr  Args to Child

WARNING: Frame IP not in any known module. Following frames may be wrong.

0007ff40 00430074 006e006f 0065006e 00740063 0x630069

0007ffc0 7c816fd7 00011970 7c9118f1 7ffde000 0x430074

0007fff0 00000000 01001234 00000000 78746341 kernel32!BaseProcessStart+0x23

At first glance, the stack seems to be so broken that our inclination might be to say
that we have a potential bug in the debugger. After all, how could we cause the call
stack to get into a state like that? Again, the first thing we need to do is to analyze
some state. Because we are experiencing a crash, it is crucial to first find out where
we are crashing. Because the call stack (as shown by the kb command) isn’t yielding
a nice clean and readable stack, we can look at the eip register to see where we are
in the code. The eip register (instruction pointer) is also called the program counter
and always points to the next instruction to be executed. To find the instruction point-
er, we use the r eip command: 

0:000> r eip

eip=00630069

The eip register points to 0x00630069. Dumping out the memory at that location
yields

0:000> dd 00630069

00630069  ???????? ???????? ???????? ????????

00630079  ???????? ???????? ???????? ????????

00630089  ???????? ???????? ???????? ????????

00630099  ???????? ???????? ???????? ????????

006300a9  ???????? ???????? ???????? ????????
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006300b9  ???????? ???????? ???????? ????????

006300c9  ???????? ???????? ???????? ????????

006300d9  ???????? ???????? ???????? ????????

The contents of that memory location are a series of question marks, which we know
indicate inaccessible memory. From this trivial exercise, we can hypothesize that the
instruction pointer the processor uses to control the flow of execution in our applica-
tion has gotten into a corrupt state. Because we do not explicitly control the eip reg-
ister, how is this possible? The key to finding out the answer is to understand how the
eip register is controlled indirectly. We already know that the processor takes care of
updating the eip register automatically when executing instructions, but what hap-
pens if we encounter a branching instruction? From our previous discussion of the
anatomy of a call stack, we know that when a call instruction is executed, the con-
tents of the eip register are pushed onto the stack to enable the processor to know
where to continue execution. When the calling function returns via the ret instruc-
tion, the return address is popped from the stack, eip is reset to that location, and
execution continues from there. Is it possible that we somehow put a bad return
address on the stack, causing the processor to continue execution from the bad
address? Our first inclination might be to again say no, but knowing that our code
does in fact branch makes this a somewhat plausible theory. Let’s rerun the applica-
tion in the debugger and this time pay close attention to the state of the stack. We
begin the investigation right before making the call to the string copy function in
HelperFunction. Figure 5.8 shows the state of the stack right before calling the
wcscpy function.

So far, the stack looks to be in good shape. Now let’s execute (stepping over using
the p command) the string copy function call. Our expectations are that the stack
looks intact and that the local variable pszCopy will contain a copy of the connection
string. Let’s dump out the local variable and take a look:

0:000> du ebp-0x3c

0007fefc  “ThisIsMyVeryExtremelySuperMagnif”

0007ff3c  “icantConnectionStringForMyDataSo”

0007ff7c  “urce”

Looks good—the contents are exactly what we expected them to be. Following the
call, the remainder of the instructions is the epilogue code for the HelperFunction.
Step over the instructions until you reach the ret instruction. We know that when the
ret instruction is executed, the next item on the stack is popped off and execution
resumes from the location popped off. As a sanity check, we dump the next item on
the stack to see what the return address really is:
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0:000> dd esp

0007ff3c  00630069 006e0061 00430074 006e006f

0007ff4c  0065006e 00740063 006f0069 0053006e

0007ff5c  00720074 006e0069 00460067 0072006f

0007ff6c  0079004d 00610044 00610074 006f0053

0007ff7c  00720075 00650063 7ffd0000 e4361000

0007ff8c  00000000 00000000 00000002 00034ca8

0007ff9c  00000000 00036ce0 00000000 0007ff7c

0007ffac  89e6a074 0007ffe0 01001442 010010f0

0:000> u 00630069

00630069 ??              ???

^ Memory access error in ‘u 00630069’
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When we try to unassemble the return address on the stack, we get a memory access
error. Without even executing the ret instruction, we can fairly confidently say that
we now know what is causing the crash. Executing the ret instruction shows how the
eip pointer is set to the bad return address, and the subsequent execution of that bad
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return address fails with an access violation. Because we know that the stack looked
fine prior to making the call to the string copy function, something during the execu-
tion of the function caused the stack to become corrupted. A quick glance at the
source for HelperFunction shows that we are trying to make a copy of the connec-
tion string passed in and place it in a local variable named pszCopy. The destination
string (pszCopy) is declared to be 30 characters in length, which means that the
source string we passed in, 69 characters long, will not fit. Does wcscpy respect the
boundaries of our local variable? No, it does not. In fact, the only stopping point of
wsccpy is when it reaches a null terminator in the source string. What happens when
the wcscpy function passes the end of the local variable? The answer is that it just
keeps copying characters. Because the local variable is declared on the stack, the
function will overwrite parts of the stack that precede the allocation for the local vari-
able. Figure 5.9 shows what the stack looks like after the copy. 

HelperFunction

Top of the STACK
wmain

…

…

00430074
“tc”

006e0061
“an”

Should be
wchar_t**pArgs

Should be
argc

00630069
“ic”

00660069
“if”

Local Variable
(pszCopy)

“ThisIsMyVeryExtremelySuperMa
gn”

Pointer to parameter
(pszConnectionString)

Pointer to local variable
(pszCopy)

S
ta

ck
 g

ro
w

s 
do

w
nw

ar
d

Should be return address
(0x010011e7)

Should be prior saved EBP

Figure 5.9
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As you can see from Figure 5.9, the seemingly simple execution of a string copy func-
tion has completely corrupted our stack. After the string copy function reaches the
boundary of our local variable, pszCopy, it just keeps copying the string, overwriting
all stack contents along the way. More specifically, it overwrites the return address
used when HelperFunction returns with the two characters “ic” (0x00630069).
When the processor returns from the function using the ret instruction, that value is
automatically popped from the stack, the instruction pointer eip is set to that value,
and execution resumes. As you saw earlier on, executing code located in the erro-
neous location 0x00630069 causes a crash because of the location not containing any
valid code. As a matter of fact, that location points to invalid memory.

The fix for this problem is to make sure that we do not copy more than we have
allotted for in our local variable. Two possible solutions exist depending on the spec-
ification of the connection string.

■ If the connection string can be of variable length with no upper boundaries,
allocating memory on the stack is the wrong approach. Without knowing the
size of the string at compile time, it is impossible to allocate a buffer on the
stack that could hold the source string. If this is the case, allocating the buffer
from the heap is a better approach.

■ If the connection string really is limited to 30 characters, we must make sure
to respect that boundary independent of how long the string that is passed in
really is. A good approach in this case is to use a string copy function that allows
you to specify the size of the destination string to ensure that no more than 30
characters are ever copied to the destination. See the StringCchCopy API for
an excellent and safe way to achieve this.

Before shipping an update that contains a fix for the crashing bug in the application,
we must also pay careful attention to the rumors that were going around on the
Internet: A security hole was uncovered as well, leading to a machine compromise.
We have already done most of the investigative work to realize that the crash we were
seeing can also lead to a security hole. Code exploits can utilize the fact that the
return address can be overwritten. If an attacker was able to carefully construct a con-
nection string that overwrote the return address on the stack with an address of his
choosing, the application would execute the code at that address and potentially let
the attacker take control of the application. 

Because stack buffer overruns are such common problems, you might be won-
dering if there is a tool that can help detect these errors at compile time. The answer
is yes, and the tool is called PREfast (part of the Windows Driver Kit). To illustrate
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the usage of PREfast, we will use the same buffer overrun sample as shown previ-
ously. Start by opening up a Windows Driver Kit build window (checked XP).
Navigate to the directory containing the source code for the sample and type the 
following:

C:\> prefast /filterpreset=”Recommended Filters” build /ZCc

This command line launches PREfast using the recommended filters setting and per-
forms a complete build of the sources in the directory. As part of the build, PREfast
also analyzes the code to determine if there are any problematic code paths. After the
process completes, PREfast displays a summary of the number of defects detected:

---------------------------------------

PREfast reported 1 defects during execution of the command.

---------------------------------------

Enter PREFAST LIST to list the defect log as text within the console.

Enter PREFAST VIEW to display the defect log user interface.

To view the defects, simply enter the following:

PREFAST LIST

This is used when displaying defects in the console.
Or enter this:

PREFAST VIEW

This is used when displaying defects in a graphical user interface.
As an example, we will use the list feature of PREfast to see what defects it detected
in our source code:

---------------------------------------

Microsoft (R) PREfast Version 8.0.86081.

Copyright (C) Microsoft Corporation. All rights reserved.

---------------------------------------

Contents of defect log: C:\Documents and Settings\marioh\Application

Data\Microsoft\PFD\defects.xml

---------------------------------------

c:\awd\chapter5\overrun\overrun.cpp (27): warning 6204: Possible buffer overrun in

call to ‘wcscpy’: use of unchecked parameter ‘pszConnectionString’

FUNCTION: HelperFunction (23)

---------------------------------------
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As you can see, PREfast notifies us that there is a possible buffer overrun in our
HelperFunction because of an unchecked parameter. 

PREfast contains a whole slew of different checks that can be employed during
the build process. You can use predefined or custom filters to change which checks
are applied. PREfast is an incredibly useful tool to use when building code, and it is
highly recommended to use during the build process. After all, why spend time
debugging a problem that a tool can automatically pinpoint for you?

Asynchronous Operations and Stack Pointers 
The lifetime of a local variable declared in a function is directly tied to the scope of
that function. Assuming a standard calling convention, when a function executes its
epilogue code, the stack pointer is reset to the prior frame and any local variables are
deemed invalid. A very common programming mistake is to make wrongful assump-
tions about the lifetime of local variables and cause unpredictable behavior during
execution. 

To exemplify the problem, we investigate a reported crash in a command-line appli-
cation that enumerates the first two registry values in a user-provided registry path. The
basic architecture behind this application is relatively simple. The user specifies the reg-
istry path that he wants to enumerate (the application assumes that the root key is
HKEY_CURRENT_USER) followed by a maximum timeout for the enumeration.
Next, the application calls the RegEnum helper function that starts the registry enu-
meration asynchronously by calling another helper: RegEnumAsync. The
RegEnumAsync function returns a handle that the application then waits for (with a
specified timeout). If a timeout occurs, an error is displayed; otherwise, the result of the
enumeration is printed out to the screen. To minimize unnecessary noise, the registry
enumeration only returns registry values of type REG_DWORD. Before running the appli-
cation, make sure to import the test.reg file that is included with the application:

C:\AWDBIN\WinXP.x86.chk>regedit /s test.reg

An example run is shown in Listing 5.11.

Listing 5.11

C:\AWDBIN\WinXP.x86.chk\05Async.exe

Enter registry key path (“quit” to quit): Test

Enter timeout for enumeration: 5000

Value 1 Name: Value1

Value 1 Data: 1
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Value 2 Name: Value2

Value 2 Data: 2

Enter registry key path (“quit” to quit): Does\Not\Exist

Enter timeout for enumeration: 5000

Error enumerating DWORDS in HKEY_CURRENT_USER\Does\Not\Exist within 5000 ms!

Enter registry key path (“quit” to quit): quit

Exiting...

The source code and binary for Listing 5.11 can be found in the following folders:

Source code: C:\AWD\Chapter5\Async
Binary: C:\AWDBIN\WinXP.x86.chk\05Async.exe

As you can see, the application seems to be working fine. Valid registry paths suc-
cessfully enumerate the first two DWORD values contained within that key, and
invalid registry paths generate expected errors. The only other variable left is the
timeout, which we specified to be 5000ms. When we try to pass in a smaller timeout
(2000ms) for a valid registry key, we end up with a failure:

C:\AWDBIN\WinXP.x86.chk\05Async.exe

Enter registry key path (“quit” to quit): Test

Enter timeout for enumeration: 2000

Timeout occurred...

Error enumerating DWORDS in HKEY_CURRENT_USER\Test within 2000 ms!

The failure might be expected, as it could have taken more than 2000ms to enumer-
ate the registry key (for example, during a remote registry enumeration). What is not
expected is the appearance of the Dr. Watson UI. To start investigating this problem,
we run the application under the debugger. Using the same registry path (Test) and
timeout value (2000), the debugger breaks in with an access violation exception, as
shown in Listing 5.12.

Listing 5.12

…

…

…

0:000> g

ModLoad: 5cb70000 5cb96000   C:\WINDOWS\system32\ShimEng.dll

Enter registry key path (“quit” to quit): Test

Listing 5.11 (continued)
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Enter timeout for enumeration: 2000

Timeout occurred...

Error enumerating DWORDS in HKEY_CURRENT_USER\Test within 2000 ms!

(bc.eb0): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=00000000 ebx=7ffde000 ecx=7c80240f edx=7c90eb94 esi=7c9118f1 edi=00011970

eip=000380d1 esp=0007fd00 ebp=00000001 iopl=0         nv up ei pl zr na pe nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00010246

000380d1 006100          add     byte ptr [ecx],ah          ds:0023:7c80240f=c2

0:000> kb

ChildEBP RetAddr  Args to Child

WARNING: Frame IP not in any known module. Following frames may be wrong.

0007fcfc 7c9118f1 0007fd10 01001a7a 00001770 0x380d1

0007fdcc 7c9118f1 7ffde000 00090000 0007fa18 ntdll!RtlDeleteCriticalSection+0x72

00011970 00750074 00690064 0020006f 005c0038 ntdll!RtlDeleteCriticalSection+0x72

00011970 00000000 00690064 0020006f 005c0038 0x750074

The stack at the point of the access violation looks really strange. Nothing on the stack
trace gives us any indication of what is being executed. All we have is a mysterious
address (0x380d1). How do you approach a problem like this, when the stack is
apparent garbage and there is no indication of what happened (or what was execut-
ing)? The answer once again lies in step 1 of the memory corruption process: state
analysis. 

Although it might seem discouraging to see a stack trace like we just did, it real-
ly is not the end of the world. To get a better picture of what is going on in the appli-
cation, the key is to step back and question the debugger’s capability to give you
truthful answers all the time. In our case, we are presented with a stack that looks
utterly useless. The debugger gave us this stack based on its own process of retriev-
ing stack traces. This process, by which the debugger retrieves stack traces, relies on
certain aspects of the stack to be intact. If the stack integrity has been compromised,
the debugger will most definitely give you inaccurate results. In order to get a much
better stack trace, we have to do the job ourselves. The first thing we should do is fig-
ure out what instruction was executed at the point of the crash. We can accomplish
this very easily by using the u command in the debugger. (Remember that eip always
points to the instruction to be executed.)

0:000> u eip

000380d1 006100          add     byte ptr [ecx],ah

000380d4 6c              ins     byte ptr es:[edi],dx

000380d5 007500          add     byte ptr [ebp],dh

000380d8 650032          add     byte ptr gs:[edx],dh
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000380db 0000            add     byte ptr [eax],al

000380dd 00adba0df0ad    add     byte ptr [ebp-520FF246h],ch

000380e3 ba0df0adba      mov     edx,0BAADF00Dh

000380e8 0df0adba0d      or      eax,0DBAADF0h

A few observations can be made from this output. 
First, we are trying to move data into a location pointed to by the ecx register,

which points to the following address: 0x7c80240f. If you unassemble this address,
you will find that it actually points to code and not data, per se. As a matter of fact,
the code resolves to kernel32!SleepEx:

0:000> u 7c80240f

kernel32!SleepEx+0x8a:

7c80240f c20800          ret     8

7c802412 8975d8          mov     dword ptr [ebp-28h],esi

7c802415 c745dc00000080  mov     dword ptr [ebp-24h],80000000h

7c80241c 8d45d8          lea     eax,[ebp-28h]

7c80241f 8945e4          mov     dword ptr [ebp-1Ch],eax

7c802422 ebbd            jmp     kernel32!SleepEx+0x55 (7c8023e1)

7c802424 3d01010000      cmp     eax,101h

7c802429 75ca            jne     kernel32!SleepEx+0x70 (7c8023f5)

Next, the address that eip points to does not fall into the address range of any cur-
rently loaded modules. Each module (both code and data) loaded into a process is
located at a starting address. The starting address is determined either by the module
itself or the operating system if a collision occurs. In either case, the instruction point-
er almost always points to a location within a currently loaded module’s loading
address. You can very easily determine the address range of the modules loaded into
your process by using the lm command:

0:000> lm

start    end        module name

01000000 01003000   05async    (deferred)

77c10000 77c68000   msvcrt     (deferred)

77dd0000 77e6b000   ADVAPI32   (deferred)

77e70000 77f01000   RPCRT4     (deferred)

7c800000 7c8f4000   kernel32   (pdb symbols)

7c900000 7c9b0000   ntdll      (pdb symbols)

Our current eip location (000380d1) does not fall within any of the address ranges
shown. 
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Last, the code at the eip location seems to be incorrect. For example, the fol-
lowing instruction ORs the contents of the eax register with a very interesting value:

or      eax,0DBAADF0h

Armed with these observations, our theory is that a stack location containing a return
address has been corrupted, causing the processor to jump to a valid memory region
containing invalid code. Furthermore, we know that the address of the invalid mem-
ory region is (or is close to) 000380d1. We say close to because the processor really
doesn’t care too much where it is executing code, as long as it is valid memory. As
such, if the instructions that the processor is executing are benign (from a crashing
perspective), it will continue executing and advancing eip until a real failure occurs.
In our case, we are most certainly executing in a valid memory area, albeit not the
right code. 

In order to find the corruptor of our stack, we need to do some detective work on
the stack itself. Let’s begin by dumping out the contents of the stack, and then see if
we can recognize what the execution flow was. We already know that the established
range for our code module (05async.exe) is 01000000-01003000. By looking at the
stack contents, we can see if any elements on the stack are within that range. If so, we
might have found a return address that will help us construct the call chain. Listing
5.13 shows the contents of the stack.

Listing 5.13

0:000> dd esp esp+100

0007fd00  7c9118f1 0007fd10 01001a7a 00001770

0007fd10  0007ff44 0100156a 0007fd2c 00000004

0007fd20  000007d0 00000001 000007d0 00650054

0007fd30  00740073 00000000 00000000 00000000

0007fd40  00000000 00000000 00000000 00000005

0007fd50  a9b81a60 a9b81a74 89e3cc00 80543dfd

0007fd60  00000000 c0000034 888b7370 00f80084

0007fd70  e44b1738 87cd0e00 888b73d0 00000000

0007fd80  00000000 00000068 c0000034 00000000

0007fd90  00000005 a9b81adc 8056a251 888b7370

0007fda0  8056a267 a9b81b98 00000000 00000000

0007fdb0  00000000 00000000 e4657bc8 00000000

0007fdc0  00000038 00000023 00000023 00011970

0007fdd0  7c9118f1 7ffde000 00090000 0007fa18

0007fde0  01001a83 7c910570 7c810665 0000001b

0007fdf0  00000200 0007fffc 00000023 8056a267

0007fe00  8056aa94
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Note that we dump the stack contents from the current location all the way up to the
current location plus an offset of 100. Because the stack grows downward, we need
to add an offset in order to get a good look at the stack from start to finish. Is 100 a
magic offset? Not really—it all depends on how much data is put on the stack (local
variables for each frame, and so on). Generally, an offset of 100 is a good starting
number. If you don’t find anything useful, you can increase it and try again.

As you can see, three locations on the stack fall within the range of our module.
To see where in our module these locations correspond to, we use the ln command:

0:000> ln 01001a7a

(01001a20)   05async!DisplayError+0x5a   |  (01001a83)   05async!wmainCRTStartup

0:000> ln 0100156a

(010014a0)   05async!wmain+0xca   |  (010015d0)   05async!RegEnum

0:000> ln 01001a83

(01001a83)   05async!wmainCRTStartup |  (01001c0a)   05async!operator new

Exact matches:

05async!wmainCRTStartup (void)

From the output, we can now hypothesize the following call chain:

wmainCRTStartup → wmain → DisplayError

To reassure ourselves, we look at the source code and see that this is definitely a
viable path. The wmain function ended up calling DisplayError due to an error
occurring while calling RegEnum. It is also fairly safe to assume that the error
occurred because of a timeout (as we’ve verified in sample runs). DisplayError in
turn calls the Sleep API. Now that we have a good idea of what is being called and
why, we can continue our investigation and prove our original hypothesis that the
stack is, in fact, corrupted. The next logical step is to take a look at the stack before
the ret instruction that caused our instruction pointer to execute invalid code. If we
dump out the contents of the stack, this time with a negative offset, we can get a his-
torical perspective on the execution right before we returned to the invalid memory.
Listing 5.14 shows the dump of the stack.

Listing 5.14

0:000> dd esp-8

0007fcf8  000380d0 00000002 7c9118f1 0007fd10

0007fd08  01001a7a 00001770 0007ff44 0100156a

0007fd18  0007fd2c 00000004 000007d0 00000001

0007fd28  000007d0 00650054 00740073 00000000
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0007fd38  00000000 00000000 00000000 00000000

0007fd48  00000000 00000005 a8242a60 a8242a74

0007fd58  89e3cc00 80543dfd 00000000 c0000034

0007fd68  8813c708 00f80084 e44c3570 87c81800

Taking a bottom-up approach, the first item of interest is the return address of the
call to Sleep (000380d0). Next, as always, the ebp register is pushed onto the stack
(00000002) so that it can be restored prior to returning. What should follow after
these two items are any items pushed onto the stack by the Sleep API (local variables
or parameters). To get a better understanding of what the Sleep API actually does,
we unassemble the function:

0:000> u kernel32!Sleep

kernel32!Sleep:

7c802442 8bff            mov     edi,edi

7c802444 55              push    ebp

7c802445 8bec            mov     ebp,esp

7c802447 6a00            push    0

7c802449 ff7508          push    dword ptr [ebp+8]

7c80244c e84bffffff      call    kernel32!SleepEx (7c80239c)

7c802451 5d              pop     ebp

7c802452 c20400          ret     4

It seems that the Sleep API pushes two more values onto the stack: a 0 and the time-
out value passed into the Sleep API via the stack (ebp+0x8). Can you spot the dis-
crepancy? The first three items seem to be incorrect. We know for a fact that the first
item should be the return address, the second item the timeout parameter
(ebp+0x8), and the third item 0. 

Instead, what we have is a return address of 000380d0, which does not fall into
our module’s code range. Next we have a value of 2 for the timeout parameter, which
should in actuality be 0x1770, and finally the last item should be 0 (explicitly pushed
by the Sleep API), but rather is 7c9118f1. We have now, without a doubt, proven
that a stack corruption is occurring, and all the work that went into proving it will bear
even more fruit as we have almost all the needed information to find the culprit.

The next obvious step is to find out who is corrupting our stack. Because we
already know the stack location being corrupted, all we need to do prior to calling the
Sleep API is to somehow monitor all access to that stack location. If we could break
into the debugger any time that address was written to, we could potentially get a
stack trace that would uncover the corruptor. Fortunately, the debugger steps up
again, this time with a command that allows us to set a breakpoint on any given
address. The breakpoint can be set to trigger any time a read or write occurs at that
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memory location or only when a write occurs. Restart the application under the
debugger and set a breakpoint in DisplayError right before executing the call to
Sleep. Feed the same input parameters to the application, and after it breaks into
the debugger, use the following command to set the memory access breakpoint:

0:000> ba w4 0006fcf0

The command used is ba. The w stands for write followed by a 4, which indicates the
size in bytes of the memory location. The last parameter specified is the address of
the memory location to break on. Remember that the memory location specified is
the location of the return address when SleepEx returns. 

When you continue execution of the application, we almost immediately hit a
breakpoint:

0:000> g

Breakpoint 1 hit

eax=00000043 ebx=7ffde000 ecx=77c422b0 edx=77c61b78 esi=00191ffc edi=00191fc0

eip=7c80239c esp=0007fcf8 ebp=0007fd04 iopl=0         nv up ei pl nz ac po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000212

kernel32!SleepEx:

7c80239c 6a2c            push    2Ch

0:000> kb

ChildEBP RetAddr  Args to Child

0007fcf4 7c802451 00001770 00000000 0007fd10 kernel32!SleepEx

0007fd04 01001a7a 00001770 0007ff44 0100156a kernel32!Sleep+0xf

0007fd10 0100156a 0007fd2c 00000004 000007d0 05async!DisplayError+0x5a

0007ff44 01001bae 00000001 00034ca8 00036c80 05async!wmain+0xca

0007ffc0 7c816fd7 00191fc0 00191ffc 7ffde000 05async!wmainCRTStartup+0x12b

0007fff0 00000000 01001a83 00000000 78746341 kernel32!BaseProcessStart+0x23

This makes perfect sense because the call to SleepEx needs to store the return address
on the stack. No foul play yet. Continue execution, and we get another breakpoint—this
time much more interesting than the last:

0:000> g

Breakpoint 1 hit

eax=0007fcf8 ebx=00035598 ecx=000380d0 edx=00035598 esi=00090178 edi=00000001

eip=01001a01 esp=002bff70 ebp=002bff74 iopl=0         nv up ei pl zr na pe nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000246

05async!CRegValue::SetProperties+0x11:

01001a01 8b55fc          mov     edx,dword ptr [ebp-4] ss:0023:002bff70=0007fcf8

0:001> kb

ChildEBP RetAddr  Args to Child
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002bff74 0100197d 000380d0 00000002 8882ab01 05async!CRegValue::SetProperties+0x11

002bffb4 7c80b683 00035598 00000001 00090178 05async!RegThreadProc+0xcd

002bffec 00000000 010018b0 00035598 00000000 kernel32!BaseThreadStart+0x37

This time, the call stack shows an entirely different thread writing to our return
address location. A quick glance at the source code shows that every time a registry
enumeration is performed via the RegEnum API, a new thread is created to handle
the enumeration. As a matter of fact, looking closer at what that thread is attempting
to store into our return address stack location, we see

0:001> p

eax=0007fcf8 ebx=00035598 ecx=000380d0 edx=0007fcf8 esi=00090178 edi=00000001

eip=01001a04 esp=002bff70 ebp=002bff74 iopl=0         nv up ei pl zr na pe nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000246

05async!CRegValue::SetProperties+0x14:

01001a04 8b450c          mov     eax,dword ptr [ebp+0Ch] ss:0023:002bff80=00000002

0:001> dd 0007fcf8

0007fcf8  000380d0 00001770 00000000 0007fd10

0007fd08  01001a7a 00001770 0007ff44 0100156a

0007fd18  0007fd2c 00000004 000007d0 00000001

0007fd28  000007d0 00650054 00740073 00000000

0007fd38  00000000 00000000 00000000 00000000

0007fd48  00000000 00000005 a8242a60 a8242a74

0007fd58  89e3cc00 80543dfd 00000000 c0000034

0007fd68  87df34e8 00f80084 e3d2de08 87dff700

The item placed on the stack matches perfectly with our prior analysis in Listing 5.14.
We have now identified the culprit of the stack corruption. Are we done? Not quite
yet—we still need to figure out why it is writing to that stack location. How did the
thread even get a pointer to it? Did it randomly happen to choose a memory location
to write to? The final piece of the puzzle is easy to put in place by employing some
simple code reviewing. If we look at the RegThreadProc function (the starting func-
tion of the new thread), we see that its parameter is of type CRegEnumData. It is the
responsibility of the function creating this new thread to pass an instance of that type
to the thread function. In this case, the RegEnum function is responsible for making
sure that everything is set up properly prior to creating the new thread. The most
important member of CRegEnumData is a pointer to an array of type CRegValue.
This member contains the result of the enumeration (all values enumerated). After
RegEnum calls RegEnumAsync, the call returns immediately, returning a handle to
the newly created thread. The RegEnum function now waits for an X number of mil-
liseconds (as specified in the parameter passed in). When the wait returns, the oper-
ation has either finished and we can display the results, or a timeout occurred—in
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which case, we return to the wmain function, which subsequently calls
DisplayError to indicate that an error occurred. The problematic part of this code
is that the RegEnum function declares the array of type CRegValue on the stack and
passes the address of that array to another thread. In the case of a timeout, the
RegEnum call returns (invalidating the locally declared array) while the new thread
executing the registry value enumeration still has a pointer to it. From here on out,
any time the new thread writes a result to that stack pointer, it will be writing to a
location no longer considered valid. As you have seen, the actual write does not result
in an immediate crash because the stack location is still considered accessible mem-
ory. However, the write might cause undesirable results because it could be over-
writing memory that is used by other parts of the code. In our case, the
DisplayError function sets up a call to Sleep, which in turn sets up a call to
SleepEx. All these calls are in need of stack space to declare local variables, passing
parameters and storing return addresses. The combination of the new thread writing
to that stack space and our application’s further use of the stack caused the access vio-
lation because of a return address being overwritten. 

Calling Conventions Mismatch
In the introduction to this chapter, we gave a detailed walk-through of how a stack is
managed throughout the lifetime of a thread. The example did a step-by-step analy-
sis of the intricacies involved when calling functions, declaring local variables, passing
parameters, returning from functions, and so on. One topic has been intentionally left
out—calling conventions. A calling convention is nothing more than a contract
between the caller of a function and the function itself. It specifies a set of rules that
both parties must agree on for the call to be made properly. As can be seen in Table
5.1, a few different types of calling conventions are available to choose from. The
main difference between these calling conventions lies in how parameters are passed
to the calling function and how they are cleaned up from the stack. Listing 5.15 shows
a small example that uses the two most common calling conventions: __cdecl and
__stdcall. 

Listing 5.15

#include <windows.h>

#include <stdio.h>

#include <conio.h>

void __cdecl CDeclFunction(DWORD dwParam1, DWORD dwParam2, DWORD dwParam3);

void __stdcall StdcallFunc(DWORD dwParam1, DWORD dwParam2, DWORD dwParam3);
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int __cdecl wmain ()

{

wprintf(L”Calling CDeclFunction\n”);   

CDeclFunction(1,2,3);

wprintf(L”Calling StdcallFunc\n”);   

StdcallFunc(1,2,3);

return 0;

}

void __cdecl CDeclFunction(DWORD dwParam1, DWORD dwParam2, DWORD dwParam3)

{

wprintf(L”Inside CDeclFunction\n”);

}

void StdcallFunc(DWORD dwParam1, DWORD dwParam2, DWORD dwParam3)

{

wprintf(L”Inside StdcallFunc\n”);

}

The source code and binary for Listing 5.15 can be found in the following folders:

Source code: C:\AWD\Chapter5\CallConv
Binary: C:\AWDBIN\WinXP.x86.chk\05Callconv.exe

The code in Listing 5.15 declares two auxiliary functions—each with different calling
conventions. The wmain function simply makes calls to each of these functions. If we
run this application under the debugger and unassemble the wmain function, we can
immediately see how the two calling conventions differ from each other:

0:000> u wmain

05callconv!wmain:

01001200 8bff            mov     edi,edi

01001202 55              push    ebp

01001203 8bec            mov     ebp,esp

01001205 68a8100001      push    offset 05callconv!`string’ (010010a8)

0100120a ff1500100001    call    dword ptr [05callconv!_imp__wprintf (01001000)]

01001210 83c404          add     esp,4

01001213 6a03            push    3

01001215 6a02            push    2

0:000> u

05callconv!wmain+0x17:

01001217 6a01            push    1

01001219 e832000000      call    05callconv!CDeclFunction (01001250)
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0100121e 83c40c          add     esp,0Ch

01001221 687c100001      push    offset 05callconv!`string’ (0100107c)

01001226 ff1500100001    call    dword ptr [05callconv!_imp__wprintf (01001000)]

0100122c 83c404          add     esp,4

0100122f 6a03            push    3

01001231 6a02            push    2

0:000> u

05callconv!wmain+0x33:

01001233 6a01            push    1

01001235 e836000000      call    05callconv!StdcallFunc (01001270)

0100123a 33c0            xor     eax,eax

0100123c 5d              pop     ebp

0100123d c3              ret

When wmain prepares to call the CDeclFunction, it begins by pushing the param-
eters 3, 2, and 1 onto the stack (remember—they are pushed from right to left) fol-
lowed by making the actual call. After the call returns, another instruction is
executed: add esp,0Ch. This instruction ensures that the stack pointer is set back to
its original location (prior to the call). Adding 0Ch simply counteracts the three
parameters that were pushed onto the stack prior to the call. It stands to reason that
when calling a function declared with the __cdecl calling convention, the calling
function is responsible for making sure that the stack integrity is upheld by adjusting
the stack pointer. If we contrast that with the next function call made
(StdcallFunc), we see that the parameters are pushed the same way (from right to
left): 3, 2, and 1. The call instruction is then executed, but we see no subsequent
cleanup of the stack pointer. How is the stack integrity upheld in this case? The
answer is that StdcallFunc itself is responsible for adjusting the stack pointer. If we
unassemble StdcallFunc, we see the following:

0:000> u StdcallFunc

05callconv!StdcallFunc:

01001270 8bff            mov     edi,edi

01001272 55              push    ebp

01001273 8bec            mov     ebp,esp

01001275 6804110001      push    offset 05callconv!`string’ (01001104)

0100127a ff1500100001    call    dword ptr [05callconv!_imp__wprintf (01001000)]

01001280 83c404          add     esp,4

01001283 5d              pop     ebp

01001284 c20c00          ret 0Ch

The last instruction executed is the ret instruction, which transfers control to the
calling function. Additionally, we can see that the ret instruction specified another
parameter: 0Ch. Adding this parameter to the ret instruction tells it to adjust the
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stack pointer by the number of bytes specified. In this case, we want to adjust it by
0Ch bytes, which corresponds to the three parameters passed into the function. 

The main difference between the __cdecl and __stdcall calling conventions
is who has responsibility for cleaning up the parameters passed on the stack. Using
__cdecl, the caller is responsible, and using __stdcall, the called function is
responsible. Generally speaking, the __stdcall calling convention is the preferred
way of calling functions because it reduces the size of the code generated. Instead of
the cleanup code being scattered everywhere in the application where a function call
is made, it’s only made once—in the function being called. So why even bother with
__cdecl? The __cdecl call convention is needed to support variable argument lists,
a very useful feature of C/C++. In cases in which the function accepts a variable num-
ber of arguments, there is no guaranteed way for the called function to know how
many parameters were passed in, which makes it impossible for it to properly clean
up the stack. In these situations, __cdecl is required, and the caller is tasked with
cleaning up the stack. 

The Decoration column shown in Table 5.1 shows how the functions are deco-
rated by the linker in an attempt to guarantee that the correct function is always
called. 

Table 5.1

Calling 

Convention Arguments Stack Cleanup Decoration

Stdcall Stack (right to left) Called function Function name pre-
fixed by ‘_’ and
appended by ‘@’ fol-
lowed by the number
of bytes of stack space
required

Cdecl Stack (right to left) Calling function Function name pre-
fixed by ‘_’

Fastcall First two arguments Called function Function name prefixed
(<=32bits) passed in via by ‘@’ and appended by 
ECX and EDX; rest on ‘@’ followed by the number 
the stack (right to left) of bytes of stack space 

required
Thiscall ‘this’ pointer passed via Called function C++ decorations

exc register; rest on the 
stack (right to left)
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Listing 5.16 shows a simple application that declares (but does not define) a set of
functions with different calling conventions. 

Listing 5.16

extern void __cdecl Func1(int iOne);

extern void __cdecl Func2(int iOne, int iTwo);

extern void __stdcall Func3(int iOne);

extern void __stdcall Func4(int iOne, int iTwo);

void __cdecl main()

{

Func1(1);

Func2(1,2);

Func3(1);

Func4(1,2);

}

The source code for Listing 5.16 can be found in the following folder:
Source code: C:\AWD\Chapter5\CallConv2
If we were to try to build this application, the linker would generate errors

(because of missing definitions for the functions):

C:\AWD\Chapter5\CallConv2>build /ZCc

BUILD: Adding /Y to COPYCMD so xcopy ops won’t hang.

BUILD: Object root set to: ==> objchk_wxp_x86

BUILD: Compile and Link for i386

BUILD: Examining C:\AWD\Chapter5\CallConv2 directory for files to compile.

BUILD: Compiling (NoSync) C:\AWD\Chapter5\CallConv2 directory

Compiling – callconv2.c for i386

BUILD: Linking C:\AWD\Chapter5\CallConv2 directory

Linking Executable - objchk_wxp_x86\i386\05callconv2.exe for i386

errors in directory C:\AWD\Chapter5\CallConv2

callconv2.obj : error LNK2019: unresolved external symbol _Func4@8 referenced in

function _main

callconv2.obj : error LNK2019: unresolved external symbol _Func3@4 referenced in

function _main

callconv2.obj : error LNK2019: unresolved external symbol _Func2 referenced in func-

tion _main

callconv2.obj : error LNK2019: unresolved external symbol _Func1 referenced in func-

tion _main

msvcrt.lib(wcrtexe.obj) : error LNK2019: unresolved external symbol _wmain referenced

in function _wmainCRTStartup
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objchk_wxp_x86\i386\05callconv2.exe : error LNK1120: 5 unresolved externals

BUILD: Done

2 files compiled

1 executable built - 6 Errors

The errors show the names that the linker uses when referring to the declared func-
tions. Func1 and Func2 are both declared with __cdecl and are decorated by the
linker by prefixing an underscore to the function name. Func3 and Func4 are both
declared as __stdcall and, as such, are decorated by prefixing an underscore and
appending @ followed by the number of total bytes of all the parameters that are part
of the declaration. Func3 takes one int parameter (4 bytes), and Func4 takes two
int parameters (8 bytes total). It is important to note that the decoration scheme
used by the linker is never visible to the developer when writing the code. It is pure-
ly a linker facility. However, understanding the decoration scheme is important when
trying to understand why the linker sometimes spews out errors related to unresolved
external symbols. 

Typically, the compiler and linker work in tandem to ensure that the correct func-
tion with the correct calling convention is called. However, at times the linker is
unable to provide this mechanism for you, and careful attention must be paid in order
to avoid calling convention mismatches. 

Take a look at Listing 5.17, which shows the code of an application that explicitly
loads a DLL (05mod.dll) and attempts to call the InitModule function defined in
that DLL. 

Listing 5.17

#include <windows.h>

#include <stdio.h>

#include <conio.h>

typedef int (__cdecl *MYPROC)(DWORD dwOne, DWORD dwTwo); 

VOID CallProc(MYPROC pProc);

int __cdecl wmain ()

{

HMODULE hMod = LoadLibrary (“05mod.dll”);

if(hMod)

{

MYPROC pProc = (MYPROC) GetProcAddress(hMod, “InitModule”);

if(pProc)

{

CallProc(pProc);
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}

else

{

wprintf(L”Failed to get proc address of InitModule”);

}

}

else

{

wprintf(L”Failed to load 05mod.dll.”);

}

return 0;

}

VOID CallProc(MYPROC pProc)

{

pProc(1,2);

}

The source code and binary for Listing 5.17 can be found in the following folders:

Source code: C:\AWD\Chapter5\CallConv3\Client and
C:\AWD\Chapter5\CallConv3\Mod

Binary: C:\AWDBIN\WinXP.x86.chk\05CallConv3.exe and C:\AWD-
BIN\WinXP.x86.chk\05mod.dll

As you can see, the code is pretty straightforward. First, it loads the DLL using the
LoadLibrary API. If successful, it attempts to get the address of the InitModule
function defined in the DLL and then calls a local helper function (CallProc) that
simply calls the InitModule function. Without looking at the implementation of
InitModule, all we are going to say is that it simply prints out the following string
when called:

In InitModule

Nothing too complicated going on with this code, is there? If you run this simple
application, you might be surprised at the results:

C:\AWDBIN\WinXP.x86.chk\05CallConv3.exe

In InitModule

In InitModule

Listing 5.17 (continued)
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The string is printed out twice. Not only that, but we also seem to be crashing, as the
dreaded Dr. Watson UI is displayed. Let’s run the application under the debugger
and see where in the application the crash occurs:

0:000> g

ModLoad: 5cb70000 5cb96000   C:\WINDOWS\system32\ShimEng.dll

ModLoad: 00400000 00403000   C:\AWDBIN\WinXP.x86.chk\05mod.dll

In InitModule

In InitModule

(8bc.1bc): Unknown exception - code c0000096 (first chance)

(8bc.1bc): Unknown exception - code c0000096 (!!! second chance !!!)

eax=00000001 ebx=7ffd6800 ecx=77c422b0 edx=77c61b78 esi=7c9118f1 edi=00011970

eip=0007ffc5 esp=0007ff50 ebp=004010b0 iopl=0         nv up ei pl nz na po cy

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000203

0007ffc5 6f              outs    dx,dword ptr [esi]   ds:0023:7c9118f1=3359066a

0:000> kb

ChildEBP RetAddr  Args to Child

WARNING: Frame IP not in any known module. Following frames may be wrong.

0007ff7c 7c9118f1 7ffdf000 e1389408 00000000 0x7ffc5

00011970 00730069 00610075 0020006c 00740053 ntdll!RtlDeleteCriticalSection+0x72

00011970 00000000 00610075 0020006c 00740053 0x730069

Interestingly, the stack shown for the access violation seems to show incorrect frames.
This looks strikingly similar to our previous debug session (asynchronous operations
and stack pointers). As always, when we are faced with a potential stack corruption,
we begin by looking at the state to see if we can extrapolate any useful information.
We begin by convincing ourselves that the address in the top frame does not fall into
any of the address ranges of our loaded modules:

0:000> lm

start    end        module name

00400000 00403000   05mod       (deferred)

01000000 01003000   05CallConv3 (deferred)

77c10000 77c68000   msvcrt      (deferred)

7c800000 7c8f4000   kernel32    (deferred)

7c900000 7c9b0000   ntdll       (pdb symbols)

The address 0x7ffc5 does not fall within any of the ranges displayed by the lm com-
mand. Next, knowing that the debugger is giving us incorrect stack results, we try to
reconstruct a historic picture of the calling sequence by analyzing the stack ourselves.
Listing 5.18 shows the process by which we dump out the stack contents and try to
resolve any address that falls within our module.
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Listing 5.18

0:000> dd esp esp+100

0007ff50  00034cb0 00036c88 01001050 01001054

0007ff60  0007ff94 0007ff98 0007ffa0 00000000

0007ff70  0007ff9c 01001058 0100105c 00011970

0007ff80  7c9118f1 7ffdf000 e1389408 00000000

0007ff90  c0000096 00000001 00034cb0 00000000

0007ffa0  00036c88 00000000 0007ff7c 0007fb7c

0007ffb0  0007ffe0 01001486 01001118 00000000

0007ffc0  0007fff0 7c816fd7 00011970 7c9118f1

0007ffd0  7ffdf000 c0000096 0007ffc8 0007fb7c

0007ffe0  ffffffff 7c839aa8 7c816fe0 00000000

0007fff0  00000000 00000000 01001278 00000000

00080000  78746341 00000020 00000001 00002498

00080010  000000c4 00000000 00000020 00000000

00080020  00000014 00000001 00000006 00000034

00080030  00000114 00000001 00000000 00000000

00080040  00000000 00000000 00000000 00000002

00080050  00000000

0:000> ln 01001050

(01001050)   05callconv3!__xc_a   |  (01001054)   05callconv3!__xc_z

Exact matches:

05callconv3!__xc_a = <function> *[1]

05callconv3!__xc_a = <function> *[]

0:000> ln 01001054

(01001054)   05callconv3!__xc_z   |  (01001058)   05callconv3!__xi_a

Exact matches:

05callconv3!__xc_z = <function> *[1]

05callconv3!__xc_z = <function> *[]

0:000> ln 01001058

(01001058)   05callconv3!__xi_a   |  (0100105c)   05callconv3!__xi_z

Exact matches:

05callconv3!__xi_a = <function> *[1]

05callconv3!__xi_a = <function> *[]

0:000> ln 0100105c

(0100105c)   05callconv3!__xi_z   |  (0100107c)   05callconv3!`string’

Exact matches:

05callconv3!__xi_z = <function> *[1]

05callconv3!__xi_z = <function> *[]

0:000> ln 01001486

(01001486)   05callconv3!except_handler3   |  (01001492)   05callconv3!controlfp

Exact matches:

0:000> ln 01001118

(01001110)   05callconv3!`string’+0x8   |  (01001128)   05callconv3!_load_config_used

0:000> ln 01001278

(01001278)   05callconv3!wmainCRTStartup   |  (010013fe)   05callconv3!XcptFilter

Exact matches:

05callconv3!wmainCRTStartup (void)
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As you can see from Listing 5.18, the addresses that fall within our module’s range do
not resolve to anything that seems correct (with the exception of 01001278). We
can’t even see calls to the InitModule function that we know we’ve called. It is often
useful to go back to the basics and restate what we are currently seeing: We are see-
ing a crash because of a badly corrupted stack with no capability to construct a his-
torical perspective on what call sequences were made. If we stop to think about it,
there is still some more room for investigation. What is the reason for the crash?
Yes—we have a badly corrupted stack; but what was the instruction that caused us to
crash, and can we get anything useful from that? Let’s unassemble the eip register
and see what we can find:

0:000> u eip

0007ffc5 6f               outs    dx,dword ptr [esi]

0007ffc6 817c70190100f118 cmp     dword ptr [eax+esi*2+19h],18F10001h

0007ffce 91               xchg    eax,ecx

0007ffcf 7c00             jl      0007ffd1

0007ffd1 50               push    eax

0007ffd2 fd               std

0007ffd3 7f96             jg      0007ff6b

0007ffd5 0000             add     byte ptr [eax],al

Two observations can be made from the unassembled code. First, the sequence of
instructions certainly does not look like they make much sense. From that observa-
tion, we can draw up a new theory: We are executing code in a seemingly random
piece of memory. To convince ourselves that the theory is plausible, we look to the
second observation from the unassembled code, namely the value of the instruction
pointer itself (0007ffc5). If we dump out the registers at the point of the crash, we
see the following:

0:000> r

eax=00000001 ebx=7ffdc800 ecx=77c422b0 edx=77c61b78 esi=7c9118f1 edi=00011970

eip=0007ffc5 esp=0007ff50 ebp=004010b0 iopl=0         ov up ei ng nz na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000a82

0007ffc5 6f              outs    dx,dword ptr [esi]   ds:0023:7c9118f1=3359066a

The stack pointer and the instruction pointer seem to be awfully close to each other.
This observation seems to imply that the instruction pointer somehow ended up with
a stack location. Unless our intentions were to execute code located on the stack
(which, suffice to say, is almost never the case), we have gotten one step closer. The
next big question is this: How did we end up with the instruction pointer pointing to
a stack location? Remember that when a function returns, we pop the stack and set
the instruction pointer to the value popped off. This is normally the return address,
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but in our case (because of a corrupted stack), it’s some other value. Either the return
address was overwritten, or somehow we very incorrectly popped off a value from a
different stack location. Because any number of items can be pushed onto the stack
(parameters, local variables, return addresses, frame pointers, and so on), it will be
nearly impossible to say which piece of this stack content was mistaken for the return
address. At this point, our best approach is to rerun the application under the debug-
ger and pay close attention to any function calls that are made (starting from the
wmain function). When any called function returns, we check to see what the next
value is on the stack and see if we can correlate it to the bad instruction pointer we
currently have (0007ffc5). Listing 5.17 shows that the application makes the fol-
lowing function calls:

■ LoadLibrary
■ GetProcAddress
■ CallProc

In order to avoid wasting valuable debugging time, we focus in on the CallProc func-
tion call, since we know by now that this function actually makes the call to the
InitModule function located in 05mod.dll. We set a breakpoint at the CallProc
function and step our way to the InitModule call (eip should be pointing to
01001269). Next, we trace into the function call and continue stepping until we reach
the ret instruction. This is the point where we need to start looking closer. When the
ret instruction executes, we know that the return address will be popped off the stack
and the instruction pointer will be set to that value. Dumping out the contents of the
stack and unassembling the supposed return address, we see the following:

0:000> dd esp

0007ff24  0100126c 00000001 00000002 0007ff44

0007ff34  0100122d 004010b0 004010b0 00400000

0007ff44  0007ffc0 010013a3 00000001 00034cb0

0007ff54  00036c88 01001050 01001054 0007ff94

0007ff64  0007ff98 0007ffa0 00000000 0007ff9c

0007ff74  01001058 0100105c 00191fc0 00191ffc

0007ff84  7ffd6000 e466e840 00000000 00000000

0007ff94  00000001 00034cb0 00000000 00036c88

0:000> u 0100126c

05callconv3!CallProc+0xc:

0100126c 83c408          add     esp,8

0100126f 5d              pop     ebp

01001270 c20400          ret     4

01001273 cc              int     3
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01001274 cc              int     3

01001275 cc              int     3

01001276 cc              int     3

01001277 cc              int     3

The information we just got makes perfect sense. The return address on the stack
does, in fact, point to the instruction right after the call to CallProc. Continuing the
stepping of the code, the next ret instruction we encounter is that of the CallProc
function returning to wmain:

0:000> p

eax=00000001 ebx=7ffd6000 ecx=77c422b0 edx=77c61b78 esi=00191ffc edi=00191fc0

eip=0100126c esp=0007ff30 ebp=0007ff30 iopl=0         nv up ei pl nz ac po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000212

05callconv3!CallProc+0xc:

0100126c 83c408          add     esp,8

0:000> p

eax=00000001 ebx=7ffd6000 ecx=77c422b0 edx=77c61b78 esi=00191ffc edi=00191fc0

eip=0100126f esp=0007ff38 ebp=0007ff30 iopl=0         nv up ei pl nz na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000202

05callconv3!CallProc+0xf:

0100126f 5d              pop     ebp

0:000> p

eax=00000001 ebx=7ffd6000 ecx=77c422b0 edx=77c61b78 esi=00191ffc edi=00191fc0

eip=01001270 esp=0007ff3c ebp=004010b0 iopl=0         nv up ei pl nz na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000202

05callconv3!CallProc+0x10:

01001270 c20400          ret     4

We use the same technique to verify that the return address we are about to pop from
the stack is the correct one:

0:000> dd esp

0007ff3c  004010b0 00400000 0007ffc0 010013a3

0007ff4c  00000001 00034cb0 00036c88 01001050

0007ff5c  01001054 0007ff94 0007ff98 0007ffa0

0007ff6c  00000000 0007ff9c 01001058 0100105c

0007ff7c  00191fc0 00191ffc 7ffd6000 e466e840

0007ff8c  00000000 00000000 00000001 00034cb0

0007ff9c  00000000 00036c88 00000000 0007ff7c

0007ffac  89e6904c 0007ffe0 01001486 01001118

0:000> u 004010b0

05mod!InitModule:

004010b0 8bff            mov     edi,edi

004010b2 55              push    ebp
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004010b3 8bec           mov     ebp,esp

004010b5 682c104000     push    offset 05mod!`string’ (0040102c)

004010ba ff1500104000   call    dword ptr [05mod!_imp__wprintf (00401000)]

004010c0 83c404         add     esp,4

004010c3 b801000000     mov     eax,1

004010c8 5d             pop     ebp

This time, it seems blatantly wrong. We are supposed to return to wmain, but instead
the return address is to the start of the InitModule function. This certainly explains
why we are seeing InitModule printed twice and perhaps why we are even seeing
the crash. We now proceed by stepping into the InitModule function until we once
again reach the ret instruction. At that point, we dump out the contents of the stack
to see where it decides to return to this time:

0:000> dd esp

0007ff44  0007ffc0 010013a3 00000001 00034cb0

0007ff54  00036c88 01001050 01001054 0007ff94

0007ff64  0007ff98 0007ffa0 00000000 0007ff9c

0007ff74  01001058 0100105c 00191fc0 00191ffc

0007ff84  7ffd6000 e466e840 00000000 00000000

0007ff94  00000001 00034cb0 00000000 00036c88

0007ffa4  00000000 0007ff7c 89e6904c 0007ffe0

0007ffb4  01001486 01001118 00000000 0007fff0

0:000> u 0007ffc0

0007ffc0 f0ff07           lock inc dword ptr [edi]

0007ffc3 00d7             add      bh,dl

0007ffc5 6f               outs     dx,dword ptr [esi]

0007ffc6 817cc01f1900fc1f cmp      dword ptr [eax+eax*8+1Fh],1FFC0019h

0007ffce 1900             sbb      dword ptr [eax],eax

0007ffd0 0060fd           add      byte ptr [eax-3],ah

0007ffd3 7ffd             jg       0007ffd2

0007ffd5 3d5480c8ff       cmp      eax,0FFC88054h

The instruction we will be returning to this time is 0007ffc0, which matches up
exactly with what we were looking for; and if we step over the ret instruction, we will
be at the point where a crash is about to occur. 

While we were tracing through this program, the first problem surfaced when the
CallProc function was about to return. Instead of returning to the originating
wmain function, it returned to the start of the InitModule function. Let’s take a look
at the unassembled CallProc function and try to figure out how the stack should
look throughout the execution of the function:

0:000> u CallProc

05callconv3!CallProc:
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01001260 8bff            mov     edi,edi

01001262 55              push    ebp

01001263 8bec            mov     ebp,esp

01001265 6a02            push    2

01001267 6a01            push    1

01001269 ff5508          call    dword ptr [ebp+8]

0100126c 83c408          add     esp,8

0100126f 5d              pop     ebp

0:000> u

05callconv3!CallProc+0x10:

01001270 c20400          ret     4

Figure 5.10 shows how we expect the stack to look when the instruction pointer is
about to execute the call instruction to InitModule.
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Now, the InitModule function takes two parameters (both of type DWORD), and
when the function returns, we would expect the stack pointer to be set to the stack
location prior to the parameter list:
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0:000> p

In InitModule

eax=00000001 ebx=7ffd5000 ecx=77c422b0 edx=77c61b78 esi=00191ffc edi=00191fc0

eip=0100126c esp=0007ff30 ebp=0007ff30 iopl=0         nv up ei pl nz ac po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000212

05callconv3!CallProc+0xc:

0100126c 83c408          add     esp,8

0:000> dd esp

0007ff30  0007ff44 0100122d 004010b0 004010b0

0007ff40  00400000 0007ffc0 010013a3 00000001

0007ff50  00034cb0 00036c88 01001050 01001054

0007ff60  0007ff94 0007ff98 0007ffa0 00000000

0007ff70  0007ff9c 01001058 0100105c 00191fc0

0007ff80  00191ffc 7ffd5000 e46afdd8 00000000

0007ff90  00000000 00000001 00034cb0 00000000

0007ffa0  00036c88 00000000 0007ff7c 89e6a074

After the function returns, esp is reset back to the stack location prior to the param-
eter area, which implies that the called function (InitModule) properly cleaned up
the stack (that is, reset the stack pointer). The instruction following the call instruc-
tion is

add     esp,8

This instruction seems to be adding 8 bytes from the stack pointer, resulting in the
stack pointer essentially skipping the saved ebp and return address values that were
pushed onto the stack. To be able to return to the previous frame, we need the return
address, right? Absolutely! In fact, the addition of 8 bytes to the stack pointer seems
to be the root cause of our problem. After we reach the epilogue code for CallProc,
we end up popping the incorrect value for ebp (which should be the saved ebp
value), as well as returning to the incorrect address. The incorrect address, in this
case, is the address of the InitModule function. The reason for picking up that par-
ticular address is that adding 8 bytes to the stack pointer puts us at the location where
the parameter to CallProc was pushed onto the stack. This also happens to be the
function pointer to InitModule. The last piece of the puzzle is trying to figure out
why the stack pointer is being mismanaged in this way. We already know that the
CallProc function tries to clean up the stack. (That is, it skips the parameters passed
into the InitModule function.) Cleaning up the stack after function calls is essential
to maintaining stack integrity. However, we also saw that after the call returned from
InitModule, but before the addition of 8 bytes to the stack pointer, the stack point-
er already seemed correct. (That is, the stack was already cleaned up.) This seems to
imply that the InitModule function already cleaned up the stack at the point of
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return. (If you unassemble the InitModule function, you can see that it does so.) It
should come as no surprise that the root cause of the problem is a mismatch in call-
ing conventions. Since InitModule is cleaning up the stack prior to returning, it was
declared with the __stdcall calling convention:

int __stdcall InitModule(DWORD dwOne, DWORD dwTwo) 

whereas the client code declared a function pointer to the InitModule with the fol-
lowing signature:

typedef int (__cdecl *MYPROC)(DWORD dwOne, DWORD dwTwo);

The mismatch in calling conventions caused our stack to become badly corrupted.

NX-Enabled Systems

In the previous debug session, we showed how a calling convention mismatch could cause
the application to execute code on the stack. The net result was that of a strange call chain
and, ultimately, a crash. The problem can be generalized to executing code in any area that
is reserved for data only. Malicious software writers often use this capability by injecting
code into memory reserved for data and simply jumping to the code and executing.
Processor and software manufacturers recognized the need to protect against this problem,
and the net result was that of the NX (No eXecute)-enabled processor. The basic idea is to
mark areas with the NX bit, which indicates that only data can be stored in that memory. If
code is ever executed from this location, an immediate fault will occur. Windows enabled
support for NX-enabled systems starting with Windows XP SP2 and Windows Server 2003
SP1. On systems running with NX-enabled hardware and a Windows version that supports
NX, the result of executing code from data-only memory is an access violation.

Avoidance Strategies
As you have seen, the effects of stack corruptions (much like other types of memory
corruptions) do not necessarily surface right at the point of the corruption. Instead, a
stack corruption might go unnoticed for quite some time before an actual crash
occurs. As we mentioned earlier in the chapter, the easiest way to track down a cor-
ruption is when we can trap the corruption at the point it occurs. Several options are
available to trap stack corruptions early in the development process. The best line of
defense lies in the compiler itself, as it has the capability to inject stack integrity
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checks into your code. To enable these runtime checks, your application must be built
with the correct set of options.  

The first compiler option we discuss is the /GS switch. While stack buffer over-
run attacks have been around for quite some time now, they have gained in popular-
ity in recent years. A large number of viruses make use of this attack angle to wreak
havoc on computers. For this reason, the Microsoft compiler team introduced a
mechanism that protects the stack and serves as a safety net against buffer overrun
attacks. 

As you saw earlier, the basic problem of stack buffer overruns is the fact that an
attacker is able to overwrite the return address of a frame and resume execution at a
location of his own choosing. If we were somehow able to protect the return address
from being overwritten, the vulnerability could never be exploited. The introduction
of the /GS flag takes a stab at this protection by pushing a cookie onto the stack before
the return address, and when the function returns, checks to see if the cookie is
intact. If it is, the return address has not been tampered with and execution contin-
ues. If it is not the same, this means that there is a possibility that the return address
has been tampered with and the application terminates. In order to get this added
protection, the following changes must be made in the build environment:

■ Sources 
The sources file must specify the /GS compiler flag by using the following:
USER_C_FLAGS=/GS

■ Build window

The BUFFER_OVERFLOW_CHECKS environment variable must be 1.
If we look at the application used in the buffer overrun scenario (05overrun.exe), we
can see that the function prologue for HelperFunction has some added steps in it:

0:000> u 05overrun!helperfunction

05overrun!HelperFunction:

01001230 8bff            mov     edi,edi

01001232 55              push    ebp

01001233 8bec            mov     ebp,esp

01001235 83ec40          sub     esp,40h

01001238 a118200001      mov     eax,dword ptr [05overrun!__security_cookie

(01002018)]

0100123d 8945fc          mov     dword ptr [ebp-4],eax

01001240 8b4508          mov     eax,dword ptr [ebp+8]

01001243 50              push    eax
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The two highlighted mov instructions show how the function takes the unique cook-
ie and moves it onto the stack at the location before the return address. Prior to
returning, in the function prologue, the stack location containing the cookie (ebp-
0x4) is checked against the original cookie:

0:000> u helperfunction+19

05overrun!HelperFunction+0x19:

01001249 1560100001      adc     eax,offset 05overrun!_imp__wcscpy (01001060)

0100124e 83c408          add     esp,8

01001251 8b4dfc          mov     ecx,dword ptr [ebp-4]

01001254 e87e000000      call    05overrun!__security_check_cookie (010012d7)

01001259 8be5            mov     esp,ebp

0100125b 5d              pop     ebp

0100125c c20400          ret     4

The __security_check_cookie call checks to see if the cookie is intact; if it’s not,
the call terminates the process. By default, if the cookie has been overwritten, the
handler displays a dialog stating that a buffer overrun has occurred. If you do not want
a dialog displayed when the check for the cookie fails, it is possible to provide your
own handler. 

The cookie is generated by the CRT (C runtime) during startup and is different
each time the program is run to make sure that its value is not known to attackers. A
few caveats exist that you need to be aware of. If applications do not use the CRT, an
explicit call must be made to __security_init_cookie during startup to ensure
that the cookie has been properly initialized. Also, applications that make explicit calls
to initialize the CRT might inadvertently reinitialize that cookie, which will cause the
security check to fail since the cookie has changed. It is also important to note that
this compiler option is meant to be used with released code. 

It is critical to note that the /GS safety net should be viewed as just that: a safety
net. Under no circumstances should you rely on this mechanism to fully protect you
against buffer overrun attacks.

The next compiler switch of importance is the /RTC switch. RTC stands for
RunTimeChecks. RTC provides a number of suboptions. 

■ /RTCs: Stackframe runtime error checking
This option helps protect against a number of different stack corruptions:

■ Each time a function is called, it initializes all local variables to
nonzero values to prevent them from retaining old values from prior
function calls. 
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■ It verifies the stack pointer (esp register) to ensure that stack cor-
ruptions caused by calling convention mismatches do not occur.

■ Protects against buffer overruns and underruns of local variables.
■ /RTCc: Data loss protection

Another common mistake made by developers is to make casts between data
types that result in a loss of data. For example, casting a ULONG value to a BYTE
value results in data being potentially lost. This compiler option displays an
error dialog anytime a cast results in a data loss.

■ /RTCu: Uninitialized variable protection
This compiler option displays an error whenever a variable is accessed that has
yet to be initialized. Uninitializing variables is a common mistake made while
developing and can cause your variables to take on values left over from prior
calls. These values can cause a lot of grief during execution. 

It is important to note that the /RTC compiler options are designed to work with
debug builds and, as such, have no impact on released builds. The /RTC switch is
meant solely to test your code during development.

While the compiler options provide an excellent mechanism for finding stack 
corruption-related errors during development, they do not provide the same level of
detection as other tools. Other viable (albeit not free) options include Rational’s
Purify or NuMega’s BoundsChecker. 

Summary

As you have seen throughout this chapter, an application suffering from stack cor-
ruption can cause serious instability issues. These issues typically surface in the form
of random crashes that ultimately end up leaving users frustrated and fed up. In the
worst-case scenario, stack corruptions can even lead to severe security holes that can
compromise the user’s computer and leave him vulnerable to a number of different
attacks. It is crucial for any serious developer to be aware of the causes of stack cor-
ruption and ways to analyze it. Ultimately, the developer should employ avoidance
techniques to ensure the integrity of the stack and future success of his software. This
chapter walked you through a detailed explanation of the anatomy of the stack. It also
walked you through some of the most common forms of stack corruptions, explained
how to detect the corruption, and covered how to analyze it and figure out the root
cause. Finally, you learned how powerful compiler techniques can help you trap stack
corruptions during development and even aid in preventing some forms of stack cor-
ruption in released software.
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C H A P T E R  6

MEMORY CORRUPTION PART II—
HEAPS

In Chapter 5, “Memory Corruption Part I—Stacks,” we discussed how stack-based
buffer overflows can cause serious security problems for software and how stack-
based buffer overflows have been the primary attack angle for malicious software
authors. In recent years, however, another form of buffer overflow attack has gained
in popularity. Rather than relying on the stack to exploit buffer overflows, the
Windows heap manager is now being targeted. Even though heap-based security
attacks are much harder to exploit than their stack-based counterparts, their popu-
larity keeps growing at a rapid pace. In addition to potential security vulnerabilities,
this chapter discusses a myriad of stability issues that can surface in an application
when the heap is used in a nonconventional fashion. 

Although the stack and the heap are managed very differently in Windows, the
process by which we analyze stack- and heap-related problems is the same. As such,
throughout this chapter, we employ the same troubleshooting process that we defined
in Chapter 5 (refer to Figure 5.1).

What Is a Heap?

A heap is a form of memory manager that an application can use when it needs to allo-
cate and free memory dynamically. Common situations that call for the use of a heap
are when the size of the memory needed is not known ahead of time and the size of
the memory is too large to neatly fit on the stack (automatic memory). Even though
the heap is the most common facility to accommodate dynamic memory allocations,
there are a number of other ways for applications to request memory from Windows.
Memory can be requested from the C runtime, the virtual memory manager, and
even from other forms of private memory managers. Although the different memory
managers can be treated as individual entities, internally, they are tightly connected.
Figure 6.1 shows a simplified view of Windows-supported memory managers and
their dependencies.
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Figure 6.1

As illustrated in Figure 6.1, most of the high-level memory managers make use of the
Windows heap manager, which in turn uses the virtual memory manager. Although
high-level memory managers (and applications for that matter) are not restricted to
using the heap manager, they most typically do, as it provides a solid foundation for
other private memory managers to build on. Because of its popularity, the primary
focal point in this chapter is the Windows heap manager.

When a process starts, the heap manager automatically creates a new heap called
the default process heap. Although some processes use the default process heap, a
large number rely on the CRT heap (using new/delete and malloc/free family of APIs)
for all their memory needs. Some processes, however, create additional heaps (via the
HeapCreate API) to isolate different components running in the process. It is not
uncommon for even the simplest of applications to have four or more active heaps at
any given time. 

The Windows heap manager can be further broken down as shown in Figure 6.2. 

Application

[NTDLL] Heap Manager

Virtual Memory Manager

C Runtime
Heap

Default
Process

Heap

Application
Specific
Heaps



261What Is a Heap?

Figure 6.2

Front End Allocator
The front end allocator is an abstract optimization layer for the back end allocator. By
allowing different types of front end allocators, applications with different memory
needs can choose the appropriate allocator. For example, applications that expect
small bursts of allocations might prefer to use the low fragmentation front end allo-
cator to avoid fragmentation. Two different front end allocators are available in
Windows:

■ Look aside list (LAL) front end allocator
■ Low fragmentation (LF) front end allocator

With the exception of Windows Vista, all Windows versions use a LAL front end allo-
cator by default. In Windows Vista, a design decision was made to switch over to the
LF front end allocator by default. The look aside list is nothing more than a table of
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128 singly linked lists. Each singly linked list in the table contains free heap blocks of
a specific size starting at 16 bytes. The size of each heap block includes 8 bytes of
heap block metadata used to manage the block. For example, if an allocation request
of 24 bytes arrived at the front end allocator, the front end allocator would look for
free blocks of size 32 bytes (24 user-requested bytes + 8 bytes of metadata). Because
all heap blocks require 8 bytes of metadata, the smallest sized block that can be
returned to the caller is 16 bytes; hence, the front end allocator does not use table
index 1, which corresponds to free blocks of size 8 bytes.

Subsequently, each index represents free heap blocks, where the size of the heap
block is the size of the previous index plus 8. The last index (127) contains free heap
blocks of size 1024 bytes. When an application frees a block of memory, the heap man-
ager marks the allocation as free and puts the allocation on the front end allocator’s look
aside list (in the appropriate index). The next time a block of memory of that size is
requested, the front end allocator checks to see if a block of memory of the requested
size is available and if so, returns the heap block to the user. It goes without saying that
satisfying allocations via the look aside list is by far the fastest way to allocate memory. 

Let’s take a look at a hypothetical example. Imagine that the state of the LAL is
as depicted in Figure 6.3. 

Look Aside Table

0

1

2

3

…

127

16 16

32 32

16

Figure 6.3

The LAL in Figure 6.3 indicates that there are 3 heap blocks of size 16 (out of which
8 bytes is available to the caller) available at index 1 and two blocks of size 32 (out of
which 24 bytes are available to the caller) at index 3. When we try to allocate a block
of size 24, the heap manager knows to look at index 3 by adding 8 to the requested
block size (accounting for the size of the metadata) and dividing by 8 and subtracting
1 (zero-based table). The linked list positioned at index 3 contains two available heap
blocks. The heap manager simply removes the first one in the list and returns the allo-
cation to the caller.  
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If we try allocating a block of size 16, the heap manager would notice that the
index corresponding to size 16 (16+8/8–1=2) is an empty list, and hence the allocat-
ing cannot be satisfied from the LAL. The allocation request now continues its trav-
els and is forwarded to the back end allocator for further processing.

Back End Allocator
If the front end allocator is unable to satisfy an allocation request, the request makes
its way to the back end allocator. Similar to the front end allocator, it contains a table
of lists commonly referred to as the free lists. The free list’s sole responsibility is to
keep track of all the free heap blocks available in a particular heap. There are 128 free
lists, where each list contains free heap blocks of a specific size. As you can see from
Figure 6.2, the size associated with free list[2] is 16, free list[3] is 24, and so on. Free
list[1] is unused because the minimum heap block size is 16 (8 bytes of metadata and
8 user-accessible bytes). Each size associated with a free list increases by 8 bytes from
the prior free list. Allocations whose size is greater than the maximum free list’s allo-
cation size go into index 0 of the free lists. Free list[0] essentially contains allocations
of sizes greater than 1016 bytes and less than the virtual allocation limit (discussed
later). The free heap blocks in free list[0] are also sorted by size (in ascending order)
to achieve maximum efficiency. Figure 6.4 shows a hypothetical example of a free list.
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If an allocation request of size 8 arrives at the back end allocator, the heap manager
first consults the free lists. In order to maximize efficiency when looking for free heap
blocks, the heap manager keeps a free list bitmap. The bitmap consists of 128 bits,
where each bit represents an index into the free list table. If the bit is set, the free list
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corresponding to the index of the free list bitmap contains free heap blocks.
Conversely, if the bit is not set, the free list at that index is empty. Figure 6.5 shows
the free list bitmap for the free lists in Figure 6.4.

1      0      1      0      0      0      …

0      1      2      3      4      5      …

Figure 6.5

The heap manager maps an allocation request of a given size to a free list bitmap
index by adding 8 bytes to the size (metadata) and dividing by 8. Consider an alloca-
tion request of size 8 bytes. The heap manager knows that the free list bitmap index
is 2 [(8+8)/8]. From Figure 6.5, we can see that index 2 of the free list bitmap is set,
which indicates that the free list located at index 2 in the free lists table contains free
heap blocks. The free block is then removed from the free list and returned to the
caller. If the removal of a free heap block results in that free list becoming empty, the
heap manager also clears the free list bitmap at the specific index. If the heap man-
ager is unable to find a free heap block of requested size, it employs a technique
known as block splitting. Block splitting refers to the heap manager’s capability to
take a larger than requested free heap block and split it in half to satisfy a smaller allo-
cation request. For example, if an allocation request arrives for a block of size 8 (total
block size of 16), the free list bitmap is consulted first. The index representing blocks
of size 16 indicates that no free blocks are available. Next, the heap manager finds
that free blocks of size 32 are available. The heap manager now removes a block of
size 32 and splits it in half, which yields two blocks of size 16 each. One of the blocks
is put into a free list representing blocks of size 16, and the other block is returned to
the caller. Additionally, the free list bitmap is updated to indicate that index 2 now
contains free block entries of size 16. The result of splitting a larger free allocation
into two smaller allocations is shown in Figure 6.6.

As mentioned earlier, the free list at index 0 can contain free heap blocks of sizes
ranging from 1016 up to 0x7FFF0 (524272) bytes. To maximize free block lookup
efficiency, the heap manager stores the free blocks in sorted order (ascending). All
allocations of sizes greater than 0x7FFF0 go on what is known as the virtual alloca-
tion list. When a large allocation occurs, the heap manager makes an explicit alloca-
tion request from the virtual memory manager and keeps these allocations on the
virtual allocation list. 
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Figure 6.6

So far, the discussion has revolved around how the heap manager organizes
blocks of memory it has at its disposal. One question remains unanswered: Where
does the heap manager get the memory from? Fundamentally, the heap manager
uses the Windows virtual memory manager to allocate memory in large chunks. The
memory is then massaged into different sized blocks to accommodate the allocation
requests of the application. When the virtual memory chunks are exhausted, the heap
manager allocates yet another large chunk of virtual memory, and the process con-
tinues. The chunks that the heap manager requests from the virtual memory manag-
er are known as heap segments. When a heap segment is first created, the underlying
virtual memory is mostly reserved, with only a small portion being committed.
Whenever the heap manager runs out of committed space in the heap segment, it
explicitly commits more memory and divides the newly committed space into blocks
as more and more allocations are requested. Figure 6.7 illustrates the basic layout of
a heap segment.
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Figure 6.7

The segment illustrated in Figure 6.7 contains two allocations (and associated meta-
data) followed by a range of uncommitted memory. If another allocation request
arrives, and no available free block is present in the free lists, the heap manager would
commit additional memory from the uncommitted range, create a new heap block
within the committed memory range, and return the block to the user. Once a seg-
ment runs out of uncommitted space, the heap manager creates a new segment. The
size of the new segment is determined by doubling the size of the previous segment.
If memory is scarce and cannot accommodate the new segment, the heap manager
tries to reduce the size by half. If that fails, the size is halved again until it either suc-
ceeds or reaches a minimum segment size threshold—in which case, an error is
returned to the caller. The maximum number of segments that can be active within a
heap is 64. Once the new segment is created, the heap manager adds it to a list that
keeps track of all segments being used in the heap. Does the heap manager ever free
memory associated with a segment? The answer is that the heap manager decommits
memory on a per-needed basis, but it never releases it. (That is, the memory stays
reserved.)

As Figure 6.7 depicts, each heap block in a given segment has metadata associat-
ed with it. The metadata is used by the heap manager to effectively manage the heap
blocks within a segment. The content of the metadata is dependent on the status of
the heap block. For example, if the heap block is used by the application, the status
of the block is considered busy. Conversely, if the heap block is not in use (that is, has
been freed by the application), the status of the block is considered free. Figure 6.8
shows how the metadata is structured in both situations.
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Figure 6.8

It is important to note that a heap block might be considered busy in the eyes of the
back end allocator but still not being used by the application. The reason behind this
is that any heap blocks that go on the front end allocator’s look aside list still have their
status set as busy. 

The two size fields represent the size of the current block and the size of the pre-
vious block (metadata inclusive). Given a pointer to a heap block, you can very easily
use the two size fields to walk the heap segment forward and backward. Additionally,
for free blocks, having the block size as part of the metadata enables the heap man-
ager to very quickly index the correct free list to add the block to. The post-allocation
metadata is optional and is typically used by the debug heap for additional book-
keeping information (see “Attaching Versus Running” under the debugger sidebar).

The flags field indicates the status of the heap block. The most important values
of the flags field are shown in Table 6.1.

Table 6.1

Value Description

0x01 Indicates that the allocation is being used by the application or the heap manager
0x04 Indicates whether the heap block has a fill pattern associated with it
0x08 Indicates that the heap block was allocated directly from the virtual memory

manager
0x10 Indicates that this is the last heap block prior to an uncommitted range
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You have already seen what happens when a heap block transitions from being busy to
free. However, one more technique that the heap manager employs needs to be dis-
cussed. The technique is referred to as heap coalescing. Fundamentally, heap coalesc-
ing is a mechanism that merges adjacent free blocks into one single large block to avoid
memory fragmentation problems. Figure 6.9 illustrates how a heap coalesce functions.

Prior to freeing the allocation of size 32

Allocation
Size: 32

Allocation
Size: 16

Allocation
Size: 16

After freeing the allocation of size 32

Allocation
Size: 64

Figure 6.9

When the heap manager is requested to free the heap block of size 32, it first checks
to see if any adjacent blocks are also free. In Figure 6.9, two blocks of size 16 sur-
round the block being freed. Rather than handing the block of size 32 to the free lists,
the heap manager merges all three blocks into one (of size 64) and updates the free
lists to indicate that a new block of size 64 is now available. Care is also taken by the
heap manager to remove the prior two blocks (of size 16) from the free lists since they
are no longer available. It should go without saying that the act of coalescing free
blocks is an expensive operation. So why does the heap manager even bother? The
primary reason behind coalescing heap blocks is to avoid what is known as heap frag-
mentation. Imagine that your application just had a burst of allocations all with a very
small size (16 bytes). Furthermore, let’s say that there were enough of these small
allocations to fill up an entire segment. After the allocation burst is completed, the
application frees all the allocations. The net result is that you have one heap segment
full of available allocations of size 16 bytes. Next, your application attempts to allo-
cate a block of memory of size 48 bytes. The heap manager now tries to satisfy the
allocation request from the segment, fails because the free block sizes are too small,
and is forced to create a new heap segment. Needless to say, this is extremely poor
use of memory. Even though we had an entire segment of free memory, the heap
manager was forced to create a new segment to satisfy our slightly larger allocation
request. Heap coalescing makes a best attempt at ensuring that situations such as this
are kept at a minimum by combining small free blocks into larger blocks.
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This concludes our discussion of the internal workings of the heap manager.
Before we move on and take a practical look the heap, let’s summarize what you have
learned. 

When allocating a block of memory

1. The heap manager first consults the front end allocator’s LAL to see if a free
block of memory is available; if it is, the heap manager returns it to the caller.
Otherwise, step 2 is necessary.

2. The back end allocator’s free lists are consulted:
a. If an exact size match is found, the flags are updated to indicate that

the block is busy; the block is then removed from the free list and
returned to the caller.

b. If an exact size match cannot be found, the heap manager checks to
see if a larger block can be split into two smaller blocks that satisfy
the requested allocation size. If it can, the block is split. One block
has the flags updated to a busy state and is returned to the caller.
The other block has its flags set to a free state and is added to the
free lists. The original block is also removed from the free list. 

3. If the free lists cannot satisfy the allocation request, the heap manager com-
mits more memory from the heap segment, creates a new block in the com-
mitted range (flags set to busy state), and returns the block to the caller. 

When freeing a block of memory

1. The front end allocator is consulted first to see if it can handle the free block.
If the free block is not handled by the front end allocator step 2 is necessary.

2. The heap manager checks if there are any adjacent free blocks; if so, it coa-
lesces the blocks into one large block by doing the following:

a. The two adjacent free blocks are removed from the free lists.
b. The new large block is added to the free list or look aside list.
c. The flags field for the new large block is updated to indicate that it

is free.
3. If no coalescing can be performed, the block is moved into the free list or look

aside list, and the flags are updated to a free state. 

Now it’s time to complement our theoretical discussion of the heap manager with
practice. Listing 6.1 shows a simple application that, using the default process heap,
allocates and frees some memory.
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Listing 6.1

#include <windows.h>

#include <stdio.h>

#include <conio.h>

int __cdecl wmain (int argc, wchar_t* pArgs[])

{

BYTE* pAlloc1=NULL;

BYTE* pAlloc2=NULL;

HANDLE hProcessHeap=GetProcessHeap();

pAlloc1=(BYTE*)HeapAlloc(hProcessHeap, 0, 16);

pAlloc2=(BYTE*)HeapAlloc(hProcessHeap, 0, 1500);

// 

// Use allocated memory

// 

HeapFree(hProcessHeap, 0, pAlloc1);

HeapFree(hProcessHeap, 0, pAlloc2);

}

The source code and binary for Listing 6.1 can be found in the following folders:

Source code: C:\AWD\Chapter6\BasicAlloc
Binary: C:\AWDBIN\WinXP.x86.chk\06BasicAlloc.exe

Run this application under the debugger and break on the wmain function. 
Because we are interested in finding out more about the heap state, we must start

by finding out what heaps are active in the process. Each running process keeps a list
of active heaps. The list of heaps is stored in the PEB (process environment block),
which is simply a data structure that contains a plethora of information about the
process. To dump out the contents of the PEB, we use the dt command, as illustrat-
ed in Listing 6.2.

Listing 6.2

0:000> dt _PEB @$peb

+0x000 InheritedAddressSpace : 0 ‘’

+0x001 ReadImageFileExecOptions : 0 ‘’

+0x002 BeingDebugged    : 0x1 ‘’
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+0x003 SpareBool       : 0 ‘’

+0x004 Mutant          : 0xffffffff

+0x008 ImageBaseAddress : 0x01000000

+0x00c Ldr            : 0x00191e90 _PEB_LDR_DATA

+0x010 ProcessParameters: 0x00020000 _RTL_USER_PROCESS_PARAMETERS

+0x014 SubSystemData    : (null)

+0x018 ProcessHeap     : 0x00080000

+0x01c FastPebLock     : 0x7c97e4c0 _RTL_CRITICAL_SECTION

+0x020 FastPebLockRoutine : 0x7c901005

+0x024 FastPebUnlockRoutine : 0x7c9010ed

+0x028 EnvironmentUpdateCount : 1

+0x02c KernelCallbackTable : (null)

+0x030 SystemReserved   : [1] 0

+0x034 AtlThunkSListPtr32 : 0

+0x038 FreeList         : (null)

+0x03c TlsExpansionCounter : 0

+0x040 TlsBitmap       : 0x7c97e480

+0x044 TlsBitmapBits    : [2] 1

+0x04c ReadOnlySharedMemoryBase : 0x7f6f0000

+0x050 ReadOnlySharedMemoryHeap : 0x7f6f0000

+0x054 ReadOnlyStaticServerData : 0x7f6f0688  -> (null)

+0x058 AnsiCodePageData : 0x7ffb0000

+0x05c OemCodePageData  : 0x7ffc1000

+0x060 UnicodeCaseTableData : 0x7ffd2000

+0x064 NumberOfProcessors : 1

+0x068 NtGlobalFlag     : 0

+0x070 CriticalSectionTimeout : _LARGE_INTEGER 0xffffffff`dc3cba00

+0x078 HeapSegmentReserve : 0x100000

+0x07c HeapSegmentCommit : 0x2000

+0x080 HeapDeCommitTotalFreeThreshold : 0x10000

+0x084 HeapDeCommitFreeBlockThreshold : 0x1000

+0x088 NumberOfHeaps    : 3

+0x08c MaximumNumberOfHeaps : 0x10

+0x090 ProcessHeaps     : 0x7c97de80  -> 0x00080000

+0x094 GdiSharedHandleTable : (null)

+0x098 ProcessStarterHelper : (null)

+0x09c GdiDCAttributeList : 0

+0x0a0 LoaderLock      : 0x7c97c0d8

+0x0a4 OSMajorVersion  : 5

+0x0a8 OSMinorVersion  : 1

+0x0ac OSBuildNumber    : 0xa28

+0x0ae OSCSDVersion    : 0x200

+0x0b0 OSPlatformId    : 2

+0x0b4 ImageSubsystem  : 3

+0x0b8 ImageSubsystemMajorVersion : 4

+0x0bc ImageSubsystemMinorVersion : 0
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+0x0c0 ImageProcessAffinityMask : 0

+0x0c4 GdiHandleBuffer  : [34] 0

+0x14c PostProcessInitRoutine : (null)

+0x150 TlsExpansionBitmap : 0x7c97e478

+0x154 TlsExpansionBitmapBits : [32] 0

+0x1d4 SessionId        : 0

+0x1d8 AppCompatFlags   : _ULARGE_INTEGER 0x0

+0x1e0 AppCompatFlagsUser : _ULARGE_INTEGER 0x0

+0x1e8 pShimData        : (null)

+0x1ec AppCompatInfo    : (null)

+0x1f0 CSDVersion       : _UNICODE_STRING “Service Pack 2”

+0x1f8 ActivationContextData : (null)

+0x1fc ProcessAssemblyStorageMap : (null)

+0x200 SystemDefaultActivationContextData : 0x00080000

+0x204 SystemAssemblyStorageMap : (null)

+0x208 MinimumStackCommit : 0

As you can see, PEB contains quite a lot of information, and you can learn a lot by
digging around in this data structure to familiarize yourself with the various compo-
nents. In this particular exercise, we are specifically interested in the list of process
heaps located at offset 0x90. The heap list member of PEB is simply an array of point-
ers, where each pointer points to a data structure of type _HEAP. Let’s dump out the
array of heap pointers and see what it contains:

0:000> dd 0x7c97de80

7c97de80  00080000 00180000 00190000 00000000

7c97de90  00000000 00000000 00000000 00000000

7c97dea0  00000000 00000000 00000000 00000000

7c97deb0  00000000 00000000 00000000 00000000

7c97dec0  01a801a6 00020498 00000001 7c9b0000

7c97ded0  7ffd2de6 00000000 00000005 00000001

7c97dee0  ffff7e77 00000000 003a0044 0057005c

7c97def0  004e0049 004f0044 00530057 0073005c

The dump shows that three heaps are active in our process, and the default process
heap pointer is always the first one in the list. Why do we have more than one heap
in our process? Even the simplest of applications typically contains more than one
heap. Most applications implicitly use components that create their own heaps. A
great example is the C runtime, which creates its own heap during initialization.

Listing 6.2 (continued)
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Because our application works with the default process heap, we will focus our inves-
tigation on that heap. Each of the process heap pointers points to a data structure of
type _HEAP. Using the dt command, we can very easily dump out the information
about the process heap, as shown in Listing 6.3.

Listing 6.3

0:000> dt _HEAP 00080000

+0x000 Entry           : _HEAP_ENTRY

+0x008 Signature        : 0xeeffeeff

+0x00c Flags           : 0x50000062

+0x010 ForceFlags      : 0x40000060

+0x014 VirtualMemoryThreshold : 0xfe00

+0x018 SegmentReserve  : 0x100000

+0x01c SegmentCommit   : 0x2000

+0x020 DeCommitFreeBlockThreshold : 0x200

+0x024 DeCommitTotalFreeThreshold : 0x2000

+0x028 TotalFreeSize   : 0xcb

+0x02c MaximumAllocationSize : 0x7ffdefff

+0x030 ProcessHeapsListIndex : 1

+0x032 HeaderValidateLength : 0x608

+0x034 HeaderValidateCopy : (null)

+0x038 NextAvailableTagIndex : 0

+0x03a MaximumTagIndex  : 0

+0x03c TagEntries       : (null)

+0x040 UCRSegments     : (null)

+0x044 UnusedUnCommittedRanges : 0x00080598 _HEAP_UNCOMMMTTED_RANGE

+0x048 AlignRound       : 0x17

+0x04c AlignMask       : 0xfffffff8

+0x050 VirtualAllocdBlocks : _LIST_ENTRY [ 0x80050 - 0x80050 ]

+0x058 Segments        : [64] 0x00080640 _HEAP_SEGMENT

+0x158 u              : __unnamed

+0x168 u2             : __unnamed

+0x16a AllocatorBackTraceIndex : 0

+0x16c NonDedicatedListLength : 1

+0x170 LargeBlocksIndex : (null)

+0x174 PseudoTagEntries : (null)

+0x178 FreeLists       : [128] _LIST_ENTRY [ 0x829b0 - 0x829b0 ]

+0x578 LockVariable    : 0x00080608 _HEAP_LOCK

+0x57c CommitRoutine   : (null)

+0x580 FrontEndHeap     : 0x00080688

+0x584 FrontHeapLockCount : 0

+0x586 FrontEndHeapType : 0x1 ‘’

+0x587 LastSegmentIndex : 0 ‘’
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Once again, you can see that the _HEAP structure is fairly large with a lot of infor-
mation about the heap. For this exercise, the most important members of the _HEAP
structure are located at the following offsets:

+0x050 VirtualAllocdBlocks : _LIST_ENTRY 

Allocations that are greater than the virtual allocation size threshold are not managed
as part of the segments and free lists. Rather, these allocations are allocated directly
from the virtual memory manager. You track these allocations by keeping a list as part
of the _HEAP structure that contains all virtual allocations.

+0x058 Segments         : [64] 

The Segments field is an array of data structures of type _HEAP_SEGMENT. Each
heap segment contains a list of heap entries active within that segment. Later on, you
will see how we can use this information to walk the entire heap segment and locate
allocations of interest.

+0x16c NonDedicatedListLength 

As mentioned earlier, free list[0] contains allocations of size greater than 1016KB and
less than the virtual allocation threshold. To efficiently manage this free list, the heap
stores the number of allocations in the nondedicates list in this field. This information
can come in useful when you want to analyze heap usage and quickly see how many
of your allocations fall into the variable sized free list[0] category.

+0x178 FreeLists        : [128] _LIST_ENTRY

The free lists are stored at offset 0x178 and contain doubly linked lists. Each list con-
tains free heap blocks of a specific size. We will take a closer look at the free lists in a
little bit.

+0x580 FrontEndHeap

The pointer located at offset 0x580 points to the front end allocator. We know the
overall architecture and strategy behind the front end allocator, but unfortunately, the
public symbol package does not contain definitions for it, making an in-depth inves-
tigation impossible. It is also worth noting that Microsoft reserves the right to change
the offsets previously described between Windows versions. 
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Back to our sample application—let’s continue stepping through the code in the
debugger. The first call of interest is to the GetProcessHeap API, which returns a
handle to the default process heap. Because we already found this handle/pointer
ourselves, we can verify that the explicit call to GetProcessHeap returns what we
expect. After the call, the eax register contains 0x00080000, which matches our
expectations. Next are two calls to the kernel32!HeapAlloc API that attempt allo-
cations of sizes 16 and 1500. Will these allocations be satisfied by committing more
segment memory or from the free lists? Before stepping over the first HeapAlloc
call, let’s try to find out where the heap manager will find a free heap block to satisfy
this allocation. The first step in our investigation is to see if any free blocks of size 16
are available in the free lists. To check the availability of free blocks, we use the fol-
lowing command:

dt _LIST_ENTRY 0x00080000+0x178+8

This command dumps out the first node in the free list that corresponds to allocations
of size 16. The 0x00080000 is the address of our heap. We add an offset of 0x178 to
get the start of the free list table. The first entry in the free list table points to free
list[0]. Because our allocation is much smaller than the free list[0] size threshold, we
simply skip this free list by adding an additional 8 bytes (the size of the _LIST_ENTRY
structure), which puts us at free list[1] representing free blocks of size 16.

0:000> dt _LIST_ENTRY 0x00080000+0x178+8

[ 0x80180 - 0x80180 ]

+0x000 Flink            : 0x00080180 _LIST_ENTRY [ 0x80180 - 0x80180 ]

+0x004 Blink            : 0x00080180 _LIST_ENTRY [ 0x80180 - 0x80180 ]

Remember that the free lists are doubly linked lists; hence the Flink and Blink
fields of the _LIST_ENTRY structure are simply pointers to the next and previous
allocations. It is critical to note that the pointer listed in the free lists actually points
to the user-accessible part of the heap block and not to the start of the heap block
itself. As such, if you want to look at the allocation metadata, you need to first sub-
tract 8 bytes from the pointer. Both of these pointers seem to point to 0x00080180,
which in actuality is the address of the list node we were just dumping out
(0x00080000+0x178+8=0x00080180). This implies that the free list corresponding to
allocations of size 16 is empty. Before we assume that the heap manager must com-
mit more memory in the segment, remember that it will only do so as the absolute
last resort. Hence, the heap manager first tries to see if there are any other free blocks
of sizes greater than 16 that it could split to satisfy the allocation. In our particular
case, free list[0] contains a free heap block:
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0:000> dt _LIST_ENTRY 0x00080000+0x178

[ 0x82ab0 - 0x82ab0 ]

+0x000 Flink            : 0x00082ab0 _LIST_ENTRY [ 0x80178 - 0x80178 ]

+0x004 Blink            : 0x00082ab0 _LIST_ENTRY [ 0x80178 - 0x80178 ]

The Flink member points to the location in the heap block available to the caller. In
order to see the full heap block (including metadata), we must first subtract 8 bytes
from the pointer (refer to Figure 6.8). 

0:000> dt _HEAP_ENTRY 0x00082ab0-0x8

+0x000 Size            : 0xab

+0x002 PreviousSize     : 0xb

+0x000 SubSegmentCode   : 0x000b00ab

+0x004 SmallTagIndex    : 0xee ‘’

+0x005 Flags            : 0x14 ‘’

+0x006 UnusedBytes      : 0xee ‘’

+0x007 SegmentIndex     : 0 ‘’

It is important to note that the size reported is the true size of the heap block divid-
ed by the heap granularity. The heap granularity is easily found by taking the size of
the _HEAP_ENTY_STRUCTURE. A heap block, the size of which is reported to be 0xab,
is in reality 0xb8*8 = 0x558 (1368) bytes.  

The free heap block we are looking at definitely seems to be big enough to fit our
allocation request of size 16. In the debug session, step over the first instruction that
calls HeapAlloc. If successful, we can then check free list[0] again and see if the allo-
cation we looked at prior to the call has changed:

0:000> dt _LIST_ENTRY 0x00080000+0x178

[ 0x82ad8 - 0x82ad8 ]

+0x000 Flink            : 0x00082ad8 _LIST_ENTRY [ 0x80178 - 0x80178 ]

+0x004 Blink            : 0x00082ad8 _LIST_ENTRY [ 0x80178 - 0x80178 ]

0:000> dt _HEAP_ENTRY 0x00082ad8-0x8

+0x000 Size            : 0xa6

+0x002 PreviousSize     : 5

+0x000 SubSegmentCode   : 0x000500a6

+0x004 SmallTagIndex    : 0xee ‘’

+0x005 Flags            : 0x14 ‘’

+0x006 UnusedBytes      : 0xee ‘’

+0x007 SegmentIndex     : 0 ‘’

Sure enough, what used to be the first entry in free list[0] has now changed. Instead
of a free block of size 0xab, we now have a free block of size 0xa6. The difference in
size (0x5) is due to our allocation request breaking up the larger free block we saw
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previously. If we are allocating 16 bytes (0x10), why is the difference in size of the free
block before splitting and after only 0x5 bytes? The key is to remember that the size
reported must first be multiplied by the heap granularity factor of 0x8. The true size
of the new free allocation is then 0x00000530 (0xa6*8), with the true size difference
being 0x28. 0x10 of those 0x28 bytes are our allocation size, and the remaining 0x18
bytes are all metadata associated with our heap block.

The next call to HeapAlloc attempts to allocate memory of size 1500. We know
that free heap blocks of this size must be located in the free list[0]. However, from
our previous investigation, we also know that the only free heap block on the free
list[0] is too small to accommodate the size we are requesting. With its hands tied, the
heap manager is now forced to commit more memory in the heap segment. To get a
better picture of the state of our heap segment, it is useful to do a manual walk of the
segment. The _HEAP structure contains an array of pointers to all segments current-
ly active in the heap. The array is located at the base _HEAP address plus an offset of
0x58. 

0:000> dd 0x00080000+0x58 l4

00080058  00080640 00000000 00000000 00000000

0:000> dt _HEAP_SEGMENT 0x00080640

+0x000 Entry            : _HEAP_ENTRY

+0x008 Signature        : 0xffeeffee

+0x00c Flags            : 0

+0x010 Heap             : 0x00080000 _HEAP

+0x014 LargestUnCommittedRange : 0xfd000

+0x018 BaseAddress      : 0x00080000

+0x01c NumberOfPages    : 0x100

+0x020 FirstEntry       : 0x00080680 _HEAP_ENTRY

+0x024 LastValidEntry   : 0x00180000 _HEAP_ENTRY

+0x028 NumberOfUnCommittedPages : 0xfd

+0x02c NumberOfUnCommittedRanges : 1

+0x030 UnCommittedRanges : 0x00080588 _HEAP_UNCOMMMTTED_RANGE

+0x034 AllocatorBackTraceIndex : 0

+0x036 Reserved         : 0

+0x038 LastEntryInSegment : 0x00082ad0 _HEAP_ENTRY

The _HEAP_SEGMENT data structure contains a slew of information used by the heap
manager to efficiently manage all the active segments in the heap. When walking a seg-
ment, the most useful piece of information is the FirstEntry field located at the base
segment address plus an offset of 0x20. This field represents the first heap block in the
segment. If we dump out this block and get the size, we can dump out the next heap
block by adding the size to the first heap block’s address. If we continue this process, the
entire segment can be walked, and each allocation can be investigated for correctness. 
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0:000> dt _HEAP_ENTRY 0x00080680

+0x000 Size             : 0x303

+0x002 PreviousSize     : 8

+0x000 SubSegmentCode   : 0x00080303

+0x004 SmallTagIndex    : 0x9a ‘’

+0x005 Flags            : 0x7 ‘’

+0x006 UnusedBytes      : 0x18 ‘’

+0x007 SegmentIndex     : 0 ‘’

0:000> dt _HEAP_ENTRY 0x00080680+(0x303*8)

+0x000 Size             : 8

+0x002 PreviousSize     : 0x303

+0x000 SubSegmentCode   : 0x03030008

+0x004 SmallTagIndex    : 0x99 ‘’

+0x005 Flags            : 0x7 ‘’

+0x006 UnusedBytes      : 0x1e ‘’

+0x007 SegmentIndex     : 0 ‘’

0:000> dt _HEAP_ENTRY 0x00080680+(0x303*8)+(8*8)

+0x000 Size             : 5

+0x002 PreviousSize     : 8

+0x000 SubSegmentCode   : 0x00080005

+0x004 SmallTagIndex    : 0x91 ‘’

+0x005 Flags            : 0x7 ‘’

+0x006 UnusedBytes      : 0x1a ‘’

+0x007 SegmentIndex     : 0 ‘’

…

…

…

+0x000 Size             : 0xa6

+0x002 PreviousSize     : 5

+0x000 SubSegmentCode   : 0x000500a6

+0x004 SmallTagIndex    : 0xee ‘’

+0x005 Flags            : 0x14 ‘’

+0x006 UnusedBytes      : 0xee ‘’

+0x007 SegmentIndex     : 0 ‘’

Let’s see what the heap manager does to the segment (if anything) to try to satisfy the
allocation request of size 1500 bytes. Step over the HeapAlloc call and walk the seg-
ment again. The heap block of interest is shown next.

+0x000 Size             : 0xbf

+0x002 PreviousSize     : 5

+0x000 SubSegmentCode   : 0x000500bf

+0x004 SmallTagIndex   : 0x10 ‘’

+0x005 Flags            : 0x7 ‘’

+0x006 UnusedBytes      : 0x1c ‘’

+0x007 SegmentIndex     : 0 ‘’
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Before we stepped over the call to HeapAlloc, the last heap block was marked as
free and with a size of 0xa6. After the call, the block status changed to busy with a size
of 0xbf (0xbf*8= 0x5f8), indicating that this block is now used to hold our new alloca-
tion. Since our allocation was too big to fit into the previous size of 0xa6, the heap
manager committed more memory to the segment. Did it commit just enough to hold
our allocation? Actually, it committed much more and put the remaining free mem-
ory into a new block at address 0x000830c8. The heap manager is only capable of
asking for page sized allocations (4KB on x86 systems) from the virtual memory man-
ager and returns the remainder of that allocation to the free lists. 

The next couple of lines in our application simply free the allocations we just
made. What do we anticipate the heap manager to do when it executes the first
HeapFree call? In addition to updating the status of the heap block to free and
adding it to the free lists, we expect it to try and coalesce the heap block with other
surrounding free blocks. Before we step over the first HeapFree call, let’s take a look
at the heap block associated with that call.

0:000> dt _HEAP_ENTRY 0x000830c8-(0xbf*8)-(0x5*8)

+0x000 Size             : 5

+0x002 PreviousSize     : 0xb

+0x000 SubSegmentCode   : 0x000b0005

+0x004 SmallTagIndex   : 0x1f ‘’

+0x005 Flags            : 0x7 ‘’

+0x006 UnusedBytes      : 0x18 ‘’

+0x007 SegmentIndex     : 0 ‘’

0:000> dt _HEAP_ENTRY 0x000830c8-(0xbf*8)-(0x5*8)-(0xb*8)

+0x000 Size             : 0xb

+0x002 PreviousSize     : 5

+0x000 SubSegmentCode   : 0x0005000b

+0x004 SmallTagIndex    : 0 ‘’

+0x005 Flags            : 0x7 ‘’

+0x006 UnusedBytes      : 0x1c ‘’

+0x007 SegmentIndex     : 0 ‘’

0:000> dt _HEAP_ENTRY 0x000830c8-(0xbf*8)

+0x000 Size             : 0xbf

+0x002 PreviousSize     : 5

+0x000 SubSegmentCode   : 0x000500bf

+0x004 SmallTagIndex    : 0x10 ‘’

+0x005 Flags            : 0x7 ‘’

+0x006 UnusedBytes      : 0x1c ‘’

+0x007 SegmentIndex     : 0 ‘’

The status of the previous and next heap blocks are both busy (Flags=0x7), which
means that the heap manager is not capable of coalescing the memory, and the heap
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block is simply put on the free lists. More specifically, the heap block will go into free
list[1] because the size is 16 bytes. Let’s verify our theory—step over the HeapFree
call and use the same mechanism as previously used to see what happened to the
heap block.

0:000> dt _HEAP_ENTRY 0x000830c8-(0xbf*8)-(0x5*8)

+0x000 Size             : 5

+0x002 PreviousSize     : 0xb

+0x000 SubSegmentCode   : 0x000b0005

+0x004 SmallTagIndex    : 0x1f ‘’

+0x005 Flags            : 0x4 ‘’

+0x006 UnusedBytes      : 0x18 ‘’

+0x007 SegmentIndex     : 0 ‘’

As you can see, the heap block status is indeed set to be free, and the size remains the
same. Since the size remains the same, it serves as an indicator that the heap manag-
er did not coalesce the heap block with adjacent blocks. Last, we verify that the block
made it into the free list[1]. 

I will leave it as an exercise for the reader to figure out what happens to the seg-
ment and heap blocks during the next call to HeapFree. Here’s a hint: Remember
that the size of the heap block being freed is 1500 bytes and that the state of one of
the adjacent blocks is set to free.

This concludes our overview of the internal workings of the heap manager.
Although it might seem like a daunting task to understand and be able to walk the var-
ious heap structures, after a little practice, it all becomes easier. Before we move on
to the heap corruption scenarios, one important debugger command can help us be
more efficient when debugging heap corruption scenarios. The extension command
is called !heap and is part of the exts.dll debugger extension. Using this command,
you can very easily display all the heap information you could possibly want. Actually,
all the information we just manually gathered is outputted by the !heap extension
command in a split second. But wait—we just spent a lot of time figuring out how to
analyze the heap by hand, walk the segments, and verify the heap blocks. Why even
bother if we have this beautiful command that does all the work for us? As always, the
answer lies in how the debugger arrives at the information it presents. If the state of
the heap is intact, the !heap extension command shows the heap state in a nice and
digestible form. If, however, the state of the heap has been corrupted, it is no longer
sufficient to rely on the command to tell us what and how it became corrupted. We
need to know how to analyze the various parts of the heap to arrive at sound conclu-
sions and possible culprits. 
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Attaching Versus Starting the Process Under the Debugger

The debug session you have seen so far has involved running a process under the debugger
from start to finish. Another option when debugging processes is attaching the debugger to
an already-running process. Typically, using either approach will not dramatically change
the way you debug the process. The exception to the rule is when debugging heap-related
issues. When starting the process under the debugger, the heap manager modifies all
requests to create new heaps and change the heap creation flags to enable debug-friendly
heaps (unless the _NO_DEBUG_HEAP environment variable is set to 1). In comparison,
attaching to an already-running process, the heaps in the process have already been creat-
ed using default heap creation flags and will not have the debug-friendly flags set (unless
explicitly set by the application). The heap modification flags apply across all heaps in the
process, including the default process heap. The biggest difference when starting a process
under the debugger is that the heap blocks contain an additional fill pattern field after the
user-accessible part (see Figure 6.8). The fill pattern is used by the heap manager to vali-
date the integrity of the heap block during heap operations. When an allocation is success-
ful, the heap manager fills this area of the block with a specific fill pattern. If an application
mistakenly writes past the end of the user-accessible part, it overwrites all or portions of this
fill pattern field. The next time the application uses that allocation in any calls to the heap
manager, the heap manager takes a close look at the fill pattern field to make sure that it
hasn’t changed. If the fill pattern field was overwritten by the application, the heap manag-
er immediately breaks into the debugger, giving you the opportunity to look at the heap
block and try to infer why it was overwritten. Writing to any area of a heap block outside
the bounds of the actual user-accessible part is a serious error that can be devastating to the
stability of an application. 

Heap Corruptions

Heap corruptions are arguably some of the trickiest problems to figure out. A process
can corrupt any given heap in nearly infinite ways. Armed with the knowledge of how
the heap manager functions, we now take a look at some of the most common rea-
sons behind heap corruptions. Each scenario is accompanied by sample source code
illustrating the type of heap corruption being examined. A detailed debug session is
then presented, which takes you from the initial fault to the source of the heap cor-
ruption. Along the way, we also introduce invaluable tools that can be used to more
easily get to the root cause of the corruption.
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Using Uninitialied State
Uninitialized state is a common programming mistake that can lead to numerous
hours of debugging to track down. Fundamentally, uninitialized state refers to a block
of memory that has been successfully allocated but not yet initialized to a state in
which it is considered valid for use. The memory block can range from simple native
data types, such as integers, to complex data blobs. Using an uninitialized memory
block results in unpredictable behavior. Listing 6.4 shows a small application that suf-
fers from using uninitialized memory.

Listing 6.4

#include <windows.h>

#include <stdio.h>

#include <conio.h>

#define ARRAY_SIZE 10

BOOL InitArray(int** pPtrArray);

int __cdecl wmain (int argc, wchar_t* pArgs[])

{

int iRes=1;

wprintf(L”Press any key to start...”);

_getch();

int** pPtrArray=(int**)HeapAlloc(GetProcessHeap(), 

0, 

sizeof(int*[ARRAY_SIZE]));

if(pPtrArray!=NULL)

{

InitArray(pPtrArray);

*(pPtrArray[0])=10;

iRes=0;

HeapFree(GetProcessHeap(), 0, pPtrArray);

}

return iRes;

}

BOOL InitArray(int** pPtrArray)

{

return FALSE ;

}
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The source code and binary for Listing 6.4 can be found in the following folders:

Source code: C:\AWD\Chapter6\Uninit
Binary: C:\AWDBIN\WinXP.x86.chk\06Uninit.exe

The code in Listing 6.4 simply allocates an array of integer pointers. It then calls
an InitArray function that initializes all elements in the array with valid integer
pointers. After the call, the application tries to dereference the first pointer and sets
the value to 10. Can this code fail? Absolutely! Because we are not checking the
return value of the call to InitArray, the function might fail to initialize the array.
Subsequently, when we try to dereference the first element, we might incorrectly
pick up a random address. The application might experience an access violation if the
address is invalid (in the sense that it is not accessible memory), or it might succeed.
What happens next depends largely on the random pointer itself. If the pointer is
pointing to a valid address used elsewhere, the application continues execution. If,
however, the pointer points to inaccessible memory, the application might crash
immediately. Suffice it to say that even if the application does not crash immediately,
memory is being incorrectly used, and the application will eventually fail.

When the application is executed, we can easily see that a failure does occur. To
get a better picture of what is failing, run the application under the debugger, as
shown in Listing 6.5.

Listing 6.5

…

…

…

0:000> g

Press any key to start...(740.5b0): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=00000000 ebx=7ffdb000 ecx=00082ab0 edx=baadf00d esi=7c9118f1 edi=00011970

eip=010011c9 esp=0006ff3c ebp=0006ff44 iopl=0         nv up ei pl zr na pe nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00010246

06uninit!wmain+0x49:

010011c9 c7020a000000    mov     dword ptr [edx],0Ah  ds:0023:baadf00d=????????

0:000> kb

ChildEBP RetAddr  Args to Child

0007ff7c 01001413 00000001 00034ed8 00037118 06uninit!wmain+0x4b

0007ffc0 7c816fd7 00011970 7c9118f1 7ffd4000 06uninit!__wmainCRTStartup+0x102

0007fff0 00000000 01001551 00000000 78746341 kernel32!BaseProcessStart+0x23
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The instruction that causes the crash corresponds to the line of code in our applica-
tion that sets the first element in the array to the value 10:

mov   dword ptr [edx],0xAh           ;  *(pPtrArray[0])=10;

The next logical step is to understand why the access violation occurred. Because we
are trying to write to a memory location that equates to the first element in our array,
the access violation might be because the memory being written to is inaccessible.
Dumping out the contents of the memory in question yields

0:000> dd edx

baadf00d  ???????? ???????? ???????? ????????

baadf01d  ???????? ???????? ???????? ????????

baadf02d  ???????? ???????? ???????? ????????

baadf03d  ???????? ???????? ???????? ????????

baadf04d  ???????? ???????? ???????? ????????

baadf05d  ???????? ???????? ???????? ????????

baadf06d  ???????? ???????? ???????? ????????

baadf07d  ???????? ???????? ???????? ????????

The pointer located in the edx register has a really strange value (baadf00d) that
points to inaccessible memory. Trying to dereference this pointer is what ultimately
caused the access violation. Where does this interesting pointer value (baadf00d)
come from? Surely, the pointer value is incorrect enough that it wasn’t left there by
some prior allocation. The bad pointer we are seeing was explicitly placed there by the
heap manager. Whenever you start a process under the debugger, the heap manager
automatically initializes all memory with a fill pattern. The specifics of the fill pattern
depend on the status of the heap block. When a heap block is first returned to the
caller, the heap manager fills the user-accessible part of the heap block with a fill pat-
tern consisting of the values baadf00d. This indicates that the heap block is allocated
but has not yet been initialized. Should an application (such as ours) dereference this
memory block without initializing it first, it will fail. On the other hand, if the applica-
tion properly initializes the memory block, execution continues. After the heap block
is freed, the heap manager once again initializes the user-accessible part of the heap
block, this time with the values feeefeee. Again, the free-fill pattern is added by the
heap manager to trap any memory accesses to the block after it has been freed. The
memory not being initialized prior to use is the reason for our particular failure. 

Let’s see how the allocated memory differs when the application is not started
under the debugger but rather attached to the process. Start the application, and
when the Press any key to start prompt appears, attach the debugger. Once
attached, set a breakpoint on the instruction that caused the crash and dump out the
contents of the edx register.



285Heap Corruptions

0:000>  dd edx

00080178  000830f0 000830f0 00080180 00080180

00080188  00080188 00080188 00080190 00080190

00080198  00080198 00080198 000801a0 000801a0

000801a8  000801a8 000801a8 000801b0 000801b0

000801b8  000801b8 000801b8 000801c0 000801c0

000801c8  000801c8 000801c8 000801d0 000801d0

000801d8  000801d8 000801d8 000801e0 000801e0

000801e8  000801e8 000801e8 000801f0 000801f0

This time around, you can see that the edx register contains a pointer value that is
pointing to accessible, albeit incorrect, memory. No longer is the array initialized to
pointer values that cause an immediate access violation (baadf00d) when derefer-
enced. As a matter of fact, stepping over the faulting instruction this time around suc-
ceeds. Do we know the origins of the pointer value we just used? Not at all. It could
be any memory location in the process. The incorrect usage of the pointer value
might end up causing serious problems somewhere else in the application in paths
that rely on the state of that memory to be intact. If we resume execution of the appli-
cation, we will notice that an access violation does in fact occur, albeit much later in
the execution.

0:000> g

(1a8.75c): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=0000000a ebx=00080000 ecx=00080178 edx=00000000 esi=00000002 edi=0000000f

eip=7c911404 esp=0006f77c ebp=0006f99c iopl=0         nv up ei pl nz ac po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00010212

ntdll!RtlAllocateHeap+0x6c9:

7c911404 0fb70e          movzx   ecx,word ptr [esi]       ds:0023:00000002=????

0:000> g

(1a8.75c): Access violation - code c0000005 (!!! second chance !!!)

eax=0000000a ebx=00080000 ecx=00080178 edx=00000000 esi=00000002 edi=0000000f

eip=7c911404 esp=0006f77c ebp=0006f99c iopl=0         nv up ei pl nz ac po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000212

ntdll!RtlAllocateHeap+0x6c9:

7c911404 0fb70e          movzx   ecx,word ptr [esi]       ds:0023:00000002=????

0:000> k

ChildEBP RetAddr

0007f9b0 7c80e323 ntdll!RtlAllocateHeap+0x6c9

0007fa24 7c80e00d kernel32!BasepComputeProcessPath+0xb3

0007fa64 7c80e655 kernel32!BaseComputeProcessDllPath+0xe3

0007faac 7c80e5ab kernel32!GetModuleHandleForUnicodeString+0x28

0007ff30 7c80e45c kernel32!BasepGetModuleHandleExW+0x18e
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0007ff48 7c80b6c0 kernel32!GetModuleHandleW+0x29

0007ff54 77c39d23 kernel32!GetModuleHandleA+0x2d

0007ff60 77c39e78 msvcrt!__crtExitProcess+0x10

0007ff70 77c39e90 msvcrt!_cinit+0xee

0007ff84 01001429 msvcrt!exit+0x12

0007ffc0 7c816fd7 06uninit!__wmainCRTStartup+0x118

0007fff0 00000000 kernel32!BaseProcessStart+0x23

As you can see, the stack reporting the access violation has nothing to do with any of
our own code. All we really know is that when the process is about to exit, as you can
see from the bottommost frame (msvcrt!__crtExitProcess+0x10), it tries to
allocate memory and fails in the memory manager. Typically, access violations occur-
ring in the heap manager are good indicators that a heap corruption has occurred.
Backtracking the source of the corruption from this location can be an excruciatingly
difficult process that should be avoided at all costs. From the two previous sample
runs, it should be evident that trapping a heap corruption at the point of occurrence
is much more desirable than sporadic failures in code paths that we do not directly
own. One of the ways we can achieve this is by starting the process under the debug-
ger and letting the heap manager use fill patterns to provide some level of protection.
Although the heap manager does provide this mechanism, it is not necessarily the
strongest level of protection. The usage of fill patterns requires that a call be made to
the heap manager so that it can validate that the fill pattern is still valid. Most of the
time, the damage has already been done at the point of validation, and the fault
caused by the heap manager still requires us to work backward and figure out what
caused the fault to begin with. 

In addition to uninitialized state, another very common scenario that results in
heap corruptions is a heap overrun.

Heap Overruns and Underruns
In the introduction to this chapter, we looked at the internal workings of the heap
manager and how all heap blocks are laid out. Figure 6.8 illustrated how a heap block
is broken down and what auxiliary metadata is kept on a per-block basis for the heap
manager to be capable of managing the block. If a faulty piece of code overwrites any
of the metadata, the integrity of the heap is compromised and the application will
fault. The most common form of metadata overwriting is when the owner of the heap
block does not respect the boundaries of the block. This phenomenon is known as a
heap overrun or, reciprocally, a heap underrun. 

Let’s take a look at an example. The application shown in Listing 6.6 simply makes
a copy of the string passed in on the command line and prints out the copy. 
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Listing 6.6

#include <windows.h>

#include <stdio.h>

#include <conio.h>

#define SZ_MAX_LEN  10

WCHAR* pszCopy = NULL ;

BOOL DupString(WCHAR* psz);

int __cdecl wmain (int argc, wchar_t* pArgs[])

{

int iRet=0;

if(argc==2)

{

printf(“Press any key to start\n”);

_getch();

DupString(pArgs[1]);

}

else

{

iRet=1;

}

return iRet;

}

BOOL DupString(WCHAR* psz)

{

BOOL bRet=FALSE;

if(psz!=NULL)

{

pszCopy=(WCHAR*) HeapAlloc(GetProcessHeap(), 

0, 

SZ_MAX_LEN*sizeof(WCHAR));

if(pszCopy)

{

wcscpy(pszCopy, psz);

wprintf(L”Copy of string: %s”, pszCopy);

HeapFree(GetProcessHeap(), 0, pszCopy);

bRet=TRUE;

}

}

return bRet;

}
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The source code and binary for Listing 6.6 can be found in the following folders:

Source code: C:\AWD\Chapter6\Overrun
Binary: C:\AWDBIN\WinXP.x86.chk\06Overrun.exe

When you run this application with various input strings, you will quickly notice that
input strings of size 10 or less seem to work fine. As soon as you breach the 10-character
limit, the application crashes. Let’s pick the following string to use in our debug session:

C:\AWDBIN\WinXP.x86.chk\06Overrun.exe ThisStringShouldReproTheCrash

Run the application and attach the debugger when you see the Press any key to
start prompt. Once attached, press any key to resume execution and watch how the
debugger breaks execution with an access violation. 

…

…

…

0:001> g

(1b8.334): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=00650052 ebx=00080000 ecx=00720070 edx=00083188 esi=00083180 edi=0000000f

eip=7c91142e esp=0006f77c ebp=0006f99c iopl=0         nv up ei ng nz na po cy

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00010283

ntdll!RtlAllocateHeap+0x653:

7c91142e 8b39            mov     edi,dword ptr [ecx]  ds:0023:00720070=????????

0:000> k

ChildEBP RetAddr

0007f70c 7c919f5d ntdll!RtlpInsertFreeBlock+0xf3

0007f73c 7c918839 ntdll!RtlpInitializeHeapSegment+0x186

0007f780 7c911c76 ntdll!RtlpExtendHeap+0x1ca

0007f9b0 7c80e323 ntdll!RtlAllocateHeap+0x623

0007fa24 7c80e00d kernel32!BasepComputeProcessPath+0xb3

0007fa64 7c80e655 kernel32!BaseComputeProcessDllPath+0xe3

0007faac 7c80e5ab kernel32!GetModuleHandleForUnicodeString+0x28

0007ff30 7c80e45c kernel32!BasepGetModuleHandleExW+0x18e

0007ff48 7c80b6c0 kernel32!GetModuleHandleW+0x29

0007ff54 77c39d23 kernel32!GetModuleHandleA+0x2d

0007ff60 77c39e78 msvcrt!__crtExitProcess+0x10

0007ff70 77c39e90 msvcrt!_cinit+0xee

0007ff84 010014c2 msvcrt!exit+0x12

0007ffc0 7c816fd7 06overrun!__wmainCRTStartup+0x118

0007fff0 00000000 kernel32!BaseProcessStart+0x23
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Glancing at the stack, it looks like the application was in the process of shutting down
when the access violation occurred. As per our previous discussion, whenever you
encounter an access violation in the heap manager code, chances are you are experi-
encing a heap corruption. The only problem is that our code is nowhere on the stack.
Once again, the biggest problem with heap corruptions is that the faulting code is not
easily trapped at the point of corruption; rather, the corruption typically shows up
later on in the execution. This behavior alone makes it really hard to track down the
source of heap corruption. However, with an understanding of how the heap manag-
er works, we can do some preliminary investigation of the heap and see if we can find
some clues as to some potential culprits. Without knowing which part of the heap is
corrupted, a good starting point is to see if the segments are intact. Instead of manu-
ally walking the segments, we use the !heap extension command, which saves us a
ton of grueling manual heap work. A shortened version of the output for the default
process heap is shown in Listing 6.7.

Listing 6.7

0:000> !heap -s

Heap     Flags   Reserv  Commit  Virt   Free  List    UCR   Virt  Lock  Fast

(k)     (k)    (k)    (k)  length        blocks cont. heap

---------------------------------------

00080000 00000002    1024     16     16      3     1     1    0      0   L

00180000 00001002      64     24     24     15     1     1    0      0   L

00190000 00008000      64     12     12     10     1     1    0      0

00260000 00001002      64     28     28      7     1     1    0      0   L

---------------------------------------

0:000> !heap -a 00080000

Index   Address  Name      Debugging options enabled

1:   00080000

Segment at 00080000 to 00180000 (00004000 bytes committed)

Flags:                00000002

ForceFlags:           00000000

Granularity:          8 bytes

Segment Reserve:      00100000

Segment Commit:       00002000

DeCommit Block Thres: 00000200

DeCommit Total Thres: 00002000

Total Free Size:      000001d0

Max. Allocation Size: 7ffdefff

Lock Variable at:     00080608

Next TagIndex:        0000

Maximum TagIndex:     0000

Tag Entries:          00000000
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PsuedoTag Entries:    00000000

Virtual Alloc List:   00080050

UCR FreeList:         00080598

FreeList Usage:       00000000 00000000 00000000 00000000

FreeList[ 00 ] at 00080178: 00083188 . 00083188

00083180: 003a8 . 00378 [00] - free

Unable to read nt!_HEAP_FREE_ENTRY structure at 0065004a

Segment00 at 00080640:

Flags:           00000000

Base:            00080000

First Entry:     00080680

Last Entry:      00180000

Total Pages:     00000100

Total UnCommit:  000000fc

Largest UnCommit:000fc000

UnCommitted Ranges: (1)

00084000: 000fc000

Heap entries for Segment00 in Heap 00080000

00080000: 00000 . 00640 [01] - busy (640)

00080640: 00640 . 00040 [01] - busy (40)

00080680: 00040 . 01808 [01] - busy (1800)

00081e88: 01808 . 00210 [01] - busy (208)

00082098: 00210 . 00228 [01] - busy (21a)

000822c0: 00228 . 00090 [01] - busy (84)

00082350: 00090 . 00030 [01] - busy (22)

00082380: 00030 . 00018 [01] - busy (10)

00082398: 00018 . 00068 [01] - busy (5b)

00082400: 00068 . 00230 [01] - busy (224)

00082630: 00230 . 002e0 [01] - busy (2d8)

00082910: 002e0 . 00320 [01] - busy (314)

00082c30: 00320 . 00320 [01] - busy (314)

00082f50: 00320 . 00030 [01] - busy (24)

00082f80: 00030 . 00030 [01] - busy (24)

00082fb0: 00030 . 00050 [01] - busy (40)

00083000: 00050 . 00048 [01] - busy (40)

00083048: 00048 . 00038 [01] - busy (2a)

00083080: 00038 . 00010 [01] - busy (1)

00083090: 00010 . 00050 [01] - busy (44)

000830e0: 00050 . 00018 [01] - busy (10)

000830f8: 00018 . 00068 [01] - busy (5b)

00083160: 00068 . 00020 [01] - busy (14)

00083180: 003a8 . 00378 [00]

000834f8: 00000 . 00000 [00]

Listing 6.7 (continued)

0
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The last heap entry in a segment is typically a free block. In Listing 6.7, however, we
have a couple of odd entries at the end. The status of the heap blocks (0) seems to
indicate that both blocks are free; however, the size of the blocks does not seem to
match up. Let’s look at the first free block:

00083180: 003a8 . 00378 [00]

The heap block states that the size of the previous block is 003a8 and the size of the cur-
rent block is 00378. Interestingly enough, the prior block is reporting its own size to be
0x20 bytes, which does not match up well. Even worse, the last free block in the seg-
ment states that both the previous and current sizes are 0. If we go even further back in
the heap segment, we can see that all the heap entries prior to 00083160 make sense (at
least in the sense that the heap entry metadata seems intact). One of the potential theo-
ries should now start to take shape. The usage of the heap block at location 00083160
seems suspect, and it’s possible that the usage of that heap block caused the metadata of
the following block to become corrupt. Who allocated the heap block at 00083160? If
we take a closer look at the block, we can see if we can recognize the content:

0:000> dd 00083160

00083160  000d0004 000c0199 00000000 00730069

00083170  00740053 00690072 0067006e 00680053

00083180  0075006f 0064006c 00650052 00720070

00083190  0054006f 00650068 00720043 00730061

000831a0  00000068 00000000 00000000 00000000

000831b0  00000000 00000000 00000000 00000000

000831c0  00000000 00000000 00000000 00000000

000831d0  00000000 00000000 00000000 00000000

Parts of the block seem to resemble a string. If we use the du command on the block
starting at address 000830f8+0xc, we see the following:

0:000> du 00083160+c

0008316c  “isStringShouldReproTheCrash”

The string definitely looks familiar. It is the same string (or part of it) that we passed
in on the command line. Furthermore, the string seems to stretch all the way to
address 000831a0, which crosses the boundary to the next reported free block at
address 00083180. If we dump out the heap entry at address 00083180, we can see
the following:

0:000> dt _HEAP_ENTRY 00083180

+0x000 Size             : 0x6f
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+0x002 PreviousSize     : 0x75

+0x000 SubSegmentCode   : 0x0075006

+0x004 SmallTagIndex    : 0x6c ‘l’

+0x005 Flags            : 0 ‘’

+0x006 UnusedBytes      : 0x64 ‘d’

+0x007 SegmentIndex     : 0 ‘’

The current and previous size fields correspond to part of the string that crossed the
boundary of the previous block. Armed with the knowledge of which string seemed to
have caused the heap block overwrite, we can turn to code reviewing and figure out
relatively easily that the string copy function wrote more than the maximum number
of characters allowed in the destination string, causing an overwrite of the next heap
block. While the heap manager was unable to detect the overwrite at the exact point
it occurred, it definitely detected the heap block overwrite later on in the execution,
which resulted in an access violation because the heap was in an inconsistent state. 

In the previous simplistic application, analyzing the heap at the point of the
access violation yielded a very clear picture of what overwrote the heap block and
subsequently, via code reviewing, who the culprit was. Needless to say, it is not always
possible to arrive at these conclusions merely by inspecting the contents of the heap
blocks. The complexity of the system can dramatically reduce your success when
using this approach. Furthermore, even if you do get some clues to what is overwrit-
ing the heap blocks, it might be really difficult to find the culprit by merely review-
ing code. Ultimately, the easiest way to figure out a heap corruption would be if we
could break execution when the memory is being overwritten rather than after.
Fortunately, the Application Verifier tool provides a powerful facility that enables this
behavior. The application verifier test setting commonly used when tracking down
heap corruptions is called the Heaps test setting (also referred to as pageheap).
Pageheap works on the basis of surrounding the heap blocks with a protection layer
that serves to isolate the heap blocks from one another. If a heap block is overwritten,
the protection layer detects the overwrite as close to the source as possible and breaks
execution, giving the developer the ability to investigate why the overwrite occurred.
Pageheap runs in two different modes: normal pageheap and full pageheap. The pri-
mary difference between the two modes is the strength of the protection layer.
Normal pageheap uses fill patterns in an attempt to detect heap block corruptions.
The utilization of fill patterns requires that another call be made to the heap manag-
er post corruption so that the heap manager has the chance to validate the integrity
(check fill patterns) of the heap block and report any inconsistencies. Additionally,
normal page heap keeps the stack trace for all allocations, making it easier to under-
stand who allocated the memory. Figure 6.10 illustrates what a heap block looks like
when normal page heap is turned on.
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Figure 6.10

The primary difference between a regular heap block and a normal page heap block
is the addition of pageheap metadata. The pageheap metadata contains information,
such as the block requested and actual sizes, but perhaps the most useful member of
the metadata is the stack trace. The stack trace member allows the developer to get
the full stack trace of the origins of the allocation (that is, where it was allocated). This
aids greatly when looking at a corrupt heap block, as it gives you clues to who the
owner of the heap block is and affords you the luxury of narrowing down the scope of
the code review. Imagine that the HeapAlloc call in Listing 6.6 resulted in the fol-
lowing pointer: 0019e260. To dump out the contents of the pageheap metadata, we
must first subtract 32 (0x20) bytes from the pointer.

0:000> dd 0019e4b8-0x20

0019e498  abcdaaaa 80081000 00000014 0000003c

0019e4a8  00000018 00000000 0028697c dcbaaaaa

0019e4b8  e0e0e0e0 e0e0e0e0 e0e0e0e0 e0e0e0e0

0019e4c8  e0e0e0e0 a0a0a0a0 a0a0a0a0 00000000

0019e4d8  00000000 00000000 000a0164 00001000

0019e4e8  00180178 00180178 00000000 00000000

0019e4f8  00000000 00000000 00000000 00000000

0019e508  00000000 00000000 00000000 00000000
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Here, we can clearly see the starting (abcdaaaa) and ending (dcbaaaaa) fill patterns
that enclose the metadata. To see the pageheap metadata in a more digestible form,
we can use the _DPH_BLOCK_INFORMATION data type:

0:000> dt _DPH_BLOCK_INFORMATION 0019e4b8-0x20

+0x000 StartStamp       :

+0x004 Heap             : 0x80081000

+0x008 RequestedSize    :

+0x00c ActualSize       :

+0x010 FreeQueue        : _LIST_ENTRY 18-0

+0x010 TraceIndex       : 0x18

+0x018 StackTrace       : 0x0028697c

+0x01c EndStamp         :

The stack trace member contains the stack trace of the allocation. To see the stack
trace, we have to use the dds command, which displays the contents of a range of
memory under the assumption that the contents in the range are a series of address-
es in the symbol table. 

0:000> dds 0x0028697c

0028697c  abcdaaaa

00286980  00000001

00286984  00000006

…

…

…

0028699c  7c949d18 ntdll!RtlAllocateHeapSlowly+0x44

002869a0  7c91b298 ntdll!RtlAllocateHeap+0xe64

002869a4  01001224 06overrun!DupString+0x24

002869a8  010011eb 06overrun!wmain+0x2b

002869ac  010013a9 06overrun!wmainCRTStartup+0x12b

002869b0  7c816d4f kernel32!BaseProcessStart+0x23

002869b4  00000000

002869b8  00000000

…

…

…

The shortened version of the output of the dds command shows us the stack trace of
the allocating code. I cannot stress the usefulness of the recorded stack trace database
enough. Whether you are looking at heap corruptions or memory leaks, given any
pageheap block, you can very easily get to the stack trace of the allocating code, which
in turn allows you to focus your efforts on that area of the code. 
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Now let’s see how the normal pageheap facility can be used to track down the
memory corruption shown earlier in Listing 6.6. Enable normal pageheap on the
application (see Appendix A, “Application Verifier Test Settings”), and start the process
under the debugger using ThisStringShouldReproTheCrash as input. Listing 6.8
shows how Application Verifier breaks execution because of a corrupted heap block.

Listing 6.8

…

…

…

0:000> g

Press any key to start

Copy of string: ThisStringShouldReproTheCrash

=======================================

VERIFIER STOP 00000008 : pid 0x640: Corrupted heap block.

00081000 : Heap handle used in the call.

001A04D0 : Heap block involved in the operation.

00000014 : Size of the heap block.

00000000 : Reserved

=======================================

This verifier stop is not continuable. Process will be terminated

when you use the `go’ debugger command.

=======================================

(640.6a8): Break instruction exception - code 80000003 (first chance)

eax=000001ff ebx=0040acac ecx=7c91eb05 edx=0006f949 esi=00000000 edi=000001ff

eip=7c901230 esp=0006f9dc ebp=0006fbdc iopl=0         nv up ei pl nz na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000202

ntdll!DbgBreakPoint:

7c901230 cc              int     3

The information presented by Application Verifier gives us the pointer to the heap block
that was corrupted. From here, getting the stack trace of the allocating code is trivial.

0:000> dt _DPH_BLOCK_INFORMATION 001A04D0-0x20

+0x000 StartStamp       : 0xabcdaaaa
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+0x004 Heap             : 0x80081000

+0x008 RequestedSize    : 0x14

+0x00c ActualSize       : 0x3c

+0x010 FreeQueue        : _LIST_ENTRY [ 0x18 - 0x0 ]

+0x010 TraceIndex       : 0x18

+0x018 StackTrace       : 0x0028697c

+0x01c EndStamp         : 0xdcbaaaaa

0:000> dds 0x0028697c

0028697c  abcdaaaa

00286980  00000001

00286984  00000006

00286988  00000001

0028698c  00000014

00286990  00081000

00286994  00000000

00286998  0028699c

0028699c  7c949d18 ntdll!RtlAllocateHeapSlowly+0x44

002869a0  7c91b298 ntdll!RtlAllocateHeap+0xe64

002869a4  01001202 06overrun!DupString+0x22

002869a8  010011c1 06overrun!wmain+0x31

002869ac  0100138d 06overrun!wmainCRTStartup+0x12f

002869b0  7c816fd7 kernel32!BaseProcessStart+0x23

…

…

…

Knowing the stack trace allows us to efficiently find the culprit by narrowing down
the scope of the code review. 

If you compare and contrast the non-Application Verifier-enabled approach of
finding out why a process has crashed with the Application Verifier-enabled
approach, you will quickly see how much more efficient it is. By using normal page-
heap, all the information regarding the corrupted block is given to us, and we can use
that to analyze the heap block and get the stack trace of the allocating code. Although
normal pageheap breaks execution and gives us all this useful information, it still does
so only after a corruption has occurred, and it still requires us to do some backtrack-
ing to figure out why it happened. Is there a mechanism to break execution even clos-
er to the corruption? Absolutely! Normal pageheap is only one of the two modes of
pageheap that can be enabled. The other mode is known as full pageheap. In addi-
tion to its own unique fill patterns, full pageheap adds the notion of a guard page to
each heap block. A guard page is a page of inaccessible memory that is placed either
at the start or at the end of a heap block. Placing the guard page at the start of the
heap block protects against heap block underruns, and placing it at the end protects
against heap overruns. Figure 6.11 illustrates the layout of a full pageheap block.
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Figure 6.11

The inaccessible page is added to protect against heap block overruns or underruns.
If a faulty piece of code writes to the inaccessible page, it causes an access violation,
and execution breaks on the spot. This allows us to avoid any type of backtracking
strategy to figure out the origins of the corruption. 

Now we can once again run our sample application, this time with full pageheap
enabled (see Appendix A), and see where the debugger breaks execution. 

…

…

…

0:000> g

Press any key to start

(414.494): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.
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This exception may be expected and handled.

eax=006f006f ebx=7ffd7000 ecx=005d5000 edx=006fefd8 esi=7c9118f1 edi=00011970

eip=77c47ea2 esp=0006ff20 ebp=0006ff20 iopl=0         nv up ei pl nz na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00010202

msvcrt!wcscpy+0xe:

77c47ea2 668901          mov     word ptr [ecx],ax        ds:0023:005d5000=????

0:000> kb

ChildEBP RetAddr  Args to Child

0006ff20 01001221 005d4fe8 006fefc0 00000000 msvcrt!wcscpy+0xe

0006ff34 010011c1 006fefc0 00000000 0006ffc0 06overrun!DupString+0x41

0006ff44 0100138d 00000002 006fef98 00774f88 06overrun!wmain+0x31

0006ffc0 7c816fd7 00011970 7c9118f1 7ffd7000 06overrun!wmainCRTStartup+0x12f

0006fff0 00000000 0100125e 00000000 78746341 kernel32!BaseProcessStart+0x23

This time, an access violation is recorded during the string copy call. If we take a clos-
er look at the heap block at the point of the access violation, we see

0:000> dd 005d4fe8

005d4fe8  00680054 00730069 00740053 00690072

005d4ff8  0067006e 00680053 ???????? ????????

005d5008  ???????? ???????? ???????? ????????

005d5018  ???????? ???????? ???????? ????????

005d5028  ???????? ???????? ???????? ????????

005d5038  ???????? ???????? ???????? ????????

005d5048  ???????? ???????? ???????? ????????

005d5058  ???????? ???????? ???????? ????????

0:000> du 005d4fe8

005d4fe8  “ThisStringSh????????????????????”

005d5028  “????????????????????????????????”

005d5068  “????????????????????????????????”

005d50a8  “????????????????????????????????”

005d50e8  “????????????????????????????????”

005d5128  “????????????????????????????????”

005d5168  “????????????????????????????????”

005d51a8  “????????????????????????????????”

005d51e8  “????????????????????????????????”

005d5228  “????????????????????????????????”

005d5268  “????????????????????????????????”

005d52a8  “????????????????????????????????”

We can make two important observations about the dumps: 

■ The string we are copying has overwritten the suffix fill pattern of the block, as
well as the heap entry. 
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■ At the point of the access violation, the string copied so far is ThisStringSh,
which indicates that the string copy function is not yet done and is about to
write to the inaccessible page placed at the end of the heap block by Application
Verifier.

By enabling full pageheap, we were able to break execution when the corruption
occurred rather than after. This can be a huge time-saver, as you have the offending
code right in front of you when the corruption occurs, and finding out why the cor-
ruption occurred just got a lot easier. One of the questions that might be going
through your mind is, “Why not always run with full pageheap enabled?” Well, full
pageheap is very resource intensive. Remember that full pageheap places one page
of inaccessible memory at the end (or beginning) of each allocation. If the process you
are debugging is memory hungry, the usage of pageheap might increase the overall
memory consumption by an order of magnitude. 

In addition to heap block overruns, we can experience the reciprocal: heap
underruns. Although not as common, heap underruns overwrite the part of the heap
block prior to the user-accessible part. This can be because of bad pointer arithmetic
causing a premature write to the heap block. Because normal pageheap protects the
pageheap metadata by using fill patterns, it can trap heap underrun scenarios as well.
Full pageheap, by default, places a guard page at the end of the heap block and will
not break on heap underruns. Fortunately, using the backward overrun option of full
pageheap (see Appendix A), we can tell it to place a guard page at the front of the
allocation rather than at the end and trap the underrun class of problems as well. 

The !heap extension command previously used to analyze heap state can also be
used when the process is running under pageheap. By using the –p flag, we can tell
the !heap extension command that the heap in question is pageheap enabled. The
options available for the –p flag are

heap -p          Dump all page heaps.

heap -p -h ADDR  Detailed dump of page heap at ADDR.

heap -p -a ADDR  Figure out what heap block is at ADDR.

heap -p -t [N]   Dump N collected traces with heavy heap users.

heap -p -tc [N]  Dump N traces sorted by count usage (eqv. with -t).

heap -p -ts [N]  Dump N traces sorted by size.

heap -p -fi [N]  Dump last N fault injection traces.

For example, the heap block returned from the HeapAlloc call in our sample appli-
cation resembles the following when used with the –p and –a flags:

0:000> !heap -p -a 005d4fe8

address 005d4fe8 found in
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_DPH_HEAP_ROOT @ 81000

in busy allocation (  DPH_HEAP_BLOCK:         UserAddr         UserSize -

VirtAddr         VirtSize)

8430c:           5d4fe8               14 -

5d4000             2000

7c91b298 ntdll!RtlAllocateHeap+0x00000e64

01001202 06overrun!DupString+0x00000022

010011c1 06overrun!wmain+0x00000031

0100138d 06overrun!wmainCRTStartup+0x0000012f

7c816fd7 kernel32!BaseProcessStart+0x00000023

The output shows us the recorded stack trace as well as other auxiliary information,
such as which fill pattern is in use. The fill patterns can give us clues to the status of
the heap block (allocated or freed). Another useful switch is the –t switch. The –t
switch allows us to dump out part of the stack trace database to get more information
about all the stacks that have allocated memory. If you are debugging a process that
is using up a ton of memory and want to know which part of the process is responsi-
ble for the biggest allocations, the heap –p –t command can be used.

Heap Handle Mismatches
The heap manager keeps a list of active heaps in a process. The heaps are considered
separate entities in the sense that the internal per-heap state is only valid within the
context of that particular heap. Developers working with the heap manager must take
great care to respect this separation by ensuring that the correct heaps are used when
allocating and freeing heap memory. The separation is exposed to the developer by
using heap handles in the heap API calls. Each heap handle uniquely represents a
particular heap in the list of heaps for the process. An example of this is calling the
GetProcessHeap API, which returns a unique handle to the default process.
Another example is calling the HeapCreate API, which returns a unique handle to
the newly created heap.

If the uniqueness is broken, heap corruption will ensue. Listing 6.9 illustrates an
application that breaks the uniqueness of heaps.

Listing 6.9

#include <windows.h>

#include <stdio.h>

#include <conio.h>

#define MAX_SMALL_BLOCK_SIZE    20000

HANDLE hSmallHeap=0;
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HANDLE hLargeHeap=0;

VOID* AllocMem(ULONG ulSize);

VOID FreeMem(VOID* pMem, ULONG ulSize);

BOOL InitHeaps();

VOID FreeHeaps();

int __cdecl wmain (int argc, wchar_t* pArgs[])

{

printf(“Press any key to start\n”);

_getch();

if(InitHeaps())

{

BYTE* pBuffer1=(BYTE*) AllocMem(20);

BYTE* pBuffer2=(BYTE*) AllocMem(20000);

//

// Use allocated memory

//

FreeMem(pBuffer1, 20);

FreeMem(pBuffer2, 20000);

FreeHeaps();

}

printf(“Done...exiting application\n”);

return 0;

}

BOOL InitHeaps()

{

BOOL bRet=TRUE ;

hSmallHeap = GetProcessHeap();

hLargeHeap = HeapCreate(0, 0, 0);

if(!hLargeHeap)

{

bRet=FALSE;

}

return bRet;

}

VOID FreeHeaps()

{
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if(hLargeHeap)

{

HeapDestroy(hLargeHeap);

hLargeHeap=NULL;

}

}

VOID* AllocMem(ULONG ulSize)

{

VOID* pAlloc = NULL ;

if(ulSize<MAX_SMALL_BLOCK_SIZE)

{

pAlloc=HeapAlloc(hSmallHeap, 0, ulSize);

}

else

{

pAlloc=HeapAlloc(hLargeHeap, 0, ulSize);

}

return pAlloc;

}

VOID FreeMem(VOID* pAlloc, ULONG ulSize)

{

if(ulSize<=MAX_SMALL_BLOCK_SIZE)

{

HeapFree(hSmallHeap, 0, pAlloc);

}

else

{

HeapFree(hLargeHeap, 0, pAlloc);

}

}

The source code and binary for Listing 6.9 can be found in the following folders:
Source code: C:\AWD\Chapter6\Mismatch
Binary: C:\AWDBIN\WinXP.x86.chk\06Mismatch.exe

The application in Listing 6.9 seems pretty straightforward. The main function
requests a couple of allocations using the AllocMem helper function. Once done with
the allocations, it calls the FreeMem helper API to free the memory. The allocation

Listing 6.9 (continued)
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helper APIs work with the memory from either the default process heap (if the allo-
cation is below a certain size) or a private heap (created in the InitHeaps API) if the
size is larger than the threshold. If we run the application, we see that it successfully
finishes execution:

C:\AWDBIN\WinXP.x86.chk\06Mismatch.exe

Press any key to start

Done...exiting application

We might be tempted to conclude that the application works as expected and sign off
on it. However, before we do so, let’s use Application Verifier and enable full page-
heap on the application and rerun it. This time, the application never finished. As a
matter of fact, judging from the crash dialog that appears, it looks like we have a
crash. In order to get some more information on the crash, we run the application
under the debugger:

…

…

…

0:000> g

Press any key to start

(118.3c8): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=0006fc54 ebx=00000000 ecx=0211b000 edx=0211b008 esi=021161e0 edi=021161e0

eip=7c96893a esp=0006fbec ebp=0006fc20 iopl=0         nv up ei ng nz ac po cy

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00010293

ntdll!RtlpDphIsNormalHeapBlock+0x81:

7c96893a 8039a0          cmp     byte ptr [ecx],0A0h        ds:0023:0211b000=??

0:000> kb

ChildEBP RetAddr  Args to Child

0006fc20 7c96ac47 00081000 021161e0 0006fc54 ntdll!RtlpDphIsNormalHeapBlock+0x81

0006fc44 7c96ae5a 00081000 01000002 00000007 ntdll!RtlpDphNormalHeapFree+0x1e

0006fc94 7c96defb 00080000 01000002 021161e0 ntdll!RtlpDebugPageHeapFree+0x79

0006fd08 7c94a5d0 00080000 01000002 021161e0 ntdll!RtlDebugFreeHeap+0x2c

0006fdf0 7c9268ad 00080000 01000002 021161e0 ntdll!RtlFreeHeapSlowly+0x37

0006fec0 003ab9eb 00080000 00000000 021161e0 ntdll!RtlFreeHeap+0xf9

0006ff18 010012cf 00080000 00000000 021161e0 vfbasics!AVrfpRtlFreeHeap+0x16b

0006ff2c 010011d3 021161e0 00004e20 021161e0 06mismatch!FreeMem+0x1f

0006ff44 01001416 00000001 02060fd8 020daf80 06mismatch!wmain+0x53

0006ffc0 7c816fd7 00011970 7c9118f1 7ffdc000 06mismatch!wmainCRTStartup+0x12f

0006fff0 00000000 010012e7 00000000 78746341 kernel32!BaseProcessStart+0x23
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From the stack trace, we can see that our application was trying to free a block of
memory when the heap manager access violated. To find out which of the two mem-
ory allocations we were freeing, we unassemble the 06mismatch!wmain function
and see which of the calls correlate to the address located at
06mismatch!wmain+0x55. 

0:000> u 06mismatch!wmain+0x53-10

06mismatch!wmain+0x43:

010011c3 0000            add     byte ptr [eax],al

010011c5 68204e0000      push    4E20h

010011ca 8b4df8          mov     ecx,dword ptr [ebp-8]

010011cd 51              push    ecx

010011ce e8dd000000      call    06mismatch!FreeMem (010012b0)

010011d3 e858000000      call    06mismatch!FreeHeaps (01001230)

010011d8 688c100001      push    offset 06mismatch!`string’ (0100108c)

010011dd ff1550100001    call    dword ptr [06mismatch!_imp__printf (01001050)]

Since the call prior to 06mismatch!FreeHeaps is a FreeMem, we know that the last
FreeMem call in our code is causing the problem. We can now employ code review-
ing to see if anything is wrong. From Listing 6.9, the FreeMem function frees memo-
ry either on the default process heap or on a private heap. Furthermore, it looks like
the decision is dependent on the size of the block. If the block size is less than or
equal to 20Kb, it uses the default process heap. Otherwise, the private heap is used.
Our allocation was exactly 20Kb, which means that the FreeMem function attempted
to free the memory from the default process heap. Is this correct? One way to easily
find out is dumping out the pageheap block metadata, which has a handle to the own-
ing heap contained inside:

0:000> dt _DPH_BLOCK_INFORMATION 021161e0-0x20

+0x000 StartStamp       : 0xabcdbbbb

+0x004 Heap             : 0x02111000

+0x008 RequestedSize    : 0x4e20

+0x00c ActualSize       : 0x5000

+0x010 FreeQueue        : _LIST_ENTRY [ 0x21 - 0x0 ]

+0x010 TraceIndex       : 0x21

+0x018 StackTrace       : 0x00287510

+0x01c EndStamp         : 0xdcbabbbb

The owning heap for this heap block is 0x02111000. Next, we find out what the
default process heap is: 

0:000> x 06mismatch!hSmallHeap

01002008 06mismatch!hSmallHeap = 0x00080000
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The two heaps do not match up, and we are faced with essentially freeing a block of
memory owned by heap 0x02111000 on heap 0x00080000. This is also the reason
Application Verifier broke execution, because a mismatch in heaps causes serious sta-
bility issues. Armed with the knowledge of the reason for the stop, it should now be
pretty straightforward to figure out why our application mismatched the two heaps.
Because we are relying on size to determine which heaps to allocate and free the mem-
ory on, we can quickly see that the AllocMem function uses the following conditional:

if(ulSize<MAX_SMALL_BLOCK_SIZE)

{

pAlloc=HeapAlloc(hSmallHeap, 0, ulSize);

}

while the FreeMem function uses:

if(ulSize<=MAX_SMALL_BLOCK_SIZE)

{

HeapFree(hSmallHeap, 0, pAlloc);

}

The allocating conditional checks that the allocation size is less than the threshold,
whereas the freeing conditional checks that it is less than or equal. Hence, when free-
ing an allocation of size 20Kb, incorrectly uses the default process heap.

In addition to being able to analyze and get to the bottom of heap mismatch prob-
lems, another very important lesson can be learned from our exercise: Never assume
that the application works correctly just because no errors are reported during a nor-
mal noninstrumented run. As you have already seen, heap corruption problems do
not always surface during tests that are run without any type of debugging help. Only
when a debugger is attached and the application verifier is enabled do the problems
surface. The reason is simple. In a nondebugger, non–Application Verifier run, the
heap corruption still occurs but might not have enough time to surface in the form of
an access violation. Say that the test runs through scenarios A, B, and C, and the heap
corruption occurs in scenario C. After the heap has been corrupted, the application
exits without any sign of the heap corruption, and you are led to believe that every-
thing is working correctly. Once the application ships and gets in the hands of the cus-
tomer, they run the same scenarios, albeit in a different order: C, B, and A. The first
scenario ran C, immediately causing the heap corruption, but the application does not
exit; rather, it continues running with scenario B and A, providing for a much larger
window for the heap corruption to actually affect the application. 
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Heap Reuse After Deletion
Next to heap overruns, heap reuse after deletion is the second most common source
of heap corruptions. As you have already seen, after a heap block has been freed, it is
put on the free lists (or look aside list) by the heap manager. From there on, it is con-
sidered invalid for use by the application. If an application uses the free block in any
way, shape, or form, the state of the block on the free list will most likely be corrupt-
ed and the application will crash. 

Before we take a look at some practical examples of heap reuse after free, let’s review
the deletion process. Figure 6.12 shows a hypothetical example of a heap segment.

Free Lists

Segment

0

1

2

3

…

127

Bx

Metadata Metadata B2
User accessible part

B1
User accessible

part
Rest of segmentMetadata Metadata

Figure 6.12

The segment consists of two busy blocks (B1 and B2) whose user-accessible part is
surrounded by their associated metadata. Additionally, the free list contains one free
block (Bx) of size 16. If the application frees block B1, the heap manager, first and
foremost, checks to see if the block can be coalesced with any adjacent free blocks.
Because there are no adjacent free blocks, the heap manager simply updates the sta-
tus of the block (flags field of the metadata) to free and updates the corresponding
free list to include B1. It is critical to note that the free list consists of a forward link
(FLINK) and a backward link (BLINK) that each points to the next and previous free
block in the list. Are the FLINK and BLINK pointers part of a separately allocated
free list node? Not quite—for efficiency reasons, when a block is freed, the structure
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of the existing free block changes. More specifically, the user-accessible portion of the
heap block is overwritten by the heap manager with the FLINK and BLINK point-
ers, each pointing to the next and previous free block on the free list. In our hypo-
thetical example in Figure 6.12, B1 is inserted at the beginning of the free list
corresponding to size 16. The user-accessible portion of B1 is replaced with a FLINK
that points to Bx and a BLINK that points to the start of the list (itself). The existing
free block Bx is also updated by the BLINK pointing to B1. Figure 6.13 illustrates the
resulting layout after freeing block B1. 
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Figure 6.13

Next, when the application frees block B2, the heap manager finds an adjacent free
block (B1) and coalesces both blocks into one large free block. As part of the coa-
lescing process, the heap manager must remove block B1 from the free list since it
no longer exists and add the new larger block to its corresponding free list. The result-
ing large block’s user-accessible part now contains FLINK and BLINK pointers that
are updated according to the state of the free list. 

So far, we have assumed that all heap blocks freed make their way to the back end
allocator’s free lists. Although it’s true that some free blocks go directly to the free lists,
some of the allocations may end up going to the front end allocator’s look aside list. When
a heap block goes into the look aside list, the primary differences can be seen in the heap
block metadata:
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■ Heap blocks that go into the look aside list have their status bit set to busy (in
comparison to free in free lists)

■ The look aside list is a singly linked list (in comparison to the free lists doubly
linked), and hence only the FLINK pointer is considered valid.

The most important aspect of freeing memory, as related to heap reuse after free, is the
fact that the structure of the heap block changes once it is freed. The user-accessible
portion of the heap block is now used for internal bookkeeping to keep the free lists up-
to-date. If the application overwrites any of the content (thinking the block is still busy),
the FLINK and BLINK pointers become corrupt, and the structural integrity of the
free list is compromised. The net result is most likely a crash somewhere down the road
when the heap manager tries to manipulate the free list (usually during another allocate
or free call). 

Listing 6.10 shows an example of an application that allocates a block of memory
and subsequently frees the block twice.

Listing 6.10

#include <windows.h>

#include <stdio.h>

#include <conio.h>

int __cdecl wmain (int argc, wchar_t* pArgs[])

{

printf(“Press any key to start\n”);

_getch();

BYTE* pByte=(BYTE*) HeapAlloc(GetProcessHeap(), 0, 10);

(*pByte)=10;

HeapFree(GetProcessHeap(), 0, pByte);

HeapFree(GetProcessHeap(), 0, pByte);

printf(“Done...exiting application\n”);

return 0;

}

The source code and binary for Listing 6.9 can be found in the following folders:

Source code: C:\AWD\Chapter6\DblFree
Binary: C:\AWDBIN\WinXP.x86.chk\06DblFree.exe
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Running the application yields no errors:

C:\AWDBIN\WinXP.x86.chk\06DblFree.exe

To make sure that nothing out of the ordinary is happening, let’s start the application
under the debugger and make our way to the first heap allocation. 

…

…

…

0:001> u wmain

06dblfree!wmain:

01001180 55              push    ebp

01001181 8bec            mov     ebp,esp

01001183 51              push    ecx

01001184 68a8100001      push    offset 06dblfree!`string’ (010010a8)

01001189 ff1548100001    call    dword ptr [06dblfree!_imp__printf (01001048)]

0100118f 83c404          add     esp,4

01001192 ff1550100001    call    dword ptr [06dblfree!_imp___getch (01001050)]

01001198 6a0a            push    0Ah

0:001> u

06dblfree!wmain+0x1a:

0100119a 6a00            push    0

0100119c ff1508100001    call    dword ptr [06dblfree!_imp__GetProcessHeap

(01001008)]

010011a2 50              push    eax

010011a3 ff1500100001    call    dword ptr [06dblfree!_imp__HeapAlloc (01001000)]

010011a9 8945fc          mov     dword ptr [ebp-4],eax

010011ac 8b45fc          mov     eax,dword ptr [ebp-4]

010011af c6000a          mov     byte ptr [eax],0Ah

010011b2 8b4dfc          mov     ecx,dword ptr [ebp-4]

0:001> g 010011a9

eax=000830c0 ebx=7ffde000 ecx=7c9106eb edx=00080608 esi=01c7078e edi=83485b7a

eip=010011a9 esp=0006ff40 ebp=0006ff44 iopl=0         nv up ei pl zr na pe nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000246

06dblfree!wmain+0x29:

010011a9 8945fc          mov     dword ptr [ebp-4],eax

ss:0023:0006ff40={msvcrt!__winitenv (77c61a40)}

Register eax now contains the pointer to the newly allocated block of memory:

0:000> dt _HEAP_ENTRY 000830c0-0x8

+0x000 Size             : 3

+0x002 PreviousSize     : 3

+0x000 SubSegmentCode   : 0x00030003
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+0x004 SmallTagIndex    : 0x21 ‘!’

+0x005 Flags            : 0x1 ‘’

+0x006 UnusedBytes      : 0xe ‘’

+0x007 SegmentIndex     : 0 ‘’

Nothing seems to be out of the ordinary—the size fields all seem reasonable, and the
flags field indicates that the block is busy. Now, continue execution past the first call
to HeapFree and dump out the same heap block.

0:000> dt _HEAP_ENTRY 000830c0-0x8

+0x000 Size             : 3

+0x002 PreviousSize     : 3

+0x000 SubSegmentCode   : 0x00030003

+0x004 SmallTagIndex    : 0x21 ‘!’

+0x005 Flags            : 0x1 ‘’

+0x006 UnusedBytes      : 0xe ‘’

+0x007 SegmentIndex     : 0 ‘’

Even after freeing the block, the metadata looks identical. The flags field even has its
busy bit still set, indicating that the block is not freed. The key here is to remember
that when a heap block is freed, it can go to one of two places: look aside list or free
lists. When a heap block goes on the look aside list, the heap block status is kept as
busy. On the free lists, however, the status is set to free. 

In our particular free operation, the block seems to have gone on the look aside
list. When a block goes onto the look aside list, the first part of the user-accessible por-
tion of the block gets overwritten with the FLINK pointer that points to the next avail-
able block on the look aside list. The user-accessible portion of our block resembles

0:000> dd 000830c0

000830c0  00000000 00080178 00000000 00000000

000830d0  000301e6 00001000 00080178 00080178

000830e0  00000000 00000000 00000000 00000000

000830f0  00000000 00000000 00000000 00000000

00083100  00000000 00000000 00000000 00000000

00083110  00000000 00000000 00000000 00000000

00083120  00000000 00000000 00000000 00000000

00083130  00000000 00000000 00000000 00000000

As you can see, the FLINK pointer in our case is NULL, which means that this is the
first free heap block. Next, continue execution until right after the second call to
HeapFree (of the same block). Once again, we take a look at the state of the heap
block:
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0:000> dt _HEAP_ENTRY 000830c0-0x8

+0x000 Size             : 3

+0x002 PreviousSize     : 3

+0x000 SubSegmentCode   : 0x00030003

+0x004 SmallTagIndex    : 0x21 ‘!’

+0x005 Flags            : 0x1 ‘’

+0x006 UnusedBytes      : 0xe ‘’

+0x007 SegmentIndex     : 0 ‘’

Nothing in the metadata seems to have changed. Block is still busy, and the size fields
seem to be unchanged. Let’s dump out the user-accessible portion and take a look at
the FLINK pointer:

0:000> dd 000830c0

000830c0  000830c0 00080178 00000000 00000000

000830d0  000301e6 00001000 00080178 00080178

000830e0  00000000 00000000 00000000 00000000

000830f0  00000000 00000000 00000000 00000000

00083100  00000000 00000000 00000000 00000000

00083110  00000000 00000000 00000000 00000000

00083120  00000000 00000000 00000000 00000000

00083130  00000000 00000000 00000000 00000000

This time, FLINK points to another free heap block, with the user-accessible portion
starting at location 000830c0. The block corresponding to location 000830c0 is the
same block that we freed the first time. By double freeing, we have essentially man-
aged to put the look aside list into a circular reference. The consequence of doing so
can cause the heap manager to go into an infinite loop when subsequent heap oper-
ations force the heap manager to walk the free list with the circular reference.

At this point, if we resume execution, we notice that the application finishes exe-
cution. Why did it finish without failing in the heap code? For the look aside list cir-
cular reference to be exposed, another call has to be made to the heap manager that
would cause it to walk the list and hit the circular link. Our application was finished
after the second HeapFree call, and the heap manager never got a chance to fail.
Even though the failure did not surface in the few runs we did, it is still a heap cor-
ruption, and it should be fixed. Corruption of a heap block on the look aside list (or
the free lists) can cause serious problems for an application. Much like the previous
types of heap corruptions, double freeing problems typically surface in the form of
post corruption crashes when the heap manager needs to walk the look aside list (or
free list). Is there a way to use Application Verifier in this case, as well to trap the
problem as it is occurring? The same heaps test setting used throughout the chapter
also makes a best attempt at catching double free problems. By tagging the heap
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blocks in a specific way, Application Verifier is able to catch double freeing problems
as they occur and break execution, allowing the developer to take a closer look at the
code that is trying to free the block the second time. Let’s enable full pageheap on
our application and rerun it under the debugger. Right away, you will see a first
chance access violation occur with the following stack trace:

0:000> kb

ChildEBP RetAddr  Args to Child

0007fcc4 7c96ac47 00091000 005e4ff0 0007fcf8 ntdll!RtlpDphIsNormalHeapBlock+0x1c

0007fce8 7c96ae5a 00091000 01000002 00000000 ntdll!RtlpDphNormalHeapFree+0x1e

0007fd38 7c96defb 00090000 01000002 005e4ff0 ntdll!RtlpDebugPageHeapFree+0x79

0007fdac 7c94a5d0 00090000 01000002 005e4ff0 ntdll!RtlDebugFreeHeap+0x2c

0007fe94 7c9268ad 00090000 01000002 005e4ff0 ntdll!RtlFreeHeapSlowly+0x37

0007ff64 0100128a 00090000 00000000 005e4ff0 ntdll!RtlFreeHeap+0xf9

0007ff7c 01001406 00000001 0070cfd8 0079ef68 06DblFree!wmain+0x5a

0007ffc0 7c816fd7 00011970 7c9118f1 7ffd7000 06DblFree!__wmainCRTStartup+0x102

0007fff0 00000000 01001544 00000000 78746341 kernel32!BaseProcessStart+0x23

Judging from the stack, we can see that our wmain function is making its second call
to HeapFree, which ends up access violating deep down in the heap manager code.
Anytime you have this test setting turned on and experience a crash during a
HeapFree call, the first thing you should check is whether a heap block is being freed
twice. Because a heap block can go on the look aside list when freed (its state might
still be set to busy even though it’s considered free from a heap manager’s perspec-
tive), the best way to figure out if it’s really free is to use the !heap –p –a <heap
block> command. Remember that this command dumps out detailed information
about a page heap block, including the stack trace of the allocating or freeing code.
Find the address of the heap block that we are freeing twice (as per preceding stack
trace), and run the !heap extension command on it:

0:000> !heap -p -a 005d4ff0

address 005d4ff0 found in

_DPH_HEAP_ROOT @ 81000

in free-ed allocation (  DPH_HEAP_BLOCK:         VirtAddr         VirtSize)

8430c:           5d4000             2000

7c9268ad ntdll!RtlFreeHeap+0x000000f9

010011c5 06dblfree!wmain+0x00000045

0100131b 06dblfree!wmainCRTStartup+0x0000012f

7c816fd7 kernel32!BaseProcessStart+0x00000023

As you can see from the output, the heap block status is free. Additionally, the stack
shows us the last operation performed on the heap block, which is the first free call
made. The stack trace shown corresponds nicely to our first call to HeapFree in the
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wmain function. If we resume execution of the application, we notice several other
first-chance access violations until we finally get an Application Verifier stop:

0:000> g

(1d4.6d4): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=0006fc7c ebx=00081000 ecx=00000008 edx=00000000 esi=005d4fd0 edi=0006fc4c

eip=7c969a1d esp=0006fc40 ebp=0006fc8c iopl=0         nv up ei pl nz na po cy

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00010203

ntdll!RtlpDphReportCorruptedBlock+0x25:

7c969a1d f3a5            rep movs dword ptr es:[edi],dword ptr [esi]

es:0023:0006fc4c=00000000 ds:0023:005d4fd0=????????

0:000> g

(1d4.6d4): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=0006fc20 ebx=00000000 ecx=005d4ff0 edx=00000000 esi=00000000 edi=00000000

eip=7c968a84 esp=0006fc08 ebp=0006fc30 iopl=0         nv up ei pl zr na pe nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00010246

ntdll!RtlpDphGetBlockSizeFromCorruptedBlock+0x13:

7c968a84 8b41e0          mov     eax,dword ptr [ecx-20h] ds:0023:005d4fd0=????????

0:000> g

=======================================

VERIFIER STOP 00000008 : pid 0x1D4: Corrupted heap block.

00081000 : Heap handle used in the call.

005D4FF0 : Heap block involved in the operation.

00000000 : Size of the heap block.

00000000 : Reserved

=======================================

This verifier stop is not continuable. Process will be terminated

when you use the `go’ debugger command.

=======================================

(1d4.6d4): Break instruction exception - code 80000003 (first chance)

eax=000001ff ebx=0040acac ecx=7c91eb05 edx=0006f959 esi=00000000 edi=000001ff

eip=7c901230 esp=0006f9ec ebp=0006fbec iopl=0         nv up ei pl nz na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000202

ntdll!DbgBreakPoint:

7c901230 cc              int     3
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The last-chance Application Verifier stop shown gives some basic information about
the corrupted heap block. If you resume execution at this point, the application will
simply terminate because this is a nonrecoverable stop. 

This concludes our discussion of the problems associated with double freeing
memory. As you have seen, the best tool for catching double freeing problems is to
use the heaps test setting (full pageheap) available in Application Verifier. Not only
does it report the problem at hand, but it also manages to break execution at the point
where the problem really occurred rather than at a post corruption stage, making it
much easier to figure out why the heap block was being corrupted. Using full page-
heap gives you the strongest possible protection level available for memory-related
problems in general. The means by which full pageheap is capable of giving you this
protection is by separating the heap block metadata from the heap block itself. In a
nonfull pageheap scenario, the metadata associated with a heap block is part of the
heap block itself. If an application is off by a few bytes, it can very easily overwrite the
metadata, corrupting the heap block and making it difficult for the heap manager to
immediately report the problem. In contrast, using full pageheap, the metadata is
kept in a secondary data structure with a one-way link to the real heap block. By using
a one-way link, it is nearly impossible for faulty code to corrupt the heap block meta-
data, and, as such, full pageheap can almost always be trusted to contain intact infor-
mation. The separation of metadata from the actual heap block is what gives full
pageheap the capability to provide strong heap corruption detection.

Summary

Heap corruption is a serious error that can wreak havoc on your application. A single,
off-by-one byte corruption can cause your application to exhibit all sorts of odd
behaviors. The application might crash, it might have unpredictable behavior, or it
might even go into infinite loops. To make things worse, the net result of a heap cor-
ruption typically does not surface until after the corruption has occurred, making it
extremely difficult to figure out the source of the heap corruption. To efficiently track
down heap corruptions, you need a solid understanding of the internals of the heap
manager. The first part of the chapter discussed the low-level details of how the heap
manager works. We took a look at how a heap block travels through the various lay-
ers of the heap manager and how the status and block structure changes as it goes
from being allocated to freed. We also took a look at some of the most common forms
of heap corruptions (unitialized state, heap over- and underruns, mismatched heap
handles, and heap reuse after deletion) and how to manually analyze the heap at the
point of a crash to figure out the source of the corruption. Additionally, we discussed



315Summary

how Application Verifier (pageheap) can be used to break execution closer to the
source of the corruption, making it much easier to figure out the culprit. As some of
the examples in this chapter show, heap corruptions might go undetected while soft-
ware is being tested, only to surface on the customer’s computer when run in a dif-
ferent environment and under different conditions. Making use of Application
Verifier (pageheap) at all times is a prerequisite to ensuring that heap corruptions are
detected before shipping software and avoiding costly problems on the customer site.
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C H A P T E R  7

SECURITY

Over a relatively short period of time, the attitude toward software security has
changed dramatically, both from the developer perspective, as well as from the user
perspective. Years ago, computers were mostly disconnected devices, and offline
media, mostly floppy disks, was the main source of computer security problems. The
big problem at that time was represented by viruses. Today, almost every computer
security problem is remotely exploitable because of the high connectivity rate. 

Older operating systems, such as Windows 95, provided no support for securing
objects stored on the local computer. The advent of the Windows NT code base in con-
sumer markets made a secure C2-compliant kernel available to consumers. Today, the
consumer versions of the Windows operation system—namely Windows XP Home and
Windows Vista Home—control the access to each object, and, as such, the chance
increases for encountering an access denied failure. Another push comes from the secu-
rity community to always run a process with the least privileged user. In this case, the host
computer is isolated from security vulnerabilities that might exist in the applications.
How feasible is it to run the application as a nonadministrator? Perhaps it is possible for
a few applications, designed with security in mind, while the majority of them will still try
to access a registry location or a file system location reserved only to administrators. 

Hopefully, object security will become a first-class development pillar. This chap-
ter provides the information required to start the journey toward successful under-
standing and fixing of software security problems. This chapter focuses primarily on
steps executed when a legal operation completes with success of failure and doesn’t
describe unexpected behavior of code because of code defects (buffer overflow, inte-
ger overflow, buffer overrun), currently exploited by viruses, as it is covered very well
in several reference books. In this chapter, we explore the following:

■ The basics of Windows security and how Windows Security actually works. We
summarize the essential information required to understand security-related
problems. 

■ How to inspect various security elements using the debugger extensions. This sec-
tion introduces several extension commands essential to debugging security
aspects. 

■ How to combine the techniques and information presented so far in the book
to resolve problems caused by unexpected security restrictions.
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Windows Security Overview

Any Windows securable object, which can be represented by a handle to it, has secu-
rity information attached to it, and it is protected using standard Windows security
mechanisms. The Windows security model uses three security concepts: 

■ The discretionary access control list (DACL): Describes what principal can use
the object and how

■ The identity of the user: Also known as principal
■ The Security Reference Monitor (SRM): Uses the information available to

restrict the access to the object protected by it 

DACLs associated with Windows securable objects are managed by the object cre-
ator itself. The DACL is a component within another structure known as the securi-
ty descriptor, which is a small piece of information stored along with the object in the
secured store. The security descriptor is retrieved from the secured store, and it is
used every time the object is accessed by a new principal. For example, the files secu-
rity descriptors are stored in the NTFS file system, the registry keys security descrip-
tors are stored in the registry hives, whereas the kernel objects have the security
descriptors stored in the kernel address space.   

The Windows SRM runs in the kernel address space, isolated from the user mode
code. Most securable objects are created and managed by kernel components that
use the address separation to protect the associated security descriptor from the user
mode components. Because user mode components cannot use the kernel for imple-
menting their own secure object brokers, several components in Windows implement
custom security models using ideas similar to the Windows security mechanisms.

A custom object broker must enforce the mechanism for accessing its object. In
other words, when designing a securable objects broker, you must ensure that this
object cannot be accessed by using any other mechanism. In those cases, the object
broker takes the SRM role and manages the object security descriptors in its propri-
etary ways. To ensure functional consistency with the rest of the operating system and
use the same user interface controls in security settings, the object broker will most
likely use the same data structures as Windows SRM. 

The other essential component in access control is the security principal, created
and certified by the operating system. The security principal is stored in an access
token that aggregates the list of group security principals having the principal as a
member, the list of special privileges granted by the operating system, plus other
information used by the various components in the system. 

The access to an object is represented by a collection of bits, each bit represent-
ing a right (specific to the object’s nature) that can be granted or denied to a principal. 
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The next section describes all the security structures relevant to debugging Windows
applications, and it presents various methods for inspecting them. Readers familiar with
those concepts can skip this section. All examples use three new extension commands:
!sd, !token, and !sid, available in the default extension loaded by debuggers. This
chapter uses the 07sample.exe with the source code and binary located in the following
folders: 

Source code: C:\AWD\Chapter7
Binary: C:\AWDBIN\WinXP.x86.chk\07sample.exe

Because the security errors are often encountered in distributed applications, this
chapter also uses the sample created for Chapter 8, “Interprocess Communication,”
consisting of a client application 08cli.exe, a library, 08comps.dll that contains the
proxy-stub code, and a server application 08comsrv.exe. The 08comsrv.exe must be
registered using the 08comsrv.exe /RegServer command line, and 08comps.dll must
be registered using the regsvr32 08comps.dll command line. The source code and the
binary files are located in the following folders: 

Source code: C:\AWD\Chapter8
Binaries: C:\AWDBIN\WinXP.x86.chk\08cli.exe, 08comps.dll, and
08comsrv.exe.

The Security Identifier
The security identifier, also known as SID, is one of the basic concepts used in Windows
Security. The SID identifies a principal or an attribute that is unique relative to the realm
of identifiers available in the operating system using that SID. The SID is represented
as a simple structure, declared in the winnt.h header file, as shown in Listing 7.1.

Listing 7.1

typedef struct _SID_IDENTIFIER_AUTHORITY {

BYTE  Value[6];

} SID_IDENTIFIER_AUTHORITY;

typedef struct _SID {

BYTE  Revision;

BYTE  SubAuthorityCount;

SID_IDENTIFIER_AUTHORITY IdentifierAuthority;

DWORD SubAuthority[1];

} SID;

7.
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The SID structure is a variable length structure that contains a variable number of
SubAuthority entries, designed to represent any principal. The SIDs are grouped
based on the IdentifierAuthority. The layout of the SID in memory is trivial,
easily understood by the computer, but difficult for humans to interpret. In technical
documentation, the SIDs are represented as strings having the form of S-R-I-S-S-S-
…-S, where R is the revision level, I identifies the authority controlling the SID, and
S is one or more relative subauthority identifiers managed by the authority.

Windows SIDs have the Revision field set to 1 and can have up to six subauthor-
ities. Windows has the IdentifierAuthority equal to five: {0, 0, 0, 0, 0, 5}. For
example, Local System, identified as S-1-5-18, is represented in memory by the
sequence of bytes shown in the next listing (separated in multiple lines corresponding
to each SID component):

0:000> db 000840c8 Lc

000840c8  01 

01 

00 00 00 00 00 05-

12 00 00 00              ............ 

The first line represents the SID revision, the second line is the number of RID ele-
ments, followed by the Windows authority identifier, and the last one is the RID. This
data structure is interpreted and converted to the “S-…” string format by the !sid
extension command, as follows:

0:000> !sid 000840c8

SID is: S-1-5-18 

The Access Control List 
The next fundamental structure encountered in debugging Windows security prob-
lems is the access control entry (ACE). The ACE indicates what rights are granted to
a principal, identified by its SID, over the object protected by that ACE. A collection
of ordered ACE forms an Access Control List (ACL), which controls the access rights
to the underlying object for all principals. 

Structurally, each ACE has a common ACE_HEADER followed by ACE-specific
data, an old “C” technique for implementing object polymorphism. All ACE types are
very well documented in MSDN, as well as in the winnt.h header file. The current sec-
tion describes just the ACCESS_ALLOWED_ACE because it is the most used struc-
ture. All other ACE types are similar and can be found in the winnt.h header file as
well. The ACE structure’s header is declared as following:
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typedef struct _ACE_HEADER {

BYTE  AceType;

BYTE  AceFlags;

WORD   AceSize;

} ACE_HEADER;  

typedef struct _ACCESS_ALLOWED_ACE {

ACE_HEADER Header;

ACCESS_MASK Mask;

DWORD SidStart;

} ACCESS_ALLOWED_ACE;

The AceType field identifies the structure type following the ACE_HEADER. The com-
mon practice is to cast the generic ACE_HEADER structure to the concrete ACE type
such as ACCESS_ALLOWED_ACE, depending on the AceType field value. The Mask
field is a DWORD type combining all the rights granted by this ACE. Each bit has
the meaning presented in Table 7.1. From this table, only the least significant 21 bits
are effective rights used as such in the ACE; all other bits are used in other contexts
in which an access mask is required.  

Table 7.1

Bits Meaning

31 Generic Read
30 Generic Write
29 Generic Execute
28 Generic All
25 to 27 Reserved
24 SACL access 
21 to 23 Not defined
20 Synchronize
19 Write Owner
18 Write DAC
17 Read DAC
16 Delete
0 to 15 Object specific rights

7.
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The ACL structure is declared in the winnt.h header file, as follows:

typedef struct _ACL {

BYTE  AclRevision;

BYTE  Sbz1;

WORD   AclSize;

WORD   AceCount;

WORD   Sbz2;

} ACL;

In a real ACL, a variable number of ACEs (as indicated by AceCount) follows this
structure, using a continuous memory area of AclSize bytes. Currently, all ACLs
used in the Windows operating system have the revision equal to 2. An ACL can be
easily decoded using the !acl extension command, as in the following:

0:000> !acl 000840ac

ACL is:

ACL is: ->AclRevision: 0x2

ACL is: ->Sbz1       : 0x0

ACL is: ->AclSize    : 0x1c

ACL is: ->AceCount   : 0x1

ACL is: ->Sbz2       : 0x0

ACL is: ->Ace[0]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

ACL is: ->Ace[0]: ->AceFlags: 0x0

ACL is: ->Ace[0]: ->AceSize: 0x14

ACL is: ->Ace[0]: ->Mask : 0x00120089

ACL is: ->Ace[0]: ->SID: S-1-1-0 

The Security Descriptor
All structures seen so far are aggregated in the security descriptor (SD) structure,
defined in the winnt.h header file as shown here:

typedef WORD   SECURITY_DESCRIPTOR_CONTROL;

typedef struct _SECURITY_DESCRIPTOR {

BYTE  Revision;

BYTE  Sbz1;

SECURITY_DESCRIPTOR_CONTROL Control;

PSID Owner;

PSID Group;

PACL Sacl;

PACL Dacl;

} SECURITY_DESCRIPTOR;
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The revision used by the Windows operating systems is set to 1. The Control field
describes the security descriptor content, such as indicating whether the security
descriptor contains a DACL (when SE_DACL_PRESENT flag is set) or a SACL, and
much more. All pointers used inside the security descriptor should be treated as off-
sets from the security descriptor base address when the SE_SELF_RELATIVE bit is
set in the Control field; otherwise, the addresses are absolute.  

To understand how these structures are laid out in memory, we use the 07sam-
ple.exe executable with the option ‘0,’ which exercises security descriptor-related
APIs. The source code, shown in Listing 7.2, creates a security descriptor starting
from a string using security descriptor definition language (SDDL). The rights of the
user accessing the object protected by that security descriptor are obtained using the
advapi32!AccessCheck API.

Listing 7.2

void Sample0()

{

LPWSTR stringSD = L”O:SYG:BAD:(A;;FR;;;S-1-1-0)”;

PSECURITY_DESCRIPTOR sd = NULL;

...

if (FALSE == ConvertStringSecurityDescriptorToSecurityDescriptor(

stringSD, SDDL_REVISION_1, &sd, NULL))

{ ...  }

ImpersonateSelf(SecurityIdentification);

STOP_ON_DEBUGGER;

HANDLE hToken=NULL;

if (!OpenThreadToken(

GetCurrentThread(), TOKEN_QUERY, TRUE, &hToken))

{ ...  }

RevertToSelf();

...

if (FALSE == AccessCheck(

sd, 

hToken, 

MAXIMUM_ALLOWED, 

&rightsMapping,

privileges,&privilegesSize ,

&grantedAccess, 

&grantedAccessStatus))

{

TRACE(L”AccessCheck failed “);

}

...

}

7.
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Common Sources of Security Descriptors The address of a security descriptor is
often available in the private symbols. When the private symbols are not available,
the security descriptor used for access checks can be discovered as the first parame-
ter to the advapi32!AccessCheck API. The next section interprets the parameter
available on the stack after taking into consideration the calling convention used by
the API (__stdcall in this case). The function declaration is as follows: 

WINADVAPI BOOL WINAPI AccessCheck (

IN PSECURITY_DESCRIPTOR pSecurityDescriptor,

IN HANDLE ClientToken,

IN DWORD DesiredAccess,

IN PGENERIC_MAPPING GenericMapping,

OUT PPRIVILEGE_SET PrivilegeSet,

IN LPDWORD PrivilegeSetLength,

OUT LPDWORD GrantedAccess,

OUT LPBOOL AccessStatus );

We start the 07sample.exe application under a user mode debugger, such as wind-
bg.exe, and set a breakpoint at the API address. The security descriptor is then dis-
played byte by byte in Listing 7.3. 

Listing 7.3

0:000> k2

ChildEBP RetAddr

0006fe9c 0100204e ADVAPI32!AccessCheck

0006ff00 01001f33 07sample!Sample0+0x10e

0:000> dc @esp L4

0006fea0  0100204e 00084098 000007bc 02000000  N ...@.......... 

0:000> db 00084098 L4c

00084098  01 00 04 80 30 00 00 00-3c 00 00 00 00 00 00 00  ....0...<.......

000840a8  14 00 00 00 02 00 1c 00-01 00 00 00 00 00 14 00  ................

000840b8  89 00 12 00 01 01 00 00-00 00 00 01 00 00 00 00  ................

000840c8  01 01 00 00 00 00 00 05-12 00 00 00 01 02 00 00  ................

000840d8  00 00 00 05 20 00 00 00-20 02 00 00              .... ... ... 

Although the entire security descriptor can be deciphered manually, the best option
is to use the provided !sd extension command. The result of using it is shown in
Listing 7.4. 
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Listing 7.4 !sd

kd> !sd 00084098

->Revision: 0x1

->Sbz1    : 0x0

->Control : 0x8004

SE_DACL_PRESENT

SE_SELF_RELATIVE

->Owner   : S-1-5-18

->Group   : S-1-5-32-544

->Dacl    :

->Dacl    : ->AclRevision: 0x2

->Dacl    : ->Sbz1       : 0x0

->Dacl    : ->AclSize    : 0x1c

->Dacl    : ->AceCount   : 0x1

->Dacl    : ->Sbz2       : 0x0

->Dacl    : ->Ace[0]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

->Dacl    : ->Ace[0]: ->AceFlags: 0x0

->Dacl    : ->Ace[0]: ->AceSize: 0x14

->Dacl    : ->Ace[0]: ->Mask : 0x00120089

->Dacl    : ->Ace[0]: ->SID: S-1-1-0

->Sacl    :  is NULL 

The SID and the ACL introduced in the previous sections are part of this security
descriptor. Those structure addresses are relative to the security descriptor address and
can be easily extracted when the extension does not work because of a symbol mismatch. 

The Access Token
The security descriptor is useful only if we can securely identify the principal request-
ing access to the secured object protected by the security descriptor. The principal’s
identity, as well as all privileges granted to it, is encapsulated into a kernel structure
called an access token. The access token is used by user mode components by a han-
dle to the token. Those access tokens can be inspected using the !token extension
command, which accepts as an argument either the access token address, as normal-
ly used in kernel mode debuggers, or a handle to it, as used in user mode debuggers.
If the extension is used without an argument, it displays the thread impersonation
access token, if present; otherwise, it uses the process token. In Listing 7.5, we use
the token passed to the advapi32!AccessCheck function in Listing 7.3. Because we
use the –n option, the extension command resolves the name associated with each
SID (shown in parenthesis after the SID).

7.
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Listing 7.5 !token

0:000> * Displays the information for token handle 0x7bc

0:000> !token 7bc -n

TS Session ID: 0

User: S-1-5-21-1060284298-2111687655-1957994488-1003 (User: XP-SP2\TestAdmin)

Groups:

00 S-1-5-21-1060284298-2111687655-1957994488-513 (Group: XP-SP2\None)

Attributes - Mandatory Default Enabled

01 S-1-1-0 (Well Known Group: localhost\Everyone)

Attributes - Mandatory Default Enabled

02 S-1-5-32-544 (Alias: BUILTIN\Administrators)

Attributes - Mandatory Default Enabled Owner

03 S-1-5-32-545 (Alias: BUILTIN\Users)

Attributes - Mandatory Default Enabled

04 S-1-5-4 (Well Known Group: NT AUTHORITY\INTERACTIVE)

Attributes - Mandatory Default Enabled

05 S-1-5-11 (Well Known Group: NT AUTHORITY\Authenticated Users)

Attributes - Mandatory Default Enabled

06 S-1-5-5-0-35778 (no name mapped)

Attributes - Mandatory Default Enabled LogonId

07 S-1-2-0 (Well Known Group: localhost\LOCAL)

Attributes - Mandatory Default Enabled

Primary Group: S-1-5-21-1060284298-2111687655-1957994488-513 (Group: XP-SP2\None)

Privs:

00 0x000000017 SeChangeNotifyPrivilege           Attributes - Enabled Default

01 0x000000008 SeSecurityPrivilege               Attributes -

...

17 0x000000009 SeTakeOwnershipPrivilege          Attributes -

18 0x00000001e SeCreateGlobalPrivilege           Attributes - Enabled Default

19 0x00000001d SeImpersonatePrivilege            Attributes - Enabled Default

Auth ID: 0:1c3a8

Impersonation Level: Identification

TokenType: Impersonation

Looking carefully at all SIDs in this token, we can group them in security group prin-
cipals, user principals, and identifiers, such as the LogonId. The SID concept is very
flexible because it is just a unique identifier used to represent different entities, such
as those shown in Table 7.2. 
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Table 7.2

SID Types SID Value Examples

User identity S-1-5-21-1060284298-2111687655-1957994488-1003
Group identity S-1-5-21-1060284298-2111687655-1957994488-513
Logon origin S-1-5-4 (interactive)
User session S-1-5-5-0- 35778
Attributes S-1-2-0 (local)

Several SIDs used as attributes or abstract group’s membership encountered every-
where are called Well-Known SIDs. Table 7.3 contains a short list of the most com-
mon SIDs. The MSDN, as the authoritative information source, contains the most
up-to-date list with Well-Known SIDs used in Windows operating systems. 

Table 7.3

SID Value SID Usage

S-1-1-0 Special SID representing the Everyone security group
S-1-5-18 Special SID representing the LocalSystem account
S-1-5-19 Special SID representing the LocalService account
S-1-5-20 Special SID representing the NetworkService account 
S-1-5-6 User logged as a service
S-1-5-2 User logged on through the network
S-1-5-3 User logged on as a batch account
S-1-5-4 User logged interactively
S-1-5-5-X-Y Identifies the user session

The extension shows a list of SIDs representing the token principal’s identity and the
security groups this principal is part of. Afterward, the extension shows a list of priv-
ileges granted to this user, some of them being enabled. The token information is
established each time the user logs on to the system and remains unchanged for the
logon session lifetime. The privileges can be enabled or disabled by the application
and can be removed but not added to the token. The same principal authenticated on
different systems gets various token information, group membership, or privileges
granted to it.

7.
SECURITY



328 Chapter 7 Security

The interaction between those concepts can be exemplified by a real-life analo-
gy. The access token is the passport used by travelers, or principals, to identify them-
selves at different borders. The security descriptor represents the immigration law,
used by the immigration officer in the visiting country, that describes the traveler’s
rights and requirements, based on the country of origin. All information in the pass-
port, such as country of origin or stamps obtained from different consulates, can be
mapped to token group memberships and privileges. The immigration agent, the ana-
log of the code performing the access check, trusts the passport issuer—the operat-
ing system, in this case—and is sure (harder to achieve in real life) that the passport
is not falsified. Depending on the immigration law (security descriptor), the traveler
is allowed or denied the right to visit the country (access the object). 

In real life, there is no country without an immigration policy, and the software is
at least as secure; each object is protected by a security descriptor. In real life, the
management of identity documents, the immigration regulation, and travel visa man-
agement are performed in small circles under strict control. To achieve the same level
of trust in the Windows operating systems, the access token management is done
exclusively by the trusted computing base components, known as TCB. Each com-
ponent running in TCB is trusted by the operating system and implicitly by each user
of the security system. 

The remainder of this chapter uses the preceding information to explore or
resolve various cases in which security plays an important role. 

Source of Security Information

To be able to navigate safely in the vast land of security, the engineers need some
clues as far as where to look for security information and what to expect when they
find it. 

Access Tokens
Where are the access tokens stored, and how can they be found? The Windows oper-
ating system enforces a primary access token for each process in the system. This
token identifies the principal creating the logon session hosting the process and is
used by default for all object access. The address of the primary access token is avail-
able in the nt!EPROCESS structure corresponding to each process. Process access
tokens can be displayed from both user mode and kernel mode debuggers, using the
!token extension command.
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In the user mode debugger, the primary access token is automatically displayed
by the !token extension command if the current thread is not impersonating. In the
kernel mode debugger, the primary access token address is part of the basic informa-
tion about the process, displayed by the !process extension command, as shown in
Listing 7.6. The listing assumes that the sample process is running on the system. 

Listing 7.6

kd> * The option 1 displays process basic information (Token, Stats)  

kd> !process 0 1 07sample.exe

PROCESS 81136930  SessionId: 0  Cid: 045c    Peb: 7ffd8000  ParentCid: 030c

DirBase: 0ae64000  ObjectTable: e13e5d38  HandleCount:  18.

Image: 07sample.exe

VadRoot 811eaa90 Vads 24 Clone 0 Private 50. Modified 0. Locked 0.

DeviceMap e164c948

Token                            e1424030

ElapsedTime                       00:46:16.327

...

kd> * Token field contains the address of the primary access token 

In a client-server application, the Windows operating system relies heavily on imper-
sonation. Impersonation is a flexible mechanism by which a thread uses an access
token different from the primary access token for accessing all objects from that
thread. The thread object, represented in the kernel by the nt!ETHREAD structure,
has a reference to the impersonating access token. The basic !thread extension com-
mand displays an explicit message when the thread is impersonating, stating the
impersonation token and the impersonation level. Listing 7.7 uses the main thread of
07sample.exe immediately after the ImpersonateSelf function returns. 

Listing 7.7

Using the kernel mode debugger
kd> * Displays the thread, referred by kernel thread object

kd> !thread ffad3020

THREAD ffad3020  Cid 045c.03f0  Teb: 7ffdf000 Win32Thread: 00000000 RUNNING on

processor 0

Impersonation token:  e1424568 (Level Identification)

... 

kd> * Token field contains the address of the impersonation token 

Using the user mode debugger
0:000> !token –n

TS Session ID: 0

User: S-1-5-21-1060284298-2111687655-1957994488-1003 (User: XP-SP1\TestAdmin)

...
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When the thread is not impersonating, the impersonation state is clearly shown in the
dump in Listing 7.8. All threads in the system start their life in this state, regardless
of the impersonating state of the thread creating them. 

Listing 7.8

Using the kernel mode debugger
kd> !thread ffad3020

THREAD ffad3020  Cid 045c.03f0  Teb: 7ffdf000 Win32Thread: 00000000 RUNNING on

processor 0

Not impersonating

... 

kd> * Token field is missing. The thread is in Not impersonating state

Using the user mode debugger
0:000> !token

Thread is not impersonating. Using process token

...

Last, the access tokens are available as a result of various API calls creating or return-
ing handles to access tokens. If the handle value is known, either from the API output
or by other methods, those access tokens can be inspected, as shown in Listing 7.5. 

When the thread impersonates an access token, every native API uses that iden-
tity to perform the necessary access checks. If the thread is not impersonated, the
process access token is to be used instead for each access check test, with one notable
exception. In the case of the advapi32!OpenThreadToken API, the developer can
choose this identity between the primary access token process and the impersonation
access token using the OpenAsSelf parameter. However, we believe that any access
token should always be accessible to the process using it. 

A user mode application obtains the access token used by Security Reference
Monitor by calling the advapi32!OpenThreadToken or the advapi32!OpenProcessToken
API. The same APIs are used by the user mode extension, exts.dll, when implementing
the !token extension command. When the !token extension command shows no imper-
sonating state for a thread under user mode debugger, the output should be taken with
a grain of salt. The extension always falls back to the primary token when it fails to get
impersonation information, as we show later in the !token sections.

Security Descriptors
Where are security descriptors stored? We know that all objects are secured by an
attached security descriptor stored in various locations. All kernel objects contain a
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common header structure, preceding the real object memory address. The header
structure, named _OBJECT_HEADER, contains, along with the reference counters and
the object type, a pointer to the security descriptor protecting the object. In Listing
7-9, we use a different running instance of the 02sample.exe. The process object is
used as a starting point for obtaining the object header that contains the pointer to
the security descriptor protecting this object.  

Listing 7.9

kd> !process 0 0 07sample.exe

PROCESS ffbbc818 SessionId: 0  Cid: 01c4    Peb: 7ffde000  ParentCid: 00ac

DirBase: 0232e000  ObjectTable: e1112e10  HandleCount:   8.

Image: 07sample.exe

kd> !object ffbbc818

Object: ffbbc818  Type: (812ee900) Process

ObjectHeader: ffbbc800

HandleCount: 2  PointerCount: 7

kd> dt _OBJECT_HEADER ffbbc800

+0x000 PointerCount     : 7

+0x004 HandleCount      : 2

+0x004 NextToFree       : 0x00000002

+0x008 Type             : 0x812ee900 _OBJECT_TYPE

+0x00c NameInfoOffset   : 0 ‘’

+0x00d HandleInfoOffset : 0 ‘’

+0x00e QuotaInfoOffset  : 0 ‘’

+0x00f Flags            : 0x20 ‘ ‘

+0x010 ObjectCreateInfo : 0x812ca8e8 _OBJECT_CREATE_INFORMATION

+0x010 QuotaBlockCharged : 0x812ca8e8

+0x014 SecurityDescriptor : 0xe198bb92

+0x018 Body             : _QUAD

The header contains a pseudo pointer to the object security descriptor. The pseudo
pointer uses the last three bits to store state information unrelated to the security
descriptor address. This is possible because of the memory alignment used by the
security descriptors. After masking the least significant bits, the address points to a
valid security descriptor that can be displayed with the !sd extension command, as
shown in Listing 7.10. 

7.
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Listing 7.10

kd> !sd 0xe198bb92 & 0xFFFFFFF8

->Revision: 0x1

->Sbz1    : 0x0

->Control : 0x8004

SE_DACL_PRESENT

SE_SELF_RELATIVE

->Owner   : S-1-5-21-1060284298-2111687655-1957994488-1003

->Group   : S-1-5-21-1060284298-2111687655-1957994488-513

->Dacl    :

->Dacl    : ->AclRevision: 0x2

->Dacl    : ->Sbz1       : 0x0

->Dacl    : ->AclSize    : 0x40

->Dacl    : ->AceCount   : 0x2

->Dacl    : ->Sbz2       : 0x0

->Dacl    : ->Ace[0]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

->Dacl    : ->Ace[0]: ->AceFlags: 0x0

->Dacl    : ->Ace[0]: ->AceSize: 0x24

->Dacl    : ->Ace[0]: ->Mask : 0x001f0fff

->Dacl    : ->Ace[0]: ->SID: S-1-5-21-1060284298-2111687655-1957994488-          1003

->Dacl    : ->Ace[1]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

->Dacl    : ->Ace[1]: ->AceFlags: 0x0

->Dacl    : ->Ace[1]: ->AceSize: 0x14

->Dacl    : ->Ace[1]: ->Mask : 0x001f0fff

->Dacl    : ->Ace[1]: ->SID: S-1-5-18

->Sacl    :  is NULL

Because the security descriptor address is stored right before the object address, to
simplify the operation of getting an object security descriptor, all steps required to get
it can be combined in a single line, as follows:

!sd poi(<object_address>-4) & FFFFFFF8

Not all objects accessible at any given time in the kernel memory have a security
descriptor that can be accessed using the method described in Listing 7.10. Persistent
kernel objects, such as files or registry keys, keep the security descriptor in a second-
ary store and manage the security access through their proprietary mechanism. If we
are looking at a registry key object, we can see that it has the security descriptor
NULL, which does not allow us to statically examine the security descriptor. To
demonstrate this case, we used option ‘4’ in the sample, which opens a few registry
keys. 
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Listing 7.11

kd> k4

ChildEBP RetAddr

0006ff00 01001f33 07sample!Sample4Get+0x45

0006ff18 01001e48 07sample!AppInfo::Loop+0xb3

0006ff7c 01002aa6 07sample!wmain+0xa8

0006ffc0 7c816fd7 07sample!__wmainCRTStartup+0x102

kd> dv *key

softwareKey = 0x000007f4

bookKey = 0x77c2ed0e

kd> !handle 7f4

processor number 0, process ffbbc818

PROCESS ffbbc818  SessionId: 0  Cid: 01c4    Peb: 7ffde000  ParentCid: 00ac

DirBase: 0232e000  ObjectTable: e1112e10  HandleCount:   9.

Image: 07sample.exe

Handle table at e122f000 with 9 Entries in use

07f4: Object: e18cce60  GrantedAccess: 00020019 Entry: e122ffe8

Object: e18cce60  Type: (812e4e70) Key

ObjectHeader: e18cce48

HandleCount: 1  PointerCount: 1

Directory Object: 00000000  Name: \REGISTRY\MACHINE\SOFTWARE

kd> dt _OBJECT_HEADER e18cce48

+0x000 PointerCount     : 1

+0x004 HandleCount      : 1

+0x004 NextToFree       : 0x00000001

+0x008 Type             : 0x812e4e70 _OBJECT_TYPE

+0x00c NameInfoOffset   : 0 ‘’

+0x00d HandleInfoOffset : 0 ‘’

+0x00e QuotaInfoOffset  : 0 ‘’

+0x00f Flags            : 0 ‘’

+0x010 ObjectCreateInfo : 0x812ca8e8 _OBJECT_CREATE_INFORMATION

+0x010 QuotaBlockCharged : 0x812ca8e8

+0x014 SecurityDescriptor : (null)

+0x018 Body             : _QUAD

When the security descriptor is not easily available for inspection, its value can be val-
idated at the moment the object broker performs the access check. All other user
mode components exposing objects not managed by the kernel (such as Service
Control Manager) also use their own mechanism to manage their security descriptors. 

7.
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How Is the Security Check Performed? 

To ensure consistent access rules across Windows components, the kernel implements a
set of security APIs with the signature published in the ntddk.h header file. The central
function is the kernel function SeAccessCheck used by the user mode components
through the advapi32!AccessCheck API. SeAccessCheck takes as parameters the secu-
rity descriptor, the access token (in the SubjectSecurityContext parameter), and
the requested access.

BOOLEAN SeAccessCheck (

IN PSECURITY_DESCRIPTOR SecurityDescriptor,

IN PSECURITY_SUBJECT_CONTEXT SubjectSecurityContext,

IN BOOLEAN SubjectContextLocked,

IN ACCESS_MASK DesiredAccess,

IN ACCESS_MASK PreviouslyGrantedAccess,

OUT PPRIVILEGE_SET *Privileges OPTIONAL,

IN PGENERIC_MAPPING GenericMapping,

IN KPROCESSOR_MODE AccessMode,

OUT PACCESS_MASK GrantedAccess,

OUT PNTSTATUS AccessStatus);

The access granted by user mode code can be easily identified in the debugger by
inspecting the return value and the output parameters filled by the
advapi32!AccessCheck API. The access granted by kernel mode code can be identi-
fied by inspecting the return from the SeAccessCheck kernel API. To identify access
problems caused by improper security settings on various files and registry keys, we
can also use tracing tools such as Process Monitor, tools provided free of charge by
Microsoft. 

Identity Propagation in Client-Server Applications

Most applications use the primary access token for all operations. Client-server applica-
tions often use the impersonation model, in which the server executes most, if not all, of
the client requests in the context of an impersonation access token obtained from that
client. The impersonation access token is propagated by specific functionality exposed by
the interprocess communication infrastructure used to support the client-server conver-
sation. Impersonation functions—such as ntdll!NtImpersonateClientOfPort, exposed by
the LPC communication mechanism; rpcrt4!RpcImpersonateClient, implemented by
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the RPC infrastructure; and advapi32!ImpersonateNamedPipeClient, implemented by
the file system redirector—impersonate the caller thread with the client access token
used to invoke the server using the respective facilities. In some cases, user credentials
are available on the server side, especially in the case of Web-based applications, and the
server creates an access token by invoking advapi32!LogonUser(Ex)W directly. 

Each protocol uses its proprietary mechanism to propagate the identity of the
client. When the client and the server reside on different systems, the Security Server
Provider Interface (SSPI) can be used to propagate the security information for
client-server applications. 

rpcrt4!RpcImpersonateClient is a special “proxy” function that delegates the
impersonation request to the underlying communication mechanism used by RPC for
that connection. When RPC is used to communicate between two processes residing
in the same system, the call uses LPC functions to achieve the result. When the client
runs on a different system from the server, RPC uses either the file system redirector
functionality, in the case of remote calls using transport security, or SSPI functional-
ity in the vast majority of the cases. 

Remote Authentication and Security Support Provider
Interface
The client has a set of credentials that must be presented to the server. These cre-
dentials are used to represent the client principal in the server system. SSPI is used
to authenticate remote credentials through a variety of security providers, such as
NTLM authentication, Kerberos domain-based authentication, or client certificate
authentication. 

To authenticate to the remote system, the client initiates the call sequence by pass-
ing the set of credentials to the secur32!InitializeSecurityContextW API. The opaque
blob of data resulting from this call is sent over the wire protocol to the server. The serv-
er takes the blob and passes it to the secur32!AcceptSecurityContext API, which gen-
erates yet another opaque block of data and tells the server if the authentication is
complete. If not, the server-generated block is then sent to the client, which uses it as
a parameter to another secure32!InitializeSecurityContextW call. The resultant data
blob is sent back to the server, and the process repeats several times until the security
package used for the authentication can validate the credential. When the message
exchange is complete, the server calls secure32!ImpersonateSecurityContext with the
last data blob to impersonate the client. This sequence of calls is often referred to as the
ISC/ASC sequence.  

7.
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Chapter 8 shows how this remote authentication looks on the wire. Listing 7.12 is
captured from the server process before the remote client establishes a connection to
the server. The return code from every secur32!AcceptSecurityContext call is an
important clue for how the ISC/ASC is doing, and each error detected by the respec-
tive authentication package is a perfect clue for understanding why the remote authen-
tication fails when it does—a clue often lost by a high-level API using the SSPI.

Listing 7.12

0:009> bp Secur32!AcceptSecurityContext

0:009> bp Secur32!ImpersonateSecurityContext

0:003> g

...

Breakpoint 0 hit

eax=0009be20 ebx=00000000 ecx=0009722c edx=76f9d1e0 esi=00097220 edi=000000a6

eip=76f949ba esp=005bfe68 ebp=005bfea8 iopl=0         nv up ei pl nz na pe nc

Secur32!AcceptSecurityContext:

76f949ba 55               push    ebp

0:003> k

ChildEBP RetAddr

005bfe64 78023b9f Secur32!AcceptSecurityContext

005bfea8 78023b22 RPCRT4!SECURITY_CONTEXT::AcceptThirdLeg+0x3e

005bff18 78004aed RPCRT4!OSF_SCONNECTION::ProcessReceiveComplete+0x595

005bff28 78001848 RPCRT4!ProcessConnectionServerReceivedEvent+0x20

0:003> * Third Leg is a concept used in NTLM authentication

0:003> g

Breakpoint 1 hit

eax=76f9d1e0 ebx=005bf83c ecx=0009722c edx=75867028 esi=000971e0 edi=005bf848

eip=76f95099 esp=005bf75c ebp=005bf768 iopl=0         nv up ei pl nz na pe nc

Secur32!ImpersonateSecurityContext:

76f95099 55               push    ebp

0:003> k
ChildEBP RetAddr

005bf758 7802372a Secur32!ImpersonateSecurityContext

005bf768 78023701 RPCRT4!SECURITY_CONTEXT::ImpersonateClient+0x39

005bf770 78004443 RPCRT4!OSF_SCONNECTION::ImpersonateClient+0x3b

005bf778 75852a8f RPCRT4!RpcImpersonateClient+0x64

0:003> * The RPCImpersonateClient function uses the SSPI function

After all functions shown previously are successfully executed, the calling thread then
impersonates the client impersonation access token. The return from the
secur32!ImpersonateSecurityContext API is a perfect place to set breakpoints
in a security investigation, after the server executes the impersonation function: 
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0:003> gu

eax=00000000 ebx=005bf83c ecx=c000023c edx=7ffe0304 esi=000971e0 edi=005bf848

eip=7802372a esp=005bf764 ebp=005bf768 iopl=0         nv up ei pl zr na po nc

RPCRT4!SECURITY_CONTEXT::ImpersonateClient+0x39:

7802372a 85c0             test    eax,eax

After checking the return code, which indicates a successful impersonation according
to MSDN, check the thread impersonation access token using the !token extension
command, as shown in Listing 7.13.

Listing 7.13

0:003> !token –n

TS Session ID: 0

User: S-1-5-21-1060284298-2111687655-1957994488-1003 (User: XP-SP1\TestAdmin)

...

Auth ID: 0:2780c

Impersonation Level: Impersonation

TokenType: Impersonation

After impersonation, the thread can revert to a nonimpersonating state by using a revert
function usually matching the impersonation method, both found in MSDN on the
same page. Another common impersonation function is advapi32!SetThreadToken,
used when the server already has a handle to the client access token obtained through
other means. This is commonly used when the server keeps a cache of access tokens
and manages their use. advapi32!ImpersonateSelf is another API used in a situation in
which a thread needs to use a token similar to the primary access but with a different
group membership or a list of enabled privileges.   

Impersonation Level
Another interesting component of the access token, as seen before, is its
ImpersonationLevel. The impersonation level is the restriction imposed by the
client on the access token usage by the server, a restriction enforced by the operating
system. A thread impersonating an access token at an impersonation level less than
SecurityImpersonation is incapable of acquiring any secured resource on the
system running the server process. 

To show the importance of the impersonation level, the example shown in Listing
7.14 makes several calls to GetComputerNameEx API while impersonating the pri-
mary access token at different impersonation levels. This function can be exercised by
using option ‘1’ in 07sample.exe. 

7.
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Listing 7.14

void Sample1()

{

WCHAR computerName[MAX_PATH];

DWORD arrayLength = MAX_PATH;

BOOL retCode = TRUE;

ImpersonateSelf(SecurityAnonymous);

retCode = GetComputerNameEx(ComputerNameNetBIOS, computerName,     &arrayLength);

RevertToSelf();

...

ImpersonateSelf(SecurityDelegation);

retCode = GetComputerNameEx(ComputerNameNetBIOS, computerName,   &arrayLength);

RevertToSelf();

if (retCode != TRUE)

{

TRACE(L”GetComputerName fails with token @ SecurityDelegation.”);

} 

The following output shows the results of an execution that fails when the imperson-
ation level is set to SecurityAnonymous or SecurityIdentify:

GetComputerName fails with token @ SecurityAnonymous.Last error = 1346

GetComputerName fails with token @ SecurityIdentification.Last error = 1346 

A quick look in the winerror.h header file reveals the 1346L error as being the
ERROR_BAD_IMPERSONATION_LEVEL error. The error code can also be deci-
phered by using the net helpmsg <error> command line or the !error exten-
sion command.

Security Checks at System Boundaries

Today, even the simpler applications have complicated interactions with the operat-
ing system components running in various contexts. For example, when you’re test-
ing an application in a restricted security context, the application fails to open a file
or to log errors in to the Event Log. How will someone start debugging it? In the next
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section, we evaluate some common scenarios—caused by security checks or encoun-
tered in simple applications or in the operating system components—with the goal of
creating a debugging framework that can be used in other contexts. Before starting,
we need to understand the basic security gates used by the operating system. 

Windows has many security boundaries defined and enforced by the operating
system, and each transition in and out of those security boundaries is subject to secu-
rity checks. We can easily identify the common boundaries—such as the file system,
Windows registry, each process address space, the kernel address space—whereas
others, such as the Windows desktop, are not as clear. The machine is a physical secu-
rity boundary, but it is a logical security boundary as well. As a result, each API can
potentially check the identity of the caller and fail the call according to the security
policy implemented in that API. A successful approach to security failure investiga-
tions requires a good knowledge of each API, which is hard, if not impossible, to
achieve without access to the source code and a lot of time spent to understand that
code. In reality, only the API developers understand the code at a level at which they
can efficiently pinpoint the problem. 

Because it is not practical to know the details of each API, what is the minimum
required for successful investigation of security problems? Developers need a bare
minimum understanding of the subsystem used and the places where the security
checks are most likely to be performed when using the APIs for that subsystem. They
also need to know how to probe the results of those checks. 

If the code execution does not call into another process, the kernel mode code
will be the only resource manager denying access to resources. Please note that many
Win32 APIs communicate with different processes to implement their functionality.
When the code execution continues into another process, the access gates it must
pass by are virtually endless because that call can spawn multiple processes and even
multiple systems. For example, a basic three-tier system, with the generic architec-
ture shown in Figure 7.1—using a Web server on the front end, any middleware soft-
ware in the middle layer, and a database on the back end—has many potential
security-related points of failure. 

7.
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In Figure 7.1, each box can run on one or more systems connected through different
communication mechanisms. Each piece involved in this architecture can check the user
identity and can reject the call. The next section explores a few failure scenarios encoun-
tered in distributed environments in which there are many opportunities for errors.

Investigating Security Failures

The debugging sessions shown in this section, which are encountered on various systems,
are always triggered by access denied errors. Sometimes, the access denied is normal and
expected. Other times, the errors are normal but unexpected even in a correctly config-
ured system. Still, it is much easier to debug a failure in a properly configured system
than in a misconfigured system, as shown in the last debugging scenario in this section.
The first few examples are classic kernel resources denied access followed by more com-
plex distributed scenarios using DCOM as communication infrastructure.

Local Security Failures
Unexpected failures from various APIs represent one of the biggest sources of frus-
tration in software development, especially when the failure totally contradicts the
developer’s expectations or experience. Trying to understand why such an API fails
always proves to be a challenging task—more difficult than it should be, especially
when it is unexpected. A common failure case is encountered when the processes are
running under the NetworkService account, identified by S-1-5-20, or under the
LocalService account, identified by S-1-5-19. 

The example in this section is based on a real situation but was encountered while
experimenting with the side effects of invoking advapi32!ImpersonateSelf called by a
process running under the NetworkService account. To save time, we decided to use
one of the transient processes running under this account, and we attached a debug-
ger to a process running under this identity, identifiable with Task Manager. 

In the thread used by the debugger to call kernel32!DebugBreak, we change
the instruction pointer to the address of advapi32!ImpersonateSelf and fill the
parameters on the stack. The commands changing the context are shown in the first
part of Listing 7.15. 

After executing the advapi32!ImpersonateSelf API, we use the !token
extension command to find out the thread impersonation thread. The !token exten-
sion command indicates that the tread is not impersonating. The last error indicates
that the API failed with a completely unexpected access denied error. How can we
understand why this function call failed?
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Listing 7.15

0:008> |

.  0    id: 650 attach  name: C:\WINDOWS\System32\wbem\wmiprvse.exe

0:008> * set the instruction pointer to the advapi32!ImpersonateSelf

0:008> r $ip=advapi32!ImpersonateSelf

0:008> * enter the argument to the API

0:008> ed esp+4 2

0:008> gu

eax=00000000 ebx=00000001 ecx=00000005 edx=00000015 esi=00000004 edi=00000005

eip=7c9507a8 esp=00a9ffd4 ebp=00a9fff4 iopl=0         nv up ei pl zr na pe nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000246

ntdll!DbgUiRemoteBreakin+0x2d:

7c9507a8 eb11            jmp     ntdll!DbgUiRemoteBreakin+0x40 (7c9507bb)

0:008> !token

Thread is not impersonating. Using process token...

Error 0xc0000022 getting thread token  !token command failed

0:008> ~.

.  8  Id: 650.334 Suspend: 1 Teb: 7ffd7000 Unfrozen

Start: ntdll!DbgUiRemoteBreakin (7c95077b)

Priority: 0  Priority class: 32

0:008> !gle

LastErrorValue: (Win32) 0x5 (5) - Access is denied.

LastStatusValue: (NTSTATUS) 0xc0000022 - {Access Denied}  A process has requested

access to an object, but has not been granted those access rights.

As a side note, it is interesting to notice that the same logical error has multiple error
codes, depending on the subsystem using it. For example, the unambiguous access
denied error can have different values, as shown in Table 7.4.

Table 7.4

Component Defined In Symbolic Name Value

Windows NT winnt.h STATUS_ACCESS_DENIED ((NTSTATUS)0xC0000022L)
Kernel

Ntdll.dll winnt.h STATUS_ACCESS_DENIED ((NTSTATUS)0xC0000022L)

Win32 APIs winerror.h ERROR_ACCESS_DENIED 5L

COM APIs winerror.h E_ACCESSDENIED _HRESULT_TYPEDEF_
(0x80070005L)

RPC APIs winerror.h RPC_E_ACCESS_DENIED _HRESULT_TYPEDEF_
(0x8001011BL)

7.
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While debugging this scenario, we realized that the !token extension command also
fails with an access denied error, but apparently the result is correct. We investigate
the reason for this failure later in the “!token Extension Command Failure” section. 

We should focus on the real problem: figuring out why the
advapi32!ImpersonateSelf function fails. The first step is to understand what
advapi32!ImpersonateSelf does under the hood. Based on the explanation
found on MSDN, the API creates an impersonation access token by duplicating the
primary access token at the requested impersonation level and sets it on the current
thread. In pseudo-code, the API functionality resembles the following:

ImpersonateSelf(ImpersonationLevel) 

{

processHandle = OpenCurrentProcess()

processToken = OpenProcessToken(processHandle, TOKEN_DUPLICATE);

newToken = DuplicateToken(processToken, ImpersonationLevel)

SetThreadToken(newToken)

}

Each step from the pseudo-code shown previously is subject to at least one security
check because all objects involved are protected by the Windows kernel. To succeed
on the first step, the process object must have been granted the PROCESS_
QUERY_INFORMATION to the user making the call—in this case, the
NetworkService account. Next, the primary access token must be granted the
TOKEN_DUPLICATE right in its security descriptor to the calling user. The last
step requires the user to have THREAD_SET_THREAD_TOKEN rights to the
thread object. This very simple function tests three security descriptors, as follows:

■ Process object security descriptor
■ Primary token security descriptor
■ Thread object security descriptor

Since the thread is not impersonating at any time, all calls are executed in the
context of the primary token, the NetworkService account, which must have access
with the specific rights in the corresponding security descriptors described above.
Before searching other causes for this failure, we shall investigate each security
descriptor taking part in the operation and understand what rights are granted to the
user. The simplest way to check them is to start up a kernel mode debugger in local
mode and investigate each object. We start by looking at the process object whose
process identifier was retrieved in Listing 7.15. The process object security descrip-
tor is explored in Listing 7.16. 
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Listing 7.16

lkd> !process 650 1

Searching for Process with Cid == 650

PROCESS ffacccc8 SessionId: 0  Cid: 0650    Peb: 7ffd5000  ParentCid: 02d0

DirBase: 0b233000  ObjectTable: e120ddc0  HandleCount: 164.

Image: wmiprvse.exe

VadRoot 811c2790 Vads 102 Clone 0 Private 416. Modified 0. Locked 1.

DeviceMap e15f04a8

Token                             e1b3db20

...

lkd> !sd poi(ffacccc8-4)&FFFFFFF8

->Revision: 0x1

->Sbz1    : 0x0

->Control : 0x8004

SE_DACL_PRESENT

SE_SELF_RELATIVE

->Owner   : S-1-5-20

->Group   : S-1-5-20

->Dacl    :

->Dacl    : ->AclRevision: 0x2

->Dacl    : ->Sbz1       : 0x0

->Dacl    : ->AclSize    : 0x58

->Dacl    : ->AceCount   : 0x3

->Dacl    : ->Sbz2       : 0x0

->Dacl    : ->Ace[0]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

->Dacl    : ->Ace[0]: ->AceFlags: 0x0

->Dacl    : ->Ace[0]: ->AceSize: 0x18

->Dacl    : ->Ace[0]: ->Mask : 0x001f0fff

->Dacl    : ->Ace[0]: ->SID: S-1-5-20

->Dacl    : ->Ace[1]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

->Dacl    : ->Ace[1]: ->AceFlags: 0x0

->Dacl    : ->Ace[1]: ->AceSize: 0x20

->Dacl    : ->Ace[1]: ->Mask : 0x00100201

->Dacl    : ->Ace[1]: ->SID: S-1-5-5-0-32366

->Dacl    : ->Ace[2]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

->Dacl    : ->Ace[2]: ->AceFlags: 0x0

->Dacl    : ->Ace[2]: ->AceSize: 0x18

->Dacl    : ->Ace[2]: ->Mask : 0x00100201

->Dacl    : ->Ace[2]: ->SID: S-1-5-18

->Sacl    :  is NULL
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By interpreting the access bits on the access mask used for the S-1-5-20 user, we con-
clude that NetworkService has full rights to the process object as expected. The primary
access token, obtained in the previous listing, is another object involved in the API
implementation and is protected by its security descriptor, as shown in the Listing 7.17. 

Listing 7.17

lkd> !sd poi(e1b3db20-4)&FFFFFFF8

->Revision: 0x1

->Sbz1    : 0x0

->Control : 0x8004

SE_DACL_PRESENT

SE_SELF_RELATIVE

->Owner   : S-1-5-20

->Group   : S-1-5-20

->Dacl    :

->Dacl    : ->AclRevision: 0x2

->Dacl    : ->Sbz1       : 0x0

->Dacl    : ->AclSize    : 0x30

->Dacl    : ->AceCount   : 0x2

->Dacl    : ->Sbz2       : 0x0

->Dacl    : ->Ace[0]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

->Dacl    : ->Ace[0]: ->AceFlags: 0x0

->Dacl    : ->Ace[0]: ->AceSize: 0x14

->Dacl    : ->Ace[0]: ->Mask : 0x000f01ff

->Dacl    : ->Ace[0]: ->SID: S-1-5-18

->Dacl    : ->Ace[1]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

->Dacl    : ->Ace[1]: ->AceFlags: 0x0

->Dacl    : ->Ace[1]: ->AceSize: 0x14

->Dacl    : ->Ace[1]: ->Mask : 0x000f01ff

->Dacl    : ->Ace[1]: ->SID: S-1-5-20

->Sacl    :  is NULL

As before, by interpreting the access bits on the access mask used for the S-1-5-20
user, we conclude that NetworkService has full rights to the primary access token, as
expected. The thread itself is the last kernel object involved in the operation and fol-
lows the same rules governing Windows security. Following the same steps, the secu-
rity descriptor of the calling thread can be easily obtained. But first we must identify
the kernel object representing the failing thread; we match thread identifier
0650.0334 from the user mode debugger with the KTHREAD structure in the kernel
mode debugger. The process identifier and the thread identifier were known from
the user mode debugger session experiencing this failure. 
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Listing 7.18

lkd> * List all threads running inside the process with 0x0650 PID

lkd> !process 0n1616 4

Searching for Process with Cid == 650

PROCESS ffacccc8  SessionId: 0  Cid: 0650    Peb: 7ffd5000  ParentCid: 02d0

DirBase: 0b233000  ObjectTable: e120ddc0  HandleCount: 164.

Image: wmiprvse.exe

THREAD fface088  Cid 0650.0658  Teb: 7ffdf000 Win32Thread: e1226650 WAIT

THREAD 8125b020  Cid 0650.04dc  Teb: 7ffde000 Win32Thread: 00000000 WAIT

THREAD ffadb100  Cid 0650.064c  Teb: 7ffdd000 Win32Thread: e1345138 WAIT

THREAD ffb25408  Cid 0650.0654  Teb: 7ffdc000 Win32Thread: 00000000 WAIT

THREAD 811c6b30  Cid 0650.03b4  Teb: 7ffdb000 Win32Thread: e1b4ebf0 WAIT

THREAD ffb47b18  Cid 0650.05f4  Teb: 7ffda000 Win32Thread: e13482b0 WAIT

THREAD 811c2da8  Cid 0650.05f8  Teb: 7ffd9000 Win32Thread: 00000000 WAIT

THREAD ffacaaa0 Cid 0650.0570  Teb: 7ffd8000 Win32Thread: 00000000 WAIT

THREAD ffb2a020 Cid 0650.0334 Teb: 7ffd7000 Win32Thread: 00000000 WAIT

Lkd> *Inspecting the security descriptor protecting this kernel object

kd> !sd poi(ffb2a020-4)&FFFFFFF8

->Revision: 0x1

->Sbz1    : 0x0

->Control : 0x8004

SE_DACL_PRESENT

SE_SELF_RELATIVE

->Owner   : S-1-5-32-544

->Group   : S-1-5-21-1060284298-2111687655-1957994488-513

->Dacl    :

->Dacl    : ->AclRevision: 0x2

->Dacl    : ->Sbz1       : 0x0

->Dacl    : ->AclSize    : 0x34

->Dacl    : ->AceCount   : 0x2

->Dacl    : ->Sbz2       : 0x0

->Dacl    : ->Ace[0]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

->Dacl    : ->Ace[0]: ->AceFlags: 0x0

->Dacl    : ->Ace[0]: ->AceSize: 0x18

->Dacl    : ->Ace[0]: ->Mask : 0x001f03ff

->Dacl    : ->Ace[0]: ->SID: S-1-5-32-544

->Dacl    : ->Ace[1]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

->Dacl    : ->Ace[1]: ->AceFlags: 0x0

->Dacl    : ->Ace[1]: ->AceSize: 0x14

->Dacl    : ->Ace[1]: ->Mask : 0x001f03ff

->Dacl    : ->Ace[1]: ->SID: S-1-5-18

->Sacl    :  is NULL
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Surprisingly, NetworkService has no access to the thread object. After examining it,
we can see that only users in the local administrators group, identified by S-1-5-32-
544, and the LocalSystem account, identified by S-1-5-18, can change the thread
impersonation token, explaining the API failure. In such cases, we often look at sim-
ilar objects to understand the difference in order to build a theory to explain the fail-
ure. We choose another thread in the same process with the address shown in Listing
7.18. The security descriptors shown in Listing 7.18 and Listing 7.19 differ only by
one ACE; the failing thread grants all the rights to S-1-5-32-544, whereas the nor-
mal thread grants the same rights to S-1-5-20. 

Listing 7.19

kd> !sd poi(ffacaaa0-4)&FFFFFFF8

->Revision: 0x1

->Sbz1    : 0x0

->Control : 0x8004

SE_DACL_PRESENT

SE_SELF_RELATIVE

->Owner   : S-1-5-20

->Group   : S-1-5-20

->Dacl    :

->Dacl    : ->AclRevision: 0x2

->Dacl    : ->Sbz1       : 0x0

->Dacl    : ->AclSize    : 0x30

->Dacl    : ->AceCount   : 0x2

->Dacl    : ->Sbz2       : 0x0

->Dacl    : ->Ace[0]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

->Dacl    : ->Ace[0]: ->AceFlags: 0x0

->Dacl    : ->Ace[0]: ->AceSize: 0x14

->Dacl    : ->Ace[0]: ->Mask : 0x001f03ff

->Dacl    : ->Ace[0]: ->SID: S-1-5-18

->Dacl    : ->Ace[1]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

->Dacl    : ->Ace[1]: ->AceFlags: 0x0

->Dacl    : ->Ace[1]: ->AceSize: 0x14

->Dacl    : ->Ace[1]: ->Mask : 0x001f03ff

->Dacl    : ->Ace[1]: ->SID: S-1-5-20

->Sacl    :  is NULL
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This can be explained by understanding how the security descriptor has been initial-
ly assigned to the thread object. It turns out that this thread has been created by a
process running under a local administrator identity, and the default security descrip-
tor has been applied to the thread. The thread has been created in the debugger tar-
get by the debugger using kernel32!CreateRemoteThread while running under a
local administrator account.  

Although this example seems unnatural, it can happen very well in any applica-
tion. It is important to be aware of the complexity of each API and the implications
of calling it while impersonating a user different from the primary token user. The
next section, “Security Problems During Deferred Initialization,” describes other sit-
uations generated by similar circumstances. 

Security Problems During Deferred Initialization
The lazy initialization technique defers the initialization of expensive objects as much
as possible, with the goal of improving the start-up time while reducing the memory
footprint before the component is used. To achieve even greater scalability, the com-
ponent designers even uninitialize the component after a decay period defined as part
of the initial design. They rely on the lazy initialization technique to bring the com-
ponent back to life when needed. In the client/server application, the lazy initializa-
tion phase is triggered by a client request and is subject to all security rules enforced
by the operating system. All components involved in the lazy initialization can play a
role in the process and must be treated very carefully. The thread impersonation
token and its impersonation level, as well as the potential thread impersonation, can
affect the overall functionality of the system, or it can introduce subtle functionality
bugs that are difficult to find. 

The sample simulates the impersonation by creating and impersonating an access
token representing a regular user. The user, who has the username Test1 and the
password TestUser1, should be creating manually before running the sample and
deleted when the sample is no longer used. 

Let’s analyze the following code that has multiple purposes. It creates a new key
in HKLM\Software, it caches the process token for further uses, and it creates a ker-
nel event used to synchronize the access to the same global objects. This code can be
exercised using option ‘2’ of 07sample.exe. We use this function to simulate the side
effect of executing it while impersonating. This type of functionality is often encoun-
tered in the service initialization functions. 

7.
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Listing 7.20

void LazyInitialization()

{

HKEY softwareKey = NULL;

LONG retCode = RegOpenKeyEx(HKEY_LOCAL_MACHINE, L”Software”, 0, MAXIMUM_ALLOWED,

&softwareKey);

...

HKEY bookKey = NULL;

retCode = RegCreateKey(bookKey, L”Advanced Windows Debugging”, &bookKey);

...

RegCloseKey(bookKey);

RegCloseKey(softwareKey);

BOOL otherCode = ImpersonateSelf(SecurityImpersonation);

...

HANDLE threadToken = NULL;

otherCode = OpenThreadToken(GetCurrentThread(), TOKEN_QUERY, FALSE, &threadTo-

ken);

...

if (threadToken) CloseHandle(threadToken);

HANDLE event = CreateEvent(NULL, FALSE, FALSE, L”07sample”);

CloseHandle(event);

HANDLE threadTokenAsSelf = NULL;

otherCode = OpenThreadToken(GetCurrentThread(), TOKEN_QUERY |TOKEN_IMPERSONATE ,

TRUE, &threadTokenAsSelf);

...

RevertToSelf();

otherCode = ImpersonateLoggedOnUser(threadTokenAsSelf);

...

if (threadTokenAsSelf) CloseHandle(threadTokenAsSelf);

RevertToSelf();

}

Because the product tests are good and no apparent bugs exist in this code, this code
is incorporated into a product and then released. Soon after, the customer reports
that the application fails with one of the following errors in the log file, printed on the
screen by the sample as follows:

RegCreateKeyW failed.Last error = 6

ImpersonateSelf failed.Last error = 5

OpenThreadToken failed.Last error = 5
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Along with the known access denied error code 5, we can see an unexpected invalid
handle error 6 coming from the registry API. By correlating all the places where the
key is used or created, we figure out the faulting code is in the lazy initialization path.
It is triggered by the client request, which executes in the client request thread while
the thread impersonates the user. We have simulated the impersonation in a simple
client application by logging in a specific user, impersonating it, and calling the
LazyInitialization function, as shown in the following: 

void Sample2()

{

HANDLE userToken = NULL;

BOOL retCode =  LogonUser(L”Test1”, NULL, L”TestUser1”, LOGON32_LOGON_INTERAC-

TIVE, LOGON32_PROVIDER_DEFAULT,  &userToken);

...

ImpersonateLoggedOnUser(userToken);

LazyInitialization();

RevertToSelf();

CloseHandle(userToken);

}

Because the code review does not reveal the failure source, we will run this code
under a user mode debugger to fully understand what’s going wrong. Immediately
after the first failure line executes, that is, the advapi32!RegCreateKey API, we exam-
ine the handle value passed in as the first parameter using the !handle extension
command. We pick that parameter because the registry API returns ‘invalid handle
error’. 

0:000> !handle poi(softwareKey) 7

Handle 58

Type             Key

Attributes       0

GrantedAccess    0x20019:

ReadControl

QueryValue,EnumSubKey,Notify

HandleCount      2

PointerCount     3

Name             \REGISTRY\MACHINE\SOFTWARE

0:000> * The !handle command decodes the rights granted to the caller

We notice that the registry API was not granting rights to create any new key in the
softwareKey. The security manager grants rights to objects when the object is opened,

7.
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based on its security descriptor and requested access mask. The access granted and
stored in the handle table, along with the handle, is checked by every operation using
the handle for validity. The access mask associated with the handle is displayed by the
!handle extension command, as shown in the previous listing. 

In this case, the key was opened while impersonating a low-privilege user. Reading
the code once again, we can see the requested mask used to open the registry key as
MAXIMUM_ALLOWED, which is a convenient access mask definition that everybody uses.
Perhaps the developer had no time or desire to find out the necessary rights, and was
not willing to justify the use of GENERIC_ALL. The system indeed returns what the
code asks for, but the granted access is different from what the developer intended. As
a side note, MAXIMUM_ALLOWED should be used only for probing the object allowed
access. Using it anywhere else is a code defect waiting to show up. 

After we found one defect, two more errors are waiting. Looking back to the trace
log, advapi32!ImpersonateSelf fails with an access denied. As discussed in the
earlier section “Local Security Failures,” we should first understand the operation and
identify the security of all components involved in the operation. It is clear by now that
advapi32!ImpersonateSelf opens the process handle, duplicates the primary
access token, and sets it on the calling thread. We set a breakpoint at
advapi32!ImpersonateSelf in the user mode debugger, but we continue our
investigation using a kernel mode debugger while the user mode debugger is stopped
at the breakpoint. We start by checking the security information of the process object,
as shown in Listing 7.21. 

Listing 7.21

lkd> !process 0 1 07Sample.exe

PROCESS ffb36020 SessionId: 0  Cid: 0784    Peb: 7ffde000  ParentCid: 0284

DirBase: 0a257000  ObjectTable: e183bbb0  HandleCount:  22.

Image: 07sample.exe

VadRoot ffa7c978 Vads 33 Clone 0 Private 66. Modified 0. Locked 0.

DeviceMap e1798128

Token                             e196a3f0

...

lkd> !process 0 2 07sample.exe

PROCESS ffb36020 SessionId: 0  Cid: 0784    Peb: 7ffde000  ParentCid: 0284

DirBase: 0a257000  ObjectTable: e183bbb0  HandleCount:  22.

Image: 07sample.exe

THREAD 82f408a8 Cid 0784.04f8  Teb: 7ffdf000 Win32Thread: e17a5d28 WAIT

: (Executive) KernelMode Non-Alertable

SuspendCount 1

f3ad77d4  SynchronizationEvent
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lkd> !sd poi(ffb36020-4)&FFFFFFF8

->Revision: 0x1

->Sbz1    : 0x0

->Control : 0x8004

SE_DACL_PRESENT

SE_SELF_RELATIVE

->Owner   : S-1-5-32-544

->Group   : S-1-5-21-1060284298-2111687655-1957994488-513

->Dacl    :

->Dacl    : ->AclRevision: 0x2

->Dacl    : ->Sbz1       : 0x0

->Dacl    : ->AclSize    : 0x34

->Dacl    : ->AceCount   : 0x2

->Dacl    : ->Sbz2       : 0x0

->Dacl    : ->Ace[0]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

->Dacl    : ->Ace[0]: ->AceFlags: 0x0

->Dacl    : ->Ace[0]: ->AceSize: 0x18

->Dacl    : ->Ace[0]: ->Mask : 0x001f0fff

->Dacl    : ->Ace[0]: ->SID: S-1-5-32-544

->Dacl    : ->Ace[1]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

->Dacl    : ->Ace[1]: ->AceFlags: 0x0

->Dacl    : ->Ace[1]: ->AceSize: 0x14

->Dacl    : ->Ace[1]: ->Mask : 0x001f0fff

->Dacl    : ->Ace[1]: ->SID: S-1-5-18

->Sacl    :  is NULL

Our thread impersonates the access token, obtained from the
advapi32!LogonUserExW call, representing user Test1 who is not a member of
any group that can possibly open the process handle for the access requested by
advapi32!ImpersonateSelf. Listing 7.22 uses the !thread extension command
to obtain the impersonation access token to be passed as parameter to the !token
extension command. The thread object address is obtained from Listing 7.21. 

Listing 7.22

lkd> !thread 82f408a8  

THREAD 82f408a8  Cid 0784.07a4  Teb: 7ffdd000 Win32Thread: e189aeb0 WAIT: (Executive)

KernelMode Non-Alertable

SuspendCount 1

f70687d4  SynchronizationEvent

Impersonation token:  e13fee28 (Level Impersonation)

Owning Process            ffb36020       Image:         07sample.exe

kd> !token e13fee28
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TS Session ID: 0

User: S-1-5-21-1060284298-2111687655-1957994488-1006

Groups:

00 S-1-5-21-1060284298-2111687655-1957994488-513

Attributes - Mandatory Default Enabled

01 S-1-1-0

Attributes - Mandatory Default Enabled

02 S-1-5-32-545

Attributes - Mandatory Default Enabled

03 S-1-5-5-0-1757850

Attributes - Mandatory Default Enabled LogonId

04 S-1-2-0

Attributes - Mandatory Default Enabled

05 S-1-5-4

Attributes - Mandatory Default Enabled

06 S-1-5-11

Attributes - Mandatory Default Enabled

Primary Group: S-1-5-21-1060284298-2111687655-1957994488-513

Privs:

00 0x000000017 SeChangeNotifyPrivilege           Attributes - Enabled Default

01 0x000000013 SeShutdownPrivilege               Attributes -

02 0x000000019 SeUndockPrivilege                 Attributes -

Auth ID: 0:1ad29b

Impersonation Level: Impersonation

TokenType: Impersonation

With one more code defect understood, it is time to focus on the last one, which is
similar to the inability to open the process object. 

However, this function has one more problem. The next line in the sample code
creates a named event, which, based on default security, grants the impersonating
user Test1 full access to it. If the same user can run custom code on the system with
the service code having this problem, he can manipulate the event owned by the serv-
ice. This is a security concern. 

Since the application does not set an explicit security descriptor for the newly cre-
ated event, the system assigns one that is generated using the default security mecha-
nism. The generated security descriptor grants full access to the principal, which is
represented by the impersonated access token. In the same function, using the user
mode debugger, we can stop after the kernel event creation to inspect its security
descriptor. We search the kernel event address of the event handle retrieved in the
user mode debugger. The event handle 0x7a8 is used as a parameter to the !handle
extension command, along with the process identifier. In Listing 7.23, we retrieve the
event security descriptor using the same method as for any other kernel objects. 

Listing 7.22 (continued)
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Listing 7.23

kd> !handle 7a8 7 784

processor number 0, process 00000784

Searching for Process with Cid == 784

PROCESS ffb36020  SessionId: 0  Cid: 0784    Peb: 7ffde000  ParentCid: 0284

DirBase: 0a257000  ObjectTable: e183bbb0  HandleCount:  23.

Image: 07sample.exe

Handle table at e1910000 with 23 Entries in use

07a8: Object: ffb47ff0  GrantedAccess: 001f0003 Entry: e1910f50

Object: ffb47ff0 Type: (812ed320) Event

ObjectHeader: ffb47fd8

HandleCount: 1  PointerCount: 2

Directory Object: e171d128  Name: 07sample 

kd> !sd poi(ffb47ff0-4)&FFFFFFF8

->Revision: 0x1

->Sbz1    : 0x0

->Control : 0x8004

SE_DACL_PRESENT

SE_SELF_RELATIVE

->Owner   : S-1-5-21-1060284298-2111687655-1957994488-1006

->Group   : S-1-5-21-1060284298-2111687655-1957994488-513

->Dacl    :

->Dacl    : ->AclRevision: 0x2

->Dacl    : ->Sbz1       : 0x0

->Dacl    : ->AclSize    : 0x40

->Dacl    : ->AceCount   : 0x2

->Dacl    : ->Sbz2       : 0x0

->Dacl    : ->Ace[0]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

->Dacl    : ->Ace[0]: ->AceFlags: 0x0

->Dacl    : ->Ace[0]: ->AceSize: 0x24

->Dacl    : ->Ace[0]: ->Mask : 0x001f0003

->Dacl    : ->Ace[0]: ->SID: S-1-5-21-1060284298-2111687655-1957994488-1006

->Dacl    : ->Ace[1]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

->Dacl    : ->Ace[1]: ->AceFlags: 0x0

->Dacl    : ->Ace[1]: ->AceSize: 0x14

->Dacl    : ->Ace[1]: ->Mask : 0x001f0003

->Dacl    : ->Ace[1]: ->SID: S-1-5-18

->Sacl    :  is NULL

7.
SECURITY



354 Chapter 7 Security

The scenarios shown previously might not look familiar to developers not writing a
service, not using impersonation, or not explicitly calling the Win32 API directly. But
with the advance of Web Services in enterprise software development, it becomes
common to make the step into impersonation services. Also, complex libraries with
heavy initialization code that is deferred until first use, most likely used inside com-
plex distributed application, are the perfect set-up for the type of problems explored
in this section.

Potential Security Implications of Impersonating
When building the services accepting client requests, we should be aware of how the
thread impersonation affects the component used during the service request. Even if
the service is not impersonating the user before using the components, each compo-
nent can potentially impersonate the caller. In such cases, we must be familiar with
each component behavior and use this information in deciding to use that compo-
nent. This is true for components running inside services supporting impersonation
sources, such as ASP.NET application, WEB services, RPC, or DCOM servers. 

This potential of impersonating is limited only to the thread dispatched as a result
of the client invocation. When calling an external component, the developer should
understand the implications this impersonating potential can have on the component
call and remove it if necessary, using specific techniques for each impersonation
source when possible, or delegate the execution to a new thread no longer subject to
this potential. 

Distributed COM Errors
As you have seen in Table 7.4, the access denied error can take multiple values
depending on the component surfacing the error. We searched the Internet for the
error 0x80070005 that is raised by DCOM, and we found more than 7,000 pages with
questions and workarounds. We also searched for the decimal form of the error, and
we got another 1,500 hits. DCOM access denied errors are hard to investigate
because of the  inherent complexity present in any distributed systems. We expect to
see a similar level of complexity in distributed applications built on top of other infra-
structures. 

The access denied errors are raised when the DCOM client has no right to acti-
vate the server, when the client is not allowed to invoke the server, when the compo-
nents are not registered properly, and when the infrastructure encounters an access
denied error. 
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DCOM activation is a good exemplification of user mode systems using custom access
checks. DCOM stores the activation and access security descriptors in the registry. All the
following scenarios are commonly encountered in operations performed on properly con-
figured systems. At the end of this chapter, we diagnose a system whose configuration has
been mistakenly altered and which is failing most DCOM operations, an interesting end-
to-end scenario. All scenarios run on a Windows XP SP2 operating system. 

DCOM Activation Checks
A naive approach to debug communication failure, by tracing the client code step-

by-step, has a minimal chance of success and should be avoided. Because the DCOM
activation is in essence a distributed process, it should be investigated using the model
described in Chapter 8, in the section “Breaking the Call Path.” Using this model, we
first identify the process hosting the binary that returned the original error, and then
we try to find out the details of the failure. To use the model, we must understand in
greater detail the activation request calling path, which we describe in this section. 

Figure 7.2 illustrates all processes involved in DCOM activation. Each box repre-
sents a security boundary, and the long vertical gray line represents a system bound-
ary. The client activates a remote COM object by communicating with the local
DCOM activation interface implemented by the RPCSS Server service, which dele-
gates the activation request, when necessary, to the remote RPCSS Server service.
The remote RPCSS service starts the process hosting the server; it waits for the serv-
er process to register as a DCOM server, and finally it calls into the process to obtain
the interface requested by caller. Just by looking at all six process boundaries, one also
being a machine boundary, it is easy to see how many components must work in per-
fect harmony to make the activation possible. In a standard enterprise environment,
each RPCSS Server service can also talk with the domain controller. To reduce the
diagram complexity, the connection to the domain controller was omitted. 
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According to Figure 7.2, the activation involves the client process, the RPCSS serv-
ice and the DcomLaunch service on the server side, and the server process. In the
case of local activation, the communication from the client-side RPCSS and server-
side RPCSS is a shortcut. We start by identifying the processes involved in the acti-
vation path and create a mental diagram of the relationship between them. The
tlist.exe tool, installed with the Debugging Tools for Windows, is excellent for this. In
Listing 7.24, we use tlist.exe to find the process identifiers of DcomLaunch and
RpcSs services on the server side. 

Listing 7.24

c:\>tlist –s

0 System Process

4 System

300 smss.exe

432 csrss.exe       Title:

464 winlogon.exe

548 services.exe    Svcs:  Eventlog,PlugPlay

560 lsass.exe       Svcs:  PolicyAgent,ProtectedStorage,SamSs

716 svchost.exe     Svcs:  DcomLaunch,TermService

768 svchost.exe     Svcs:  RpcSs

After identifying the process used by the execution path, the quickest way to debug is
to assume that the activation call reaches the last process in the call chain, attach a user
mode debugger to the latest process in the path and stop the process execution, then
execute again the failing client call. If the client does not hang, the call path does not
reach the process currently stopped in the debugger, and we can detach the debugger
by entering the qd command. We repeat the process higher in the call path until the
client hangs in the activation call. At that point, we can use this process to identify what
credentials the client uses, what other DCOM settings are at call time, and so on. The
better we understand the client environment at call time, the easier it is to create a
possible scenario for each failure, demonstrate its validity, and move forward. 

This section describes all the places in the activation path useful to evaluate the
activation progress and explains how to interpret the information available on those
points. The activation path can be exercised using option zero of the 08cli.exe sample. 

Remote clients are facing the first security gate when the system authenticates to
the remote system. The progress can be monitored by examining the SSPI return
codes, as described in the “Remote Authentication and Security Support Provider
Interface” section. The SSPI authentication request is handled by the RPCSS service
code.  
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After the remote authentication succeeds (local clients are already authenticated
by the operating system), the activation code uses the impersonation token repre-
senting the client to perform various checks, using the advapi32!AccessCheck in
RPCSS service running on the server. As part of the activation, the RPCSS service
performs multiple checks, each having its role. Listing 7.25 shows the first check that
validates if the caller has the right to access the server using the DCOM protocol. We
attach a debugger to RPCSS service and set a breakpoint on the
ADVAPI32!AccessCheck, as in the following listing:  

Listing 7.25

0:007> bp ADVAPI32!AccessCheck;g

Breakpoint 0 hit

eax=007dfce4 ebx=00000000 ecx=007dfcf8 edx=007dfd08 esi=00000001 edi=00000000

eip=77dd7c11 esp=007dfcb8 ebp=007dfd10 iopl=0         nv up ei pl nz na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000206

ADVAPI32!AccessCheck:

77dd7c11 8bff             mov     edi,edi

0:007> k

ChildEBP RetAddr

007dfcb4 76a822a6 ADVAPI32!AccessCheck

007dfd10 76a824f6 rpcss!CheckForAccess+0x81

007dfd5c 77e7a2c1 rpcss!LocalInterfaceOnlySecCallback+0xb9

007dfdb4 77e7c767 RPCRT4!RPC_INTERFACE::CheckSecurityIfNecessary+0x6f

007dfdcc 77e7bcc9 RPCRT4!LRPC_SBINDING::CheckSecurity+0x4f

007dfdfc 77e7bb6a RPCRT4!LRPC_SCALL::DealWithRequestMessage+0x194

007dfe20 77e76784 RPCRT4!LRPC_ADDRESS::DealWithLRPCRequest+0x16d

007dff80 77e76c22 RPCRT4!LRPC_ADDRESS::ReceiveLotsaCalls+0x28f

007dff88 77e76a3b RPCRT4!RecvLotsaCallsWrapper+0xd

007dffa8 77e76c0a RPCRT4!BaseCachedThreadRoutine+0x79

007dffb4 7c80b50b RPCRT4!ThreadStartRoutine+0x1a

007dffec 00000000 kernel32!BaseThreadStart+0x37

0:007> * !sd extension fails; we grab the ACL directly from the SD

0:007>!acl poi(@esp+4)+poi(poi(@esp+4)+10)

ACL is:

ACL is: ->AclRevision: 0x2

ACL is: ->Sbz1       : 0x0

ACL is: ->AclSize    : 0x30

ACL is: ->AceCount   : 0x2

ACL is: ->Sbz2       : 0x0

ACL is: ->Ace[0]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

ACL is: ->Ace[0]: ->AceFlags: 0x0

ACL is: ->Ace[0]: ->AceSize: 0x14
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ACL is: ->Ace[0]: ->Mask : 0x00000003

ACL is: ->Ace[0]: ->SID: S-1-5-7

ACL is: ->Ace[1]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

ACL is: ->Ace[1]: ->AceFlags: 0x0

ACL is: ->Ace[1]: ->AceSize: 0x14

ACL is: ->Ace[1]: ->Mask : 0x00000007

ACL is: ->Ace[1]: ->SID: S-1-1-0

This first checks determines if the user can pass the security limits imposed on the
DCOM server machine shown in Figure 7.3. The Component Services security config-
uration page is started by using the dcomcnfg.exe command line. From the Component
Services MMC snap-in, we can configure all security parameters used in DCOM. 

Listing 7.25 (continued)

Figure 7.3

After the first check passes, the system validates if the user has the right to activate
any DCOM server on the system. Listing 7.26 shows the second access check that is
performed against a different security descriptor.
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Listing 7.26

0:007> g

Breakpoint 0 hit

eax=007dfce4 ebx=00000000 ecx=007dfcf8 edx=007dfd08 esi=00000001 edi=00000000

eip=77dd7c11 esp=007dfcb8 ebp=007dfd10 iopl=0         nv up ei pl nz na pe nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000202

ADVAPI32!AccessCheck:

77dd7c11 8bff             mov     edi,edi

0:007> k

ChildEBP RetAddr

007dfcb4 76a822a6 ADVAPI32!AccessCheck

007dfd10 76a8c2e4 rpcss!CheckForAccess+0x81

007dfd5c 77e7a2c1 rpcss!LocalInterfaceOnlySecCallback+0x138

007dfdb4 77e7c767 RPCRT4!RPC_INTERFACE::CheckSecurityIfNecessary+0x6f

007dfdcc 77e7bcc9 RPCRT4!LRPC_SBINDING::CheckSecurity+0x4f

007dfdfc 77e7bb6a RPCRT4!LRPC_SCALL::DealWithRequestMessage+0x194

007dfe20 77e76784 RPCRT4!LRPC_ADDRESS::DealWithLRPCRequest+0x16d

007dff80 77e76c22 RPCRT4!LRPC_ADDRESS::ReceiveLotsaCalls+0x28f

007dff88 77e76a3b RPCRT4!RecvLotsaCallsWrapper+0xd

007dffa8 77e76c0a RPCRT4!BaseCachedThreadRoutine+0x79

007dffb4 7c80b50b RPCRT4!ThreadStartRoutine+0x1a

007dffec 00000000 kernel32!BaseThreadStart+0x37

0:007>!acl poi(@esp+4)+poi(poi(@esp+4)+10)

ACL is:

ACL is: ->AclRevision: 0x2

ACL is: ->Sbz1       : 0x0

ACL is: ->AclSize    : 0x34

ACL is: ->AceCount   : 0x2

ACL is: ->Sbz2       : 0x0

ACL is: ->Ace[0]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

ACL is: ->Ace[0]: ->AceFlags: 0x0

ACL is: ->Ace[0]: ->AceSize: 0x18

ACL is: ->Ace[0]: ->Mask : 0x0000001f

ACL is: ->Ace[0]: ->SID: S-1-5-32-544

ACL is: ->Ace[1]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

ACL is: ->Ace[1]: ->AceFlags: 0x0

ACL is: ->Ace[1]: ->AceSize: 0x14

ACL is: ->Ace[1]: ->Mask : 0x0000000b

ACL is: ->Ace[1]: ->SID: S-1-1-0

The security descriptor used in this second check is also a machinewide security limit
imposed on the launch and activation of all DCOM servers. It is controlled by anoth-
er security configuration page shown in Figure 7.4, also part of DCOM configuration. 
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Figure 7.4

After those two initial checks—not specific to the component being requested—are
successful, the RPCSS server reads from the registry the information pertinent to the
component. The component restrictions are finally validated by RPCSS, as shown in
Listing 7.27. 

Listing 7.27

0:007> g

Breakpoint 0 hit

eax=007df59c ebx=0009ade0 ecx=007df5b0 edx=007df5c0 esi=00000001 edi=00000000

eip=77dd7c11 esp=007df570 ebp=007df5c8 iopl=0         nv up ei pl nz na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000206

ADVAPI32!AccessCheck:

77dd7c11 8bff             mov     edi,edi

0:007> k

ChildEBP RetAddr

007df56c 76a822a6 ADVAPI32!AccessCheck

007df5c8 76a8c0cd rpcss!CheckForAccess+0x81

007df5f4 76a8e5fb rpcss!CClsidData::LaunchOrActivationAllowed+0x155
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007df65c 76a8e4ab rpcss!Activation+0x1fb

007df6b8 76a91e12 rpcss!ActivateFromProperties+0x213

007df6c8 76a91e66 rpcss!CScmActivator::CreateInstance+0x10

007df708 76a91e7b rpcss!ActivationPropertiesIn::DelegateCreateInstance+0xf7

007df754 76a8c1d7 rpcss!ActivateFromPropertiesPreamble+0x4c1

007df79c 76a91de7 rpcss!PerformScmStage+0xbb

007df8b0 77e79dc9 rpcss!SCMActivatorCreateInstance+0x97

007df8e0 77ef321a RPCRT4!Invoke+0x30

007dfcf8 77ef36ee RPCRT4!NdrStubCall2+0x297

007dfd14 77e7988c RPCRT4!NdrServerCall2+0x19

007dfd48 77e797f1 RPCRT4!DispatchToStubInC+0x38

007dfd9c 77e7971d RPCRT4!RPC_INTERFACE::DispatchToStubWorker+0x113

007dfdc0 77e7bd0d RPCRT4!RPC_INTERFACE::DispatchToStub+0x84

007dfdfc 77e7bb6a RPCRT4!LRPC_SCALL::DealWithRequestMessage+0x2db

007dfe20 77e76784 RPCRT4!LRPC_ADDRESS::DealWithLRPCRequest+0x16d

007dff80 77e76c22 RPCRT4!LRPC_ADDRESS::ReceiveLotsaCalls+0x28f

007dff88 77e76a3b RPCRT4!RecvLotsaCallsWrapper+0xd

0:007> !acl poi(@esp+4)+poi(poi(@esp+4)+10)

ACL is:

ACL is: ->AclRevision: 0x2

ACL is: ->Sbz1       : 0x0

ACL is: ->AclSize    : 0x50

ACL is: ->AceCount   : 0x3

ACL is: ->Sbz2       : 0x0

ACL is: ->Ace[0]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

ACL is: ->Ace[0]: ->AceFlags: 0x0

ACL is: ->Ace[0]: ->AceSize: 0x18

ACL is: ->Ace[0]: ->Mask : 0x00000001

ACL is: ->Ace[0]: ->SID: S-1-5-18

ACL is: ->Ace[1]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

ACL is: ->Ace[1]: ->AceFlags: 0x0

ACL is: ->Ace[1]: ->AceSize: 0x18

ACL is: ->Ace[1]: ->Mask : 0x00000001

ACL is: ->Ace[1]: ->SID: S-1-5-4

ACL is: ->Ace[2]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

ACL is: ->Ace[2]: ->AceFlags: 0x0

ACL is: ->Ace[2]: ->AceSize: 0x18

ACL is: ->Ace[2]: ->Mask : 0x00000001

ACL is: ->Ace[2]: ->SID: S-1-5-32-544

This access check, the last one performed by RPCSS service before it attempts to start
the COM server implementing the requested object, is controlled by the component-
specific security configuration page shown in Figure 7.5. The configuration page
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allows the administrator to select between a custom security descriptor and the default
security descriptor used for all components. The server-specific configuration page is
displayed after selecting the SRV server from the DCOM Config node.  

Figure 7.5

This descriptor shown in Figure 7.5 has the same value as the default Launch
Permission. It is easy to observe how restrictive this security descriptor is. To support
normal users, it allows all activations originated on the interactive session. At the
same time, the activation fails for all nonadministrators logged on from a network
authentication, a service authentication, or a batch logon. For example, the code that
tries to activate a COM server from an ASP.NET application configured to run under
the NetworkService account fails with access denied if the component does not over-
write the default launch permission.

Assuming that the initial gate passed, the activation request is send to the
DcomLaunch service, the other service playing a role in the activation process. Prior
to Windows XP SP2, this service functionality was part of the RPCSS service. The
DcomLauch service rechecks the component-specific permission similarly. Every
process spawned by the DCOM Service Control Manager passes through another
common gate implemented by the ADVAPI32!CreateProcessAsUserW API called by
the DcomLaunch service. 
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A breakpoint at this function offers the perfect spot for understanding the server
command line and the identity under which it will run, as shown in Listing 7.28. We
can interpret the parameters from the stack after taking into account the function
calling convention. We attach a debugger to the DcomLaunch service and set a
breakpoint on the ADVAPI32!CreateProcessAsUserW, as in the following listing.  

Listing 7.28

0:010> bp ADVAPI32!CreateProcessAsUserW;g

Breakpoint 0 hit

eax=00000000 ebx=00000410 ecx=0000038c edx=00aff71c esi=00000000 edi=000c2b48

eip=77df7775 esp=00aff690 ebp=00aff7dc iopl=0         nv up ei pl zr na pe nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000246

ADVAPI32!CreateProcessAsUserW:

77df7775 8bff            mov     edi,edi 

0:010> k

ChildEBP RetAddr

00aff68c 76a93acd ADVAPI32!CreateProcessAsUserW

00aff7dc 76a93849 rpcss!CClsidData::PrivilegedLaunchActivatorServer+0x39d

00aff858 77e79dc9 rpcss!_LaunchActivatorServer+0xbc

00aff8b4 77ef321a RPCRT4!Invoke+0x30

...

0:010> * According to MSDN, the command line is the 3rd parameter

0:010> du poi(@esp+c)

000c2750  “”C:\awdbin\WinXP.x86.chk\08comsr”

000c2790  “v.exe” -Embedding”

0:010> * According to MSDN, the primary token is the 1st parameter

0:010> !token poi(@esp+4) -n

TS Session ID: 0

User: S-1-5-21-1060284298-2111687655-1957994488-1003 (User: XP-SP2\TestAdmin)

Groups:

00 S-1-5-21-1060284298-2111687655-1957994488-513 (Group: XP-SP2\None)

Attributes - Mandatory Default Enabled

...

...

TokenType: Primary

If the activation got to this point, but it fails to create the process, the activation fail-
ure is reduced to a process start-up failure in that user context. The failures can be
caused by a myriad of factors, but most of the time the user, designated by the token,
has no access to the server process files. The environment for the user can be simu-
lated using the runas.exe command, and the process startup should be investigated
separately.
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If the server is implemented as a Windows Service, the DcomLaunch uses SCM
APIs to start the service. Those APIs are perfect for investigating possible errors
returned in response to service start-up. If the server is already running and supports
multiple activations, the activation path does not even reach this process; it completes
in RPCSS. 

Almost toward the end of this activation path, when the server process is up and
running, the RPCSS makes a final call into the server to create the instance request-
ed by the client. The call is executed while impersonating the user making the origi-
nal call, and it is handled by the COM server as any other call—subject to all
restrictions imposed by call access, which is discussed next. 

DCOM Call Access Checks
Because the DCOM infrastructure processes all client calls before they are dis-
patched into the server code, it creates a security gate that must be passed by the
client before the server executes that request. Those security gates can be initialized
explicitly by calling the ole32!CoInitializeSecurity API with the following signature: 

HRESULT CoInitializeSecurity(

PSECURITY_DESCRIPTOR pVoid,

LONG cAuthSvc,

SOLE_AUTHENTICATION_SERVICE * asAuthSvc, 

void * pReserved1,

DWORD dwAuthnLevel,

DWORD dwImpLevel,

SOLE_AUTHENTICATION_LIST * pAuthList,

DWORD dwCapabilities,

void * pReserved3

);

The second function parameter represents the minimum accepted authentication
level of the inbound call. The first parameter of the API is polymorphic and can be a
Windows security descriptor, a NULL value, an AppID string, or a pointer to an
object implementing the IAccessControl interface. In reality, this parameter is often
NULL and rarely an explicit security descriptor. The NULL value combined with the
flag EOAC_APPID in dwCapabilities indicates that the DCOM infrastructure
must load the security descriptor from the access permission settings associated with
the server application. When EOAC_APPID is not present, the security descriptor
used by the DCOM infrastructure allows everyone to make calls into the server,
which is not recommended. Figure 7.6 shows how to configure the access permission
for inbound calls into the SRV server. 
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Figure 7.6

If the application does not explicitly call the ole32!CoInitializeSecurity API, DCOM
does it on behalf of the application before exporting the first interface. The default
parameters used in this case are NULL for the security descriptor with the
EOAC_APPID flag in the dwCapabilities parameter. 

NOTE The server is safer if does not initialize DCOM security rather than initializing it with
a weaker restriction, as in the following:

CoInitializeSecurity( NULL, -1, NULL, NULL, RPC_C_AUTHN_LEVEL_DEFAULT,

RPC_C_IMP_LEVEL_IDENTIFY, NULL, EOAC_NONE , NULL );

The ole32!CoInitializeSecurity API stores the passed arguments in global variables
located inside ole32.dll, having symbolic names similar to argument names. Such val-
ues can be interpreted according to their meaning, described in the help page asso-
ciated with the API initializing them. Their full names are shown in the following: 
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0:000> x ole32!g*

...

772bb20c OLE32!gSecDesc = <no type information>

...

772bb208 OLE32!gAuthnLevel = <no type information>

...

772bbf70 OLE32!gImpLevel = <no type information>

...

772bb05c OLE32!gCapabilities = <no type information>

After we know that the calls are made into the server process, the variables can be
inspected at any time to discover the source of an access denied error. The DCOM
infrastructure impersonates every call, retrieves the impersonating token, and per-
forms the access check against the security descriptor stored in OLE32!gSecDesc .
The impersonating token used to make the call is available before the access check
function is called. A breakpoint at this function also enables checking the results of the
access check. The DCOM infrastructure uses either the advapi32!AccessCheck or
the advapi32!AccessCheckByType APIs, depending on the operating system ver-
sion. Listing 7.29 examines the identity before performing the access check. 

Listing 7.29

0:001> k

ChildEBP RetAddr

007efc34 77525505 ADVAPI32!AccessCheckByType

007efc8c 775448c2 ole32!CallAccessCheck+0x9c

007efcec 775387a9 ole32!CheckAcl+0x73

007efd08 77532fe7 ole32!CheckAccess+0x88

007efd5c 77e7a2c1 ole32!ORPCInterfaceSecCallback+0x178

007efdb4 77e7c767 RPCRT4!RPC_INTERFACE::CheckSecurityIfNecessary+0x6f

007efdcc 77e7bcc9 RPCRT4!LRPC_SBINDING::CheckSecurity+0x4f

007efdfc 77e7bb6a RPCRT4!LRPC_SCALL::DealWithRequestMessage+0x194

007efe20 77e76784 RPCRT4!LRPC_ADDRESS::DealWithLRPCRequest+0x16d

007eff80 77e76c22 RPCRT4!LRPC_ADDRESS::ReceiveLotsaCalls+0x28f

007eff88 77e76a3b RPCRT4!RecvLotsaCallsWrapper+0xd

007effa8 77e76c0a RPCRT4!BaseCachedThreadRoutine+0x79

007effb4 7c80b50b RPCRT4!ThreadStartRoutine+0x1a

007effec 00000000 kernel32!BaseThreadStart+0x37

0:001> !token poi(@esp+c)

TS Session ID: 0

User: S-1-5-21-1060284298-2111687655-1957994488-1003
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Groups:

00 S-1-5-21-1060284298-2111687655-1957994488-513

Attributes - Mandatory Default Enabled

...

Impersonation Level: Identification

TokenType: Impersonation

The impersonation token is not the only reason the DCOM infrastructure denies
some calls. All remote calls have an associated authentication level that can vary from
RPC_C_AUTHN_LEVEL_NONE, with no client authentication whatsoever, to
RPC_C_AUTHN_LEVEL_PKT_PRIVACY, where the client identity is validated at
every call and data is encrypted. Server-side DCOM infrastructure rejects all calls
made at an authentication level lower than the value passed in
ole32!CoInitializeSecurity, which is stored in global variable OLE32!gAuthnLevel.
The authentication level has no meaning for calls made between local processes, as
those calls are made at the RPC_C_AUTHN_LEVEL_PKT_PRIVACY level, guar-
anteed by the Windows kernel. 

Listing 7.29 is taken from an access check performed before dispatching the client
call into the server code, whether it is normal calls or the activation call. The imper-
sonation token provided by the client application has the ImpersonationIdentify level
and can cause big problems if the server is not fully initialized. This is one of the poten-
tial impersonation access tokens with huge restrictions if it ends up being used in a
global initialization, as described in the previous section “Security Problems During
Deferred Initialization.” 

Although it is not very common to implement a full-blown DCOM server, it is
common to encounter all those restrictions when writing client code using asynchro-
nous callback paradigms. Each time the client code passes a callback interface to be
called from outside the client process, the underlying infrastructure starts a DCOM
server, and all checks and settings are applied. In this case, the client code takes the
server role and performs all access checks described in this section. Starting with
Windows XP SP2, the DCOM infrastructure provides logging for several failures
encountered in the normal operation using the NT Event Log, when the following
keys are set in the registry:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Ole\CallFailureLoggingLevel

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Ole\ActivationFailureLoggingLevel

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Ole\InvalidSecurityDescriptorLoggingLevel
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NOTE Because RPCSS is a basic service used frequently by the DCOM infrastructure, any
breakpoint set in the service is hit very often, and the call source must be checked to avoid
wasting time tracing unrelated activation calls. Also, every time one of the system processes
is broken under the debugger, the functionality of the machine is impaired.

!token Extension Command Failure
In the “Local Security Failures” section, the attempt to examine the impersonation
token using the !token extension command failed with access denied. Although it is
not possible to correct the extension, it is instructive to understand the reason for the
failure and the methodology used to find that out. The first step should be to under-
stand the logical execution path leading to this error. The next step is to validate the
execution path, using the debugger, by setting breakpoints in the main points from
the execution path. 

As described in Chapter 2, “Introduction to the Debuggers,” in response to the
!token extension command, the debugger executes a method named token, imple-
mented in one extension library (in this case exts.dll). Because the extension runs
inside the debugger, it is necessary to attach a new debugger to the debugger running
the extension. The debugger’s debugger can be easily started by entering the
.dbgdbg command at the command prompt, or by starting it from the command
prompt, commonly used when developing extensions.  

Because the impersonation token and the primary token are protected by the ker-
nel, the APIs enabling access to those tokens represent the right place to intercept
the extension calls. The extension uses undocumented APIs exposed by ntdll.dll, hav-
ing similar functionality with the advapi32.dll documented APIs. We learn that by set-
ting breakpoints in the debugger’s debugger on all APIs implementing functions
having similar names, as in the following: 

0:000> x *!*OpenProcessToken*

77dd7753 ADVAPI32!OpenProcessToken = <no type information>

77dd1364 ADVAPI32!_imp__NtOpenProcessToken = <no type information>

77e71350 RPCRT4!_imp__OpenProcessToken = <no type information>

7c801434 kernel32!_imp__NtOpenProcessToken = <no type information>

7c90dd90 ntdll!NtOpenProcessToken = <no type information>

7c90dda5 ntdll!NtOpenProcessTokenEx = <no type information>

...

0:000> bp ntdll!NtOpenProcessToken

0:000> bp ntdll!NtOpenThreadToken

0:000> g
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After invoking the !token extension command again in the debugger, the execution
stops into the debugger’s debugger. Each API returns an access denied error, explain-
ing the error displayed by the extension. Listing 7.30 shows how to execute the cur-
rent function after hitting the breakpoint and where to look for the error code. 

Listing 7.30

0:000> g

Breakpoint 1 hit

eax=000007a4 ebx=7ffda000 ecx=00000000 edx=0007dc78 esi=00000000 edi=0007dd04

eip=7c90de0e esp=0007dc5c ebp=0007dc80 iopl=0         nv up ei pl zr na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000246

ntdll!NtOpenThreadToken:

7c90de0e b881000000       mov     eax,0x81

0:000> * Execute the current function, OpenThreadToken and return

0:000> gu

eax=c0000022 ebx=7ffda000 ecx=0007dc58 edx=7c90eb94 esi=00000000 edi=0007dd04

eip=01936cf8 esp=0007dc70 ebp=0007dc80 iopl=0         nv up ei pl zr na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000246

exts!tls+0xbb8:

01936cf8 8945f4           mov     [ebp-0xc],eax     ss:0023:0007dc74=00000000

0:000> * Notice the NT_STATUS access denied error in eax register

0:000> g

Breakpoint 0 hit

eax=00000000 ebx=7ffda000 ecx=0007dc78 edx=0000079c esi=00000000 edi=0007dd04

eip=7c90dd90 esp=0007dc60 ebp=0007dc80 iopl=0         nv up ei pl nz ac pe nc

ntdll!NtOpenProcessToken:

7c90dd90 b87b000000       mov     eax,0x7b

0:000> * Execute the current function, OpenProcessToken

0:000> gu

eax=c0000022 ebx=7ffda000 ecx=0007dc58 edx=7c90eb94 esi=00000000 edi=0007dd04

eip=01936cf8 esp=0007dc70 ebp=0007dc80 iopl=0         nv up ei pl zr na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000246

exts!tls+0xbb8:

01936cf8 8945f4           mov     [ebp-0xc],eax     ss:0023:0007dc74=00000000

0:000> * Notice the NT_STATUS access denied error in eax register

Because there is no easy way to identify the security descriptors protecting resources
involved in this failure, we start the kernel debugger to examine the access token’s
security descriptors and the access tokens used by the calling code. Because a full ker-
nel debugger session is not always available, the local kernel debugger is sufficient.
The investigation shown in Listing 7.31 focuses on the primary token that is opened
by the ntdll!NtOpenProcessToken API. 
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Listing 7.31

lkd> * Finding the token used by the process executing wmiprvse.exe

lkd> !process 0 1 wmiprvse.exe

PROCESS 81a71da0  SessionId: 0  Cid: 03f4    Peb: 7ffd8000  ParentCid: 0320

DirBase: 0a848000  ObjectTable: e21f59c8  HandleCount: 159.

Image: wmiprvse.exe

VadRoot 8203e5b0 Vads 109 Clone 0 Private 377. Modified 89. Locked 0.

DeviceMap e1881148

Token                             e18b2a68

...

lkd> * Displaying the token information

lkd> !token e18b2a68 -n

_TOKEN e18b2a68

TS Session ID: 0

User: S-1-5-20 (Well Known Group: NT AUTHORITY\NETWORK SERVICE)

Groups:

00 S-1-5-20 (Well Known Group: NT AUTHORITY\NETWORK SERVICE)

Attributes - Mandatory Default Enabled

...

Impersonation Level:       Impersonation

TokenType:                 Primary

Source: Advapi             TokenFlags: 0x81 ( Token in use )

Token ID: 34e00f           ParentToken ID: 0

Modified ID:               (0, 34de7a)

RestrictedSidCount: 0      RestrictedSids: 00000000

Because the debugger always has full access to the debugger target process, the only
reason for the access failure when opening the primary token can be the primary
token security descriptor. Listing 7.32 shows the security descriptor protecting the
token obtained from the previous listing. 

Listing 7.32

lkd> !sd poi(e18b2a68-4) & FFFFFFF8

->Revision: 0x1

->Sbz1    : 0x0

->Control : 0x8004

SE_DACL_PRESENT

SE_SELF_RELATIVE

->Owner   : S-1-5-20

->Group   : S-1-5-20

->Dacl    :

->Dacl    : ->AclRevision: 0x2
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->Dacl    : ->Sbz1       : 0x0

->Dacl    : ->AclSize    : 0x30

->Dacl    : ->AceCount   : 0x2

->Dacl    : ->Sbz2       : 0x0

->Dacl    : ->Ace[0]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

->Dacl    : ->Ace[0]: ->AceFlags: 0x0

->Dacl    : ->Ace[0]: ->AceSize: 0x14

->Dacl    : ->Ace[0]: ->Mask : 0x000f01ff

->Dacl    : ->Ace[0]: ->SID: S-1-5-18

->Dacl    : ->Ace[1]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

->Dacl    : ->Ace[1]: ->AceFlags: 0x0

->Dacl    : ->Ace[1]: ->AceSize: 0x14

->Dacl    : ->Ace[1]: ->Mask : 0x000f01ff

->Dacl    : ->Ace[1]: ->SID: S-1-5-20

->Sacl    :  is NULL

The primary token’s security descriptor does not allow system administrators to get a
handle to it. Because the debugger runs under an administrator principal, different
from LocalSystem or NetworkService, the primary token is not accessible to the
!token extension command. The failure of opening the impersonating token is
caused by a similar incompatibility between the thread object and the administrator
account running the debugger. 

DCOM Activation Failure on Windows XP SP2 After
Installing an Application   
The last debugging example is performed on a previously healthy system running
Windows XP SP2 that behaves strangely after the reboot requested by an application
installation. The system fails to activate any DCOM server, affecting most adminis-
tration MMC snap-ins. Even after turning on all DCOM tracing settings, described
previously in the “DCOM Call Access Checks” section, no clear message can point to
the problem root cause.

We begin debugging by using the model discussed previously of stopping each
process that is part of the activation path in the debugger, while retrying the client
activation. The first process from the bottom of the call path for which the client
hangs is the process hosting the DcomLaunch service. Although this service is
stopped in the debugger, no processes that are part of the activation path—namely
the client making the activation call, the process hosting the RPCSS service, and the
process hosting DcomLaunch—changes and can be investigated. 
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We expect the client process to have at least one thread with the
ole32!CocreateInstanceEx  API call on the stack at this time. Therefore, we attach a
user mode debugger to the client process and list the stack for all threads. The client
activation stack available in Listing 7.33 shows the thread that waits for a reply to a
local RPC call, as indicated by the presence of the rpcrt4!LRPC_CALL on the stack.
The wait and the visible client hang are caused by the debugger breaks in the process
hosting the DcomLaunch service. 

Listing 7.33

0:001> ~0 k

ChildEBP RetAddr

0013de30 7c90e3ed ntdll!KiFastSystemCallRet

0013de34 77e7c968 ntdll!NtRequestWaitReplyPort+0xc

0013de80 77e7a716 RPCRT4!LRPC_CCALL::SendReceive+0x228

...

0013e4f0 77545fc8 ole32!CRpcResolver::CreateInstance+0x13d

0013e73c 7752f4f5 ole32!CClientContextActivator::CreateInstance+0xfa

0013e77c 7752f33a ole32!ActivationPropertiesIn::DelegateCreateInstance+0xf7

0013ef2c 77526000 ole32!ICoCreateInstanceEx+0x3c9

0013ef54 77525fcf ole32!CComActivator::DoCreateInstance+0x28

0013ef78 74ef18c1 ole32!CoCreateInstanceEx+0x1e

...

Because the error returned to the client has always been an access denied error, the
next logical step is identifying the principal that the caller threads run under. As
before, we use the !token extension command to obtain the current thread imper-
sonating an access token. Because the extension command acts over the current
thread, the first step sets the thread zero as the active thread. 

Listing 7.34

0:001> ~0s

0:000> !token -n

Thread is not impersonating. Using process token...

TS Session ID: 0

User: S-1-5-21-1060284298-2111687655-1957994488-1003 (User: XP-SP2-BACK\TestAdmin)

Groups:

00 S-1-5-21-1060284298-2111687655-1957994488-513 (Group: XP-SP2-BACK\None)

Attributes - Mandatory Default Enabled

01 S-1-1-0 (Well Known Group: localhost\Everyone)

Attributes - Mandatory Default Enabled
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02 S-1-5-32-544 (Alias: BUILTIN\Administrators)

Attributes - Mandatory Default Enabled Owner

...

Auth ID: 0:45550

Impersonation Level: Anonymous

TokenType: Primary

The thread is not impersonating; therefore, it uses the primary token representing a
local administrator, powerful enough to do almost anything on this system. We move
back to the process hosting the DcomLaunch service to understand what exactly is
failing within this process. As seen in Listing 7.34, almost every DCOM call tries to
obtain the impersonation access token representing the caller before doing work on
the client’s behalf, using the underlying protocol impersonation functions.
Consequently, we must understand what specific identity makes the call by setting a
breakpoint on rpcrt4!RpcImpersonateClient and checking the thread imper-
sonation on return, as in Listing 7.35.

Listing 7.35

0:019> bp RPCRT4!RpcImpersonateClient “g @$ra”

0:019> g

eax=00000005 ebx=000c0b78 ecx=0065f7b4 edx=7c90eb94 esi=00000000 edi=0065f854

eip=76a822fc esp=0065f7dc ebp=0065f7f0 iopl=0         nv up ei ng nz na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000286

rpcss!LookupOrCreateTokenForRPCClient+0x24:

76a822fc 8b1d2014a876 mov ebx,[rpcss!_imp__GetCurrentThread

(76a81420)]{kernel32!GetCurrentThread (7c809919)} ds:0023:76a81420=7c809919

0:003> k

ChildEBP RetAddr

0065f7f0 76a95dad rpcss!LookupOrCreateTokenForRPCClient+0x24

0065f858 77e79dc9 rpcss!_LaunchActivatorServer+0x55

0065f8b4 77ef321a RPCRT4!Invoke+0x30

...

0:003> !token

Thread is not impersonating. Using process token...

TS Session ID: 0

User: S-1-5-18

Groups:

00 S-1-5-32-544

Attributes - Default Enabled Owner

01 S-1-1-0

Attributes - Mandatory Default Enabled

02 S-1-5-11

7.
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Attributes - Mandatory Default Enabled

Primary Group: S-1-5-18

...

Auth ID: 0:3e7

Impersonation Level: Anonymous

TokenType: Primary

0:003> reax

eax=00000005

0:003> !error 5

Error code: (Win32) 0x5 (5) - Access is denied.

After the impersonation attempt, the thread is still not impersonating since the API
failed with access denied. It is time to look in the execution path closer to the client,
in the process hosting the RPCSS service, and identify the thread making this call. A
quick scan through the threads reveals the thread from Listing 7.36 with an out-
standing RPC call. However, it is not possible to obtain the thread impersonating for
the reasons we described in the previous section. 

Listing 7.36

0:008>k

ChildEBP RetAddr

0099f528 7c90e9c0 ntdll!KiFastSystemCallRet

0099f52c 7c8025db ntdll!NtWaitForSingleObject+0xc

0099f590 7c802542 kernel32!WaitForSingleObjectEx+0xa8

0099f5a4 76a92fad kernel32!WaitForSingleObject+0x12

0099f608 76a92a4a rpcss!CClsidData::ServerLaunchMutex+0xce

0099f65c 76a8e4ab rpcss!Activation+0x384

0099f6b8 76a91e12 rpcss!ActivateFromProperties+0x213

0099f6c8 76a91e66 rpcss!CScmActivator::CreateInstance+0x10

0099f708 76a91e7b rpcss!ActivationPropertiesIn::DelegateCreateInstance+0xf7

0099f754 76a8c1d7 rpcss!ActivateFromPropertiesPreamble+0x4c1

0099f79c 76a91de7 rpcss!PerformScmStage+0xbb

0099f8b0 77e79dc9 rpcss!SCMActivatorCreateInstance+0x97

0099f8e0 77ef321a RPCRT4!Invoke+0x30

...

0099fdfc 77e7bb6a RPCRT4!LRPC_SCALL::DealWithRequestMessage+0x2db

0099fe20 77e76784 RPCRT4!LRPC_ADDRESS::DealWithLRPCRequest+0x16d

Listing 7.35 (continued)
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0:008> !token

Thread is not impersonating. Using process token...

Error 0xc0000022 getting thread token

To obtain the impersonation token, we will use the technique presented in the previ-
ous section “!token Extension Command Failure,” using the kernel mode debugger
in local mode. The result of this step is shown in Listing 7.37.

Listing 7.37

lkd> !thread 815aada8

THREAD 815aada8  Cid 035c.0fac  Teb: 7ffd4000 Win32Thread: 00000000 WAIT: (Suspended)

KernelMode Non-Alertable

SuspendCount 1

FreezeCount 1

815aaf44  Semaphore Limit 0x2

Waiting for reply to LPC MessageId 00015a17:

Current LPC port e1dc2480

Impersonation token:  e23ce530 (Level Identification)

Owning Process            8217a520       Image:         svchost.exe

Wait Start TickCount      657309         Elapsed Ticks: 1362

Context Switch Count      570

UserTime                  00:00:00.0000

KernelTime                00:00:00.0020

Start Address kernel32!BaseThreadStartThunk (0x7c810856)

The impersonating token on this thread at the SecurityIdentification level is the actu-
al cause of the failure in the DcomLaunch Server service, as the token at this level
cannot be propagated in a sequential remote process. This is in total contradiction to
the initial caller access token or to the client code intentions. It looks more like a
problem with the impersonation mechanism used by the RPCSS Server service.  

After doing some research on the Microsoft MSDN site, we found a reference to
a new privilege added in Windows Server 2003 and later to Windows XP SP2, named
SeImpersonatePrivilege, that affects the impersonating level obtained after imperson-
ating a client access token. Furthermore, in the Local security Policy shown in Figure
7.7, we see SeImpersonatePrivilege not granted to the NetworkService identi-
ty; thus, the error seen before is normal.

Granting the privilege to the SERVICES account, which includes NetworkService,
and restarting the system, the system functionality is restored. 

7.
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Figure 7.7

Investigating Security Failures Using Tracing Tools
The common cause of the access denied error cases presented so far in this chapter
is the incompatibility between the principal trying to access an object and the securi-
ty descriptor protecting it. In addition, it is fairly easy to understand what pieces are
involved in the operation, and the security information is easily accessible from the
Windows debuggers. 

On the other end of the spectrum are access denied error cases in complex appli-
cations with relatively unknown architecture that encounters errors primarily when
accessing protected resources past their security boundary. In those cases, we should
start the investigation using various tracing tools to understand what resources are
accessed, how they are accessed, and in what order they are accessed. 

Process Monitor is such a tool that shows, in real-time, file and registry activity on
the local system. When the application interacts with other computer systems, net-
work tracing is the best way to discover the network activity and the access denied
error encountered by the application. The next chapter uses a network monitor tool
to observe a remote application behavior. 
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All file system and registry accesses, performed in the “DCOM Activation Checks”
section, are easily traceable. For example, the file access operations and their results
are clearly exposed by the Process Monitor tool, as shown in Figure 7.8, after hiding
the registries and the process activity. In this case, the security descriptor protecting
the server image file has been manually changed to deny access to local administrators. 

7.
SECURITY

Figure 7.8

In Figure 7.8, it is easy to see how the svchost.exe process hosting DcomLaunch tries
to open the image file of the server process and fails with access denied errors. This trac-
ing can reveal other file access errors, as well as other errors encountered by the server
after process startup. Figure 7.9 shows the errors encountered by the server process
when trying to access several registry keys. The registry paths must be correlated with
the information available about the component to understand what went wrong. We usu-
ally filter the activity by the executable name or by the path of accessed objects.

The errors encountered in Figure 7.9 are caused by an improper registration of
the proxy-stub module used by the application when it accesses one interface. Armed
with this information and with an overview of the infrastructure, it is very easy to find
the solution: reregister the proxy-stub on the system hosting the server process. 
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Figure 7.9

Summary

In this chapter, you learned the basic mechanism used by the operating system to
control access to various resources, the mechanism used to identify the principals,
and the way to examine each of those elements using the Windows debuggers. In
addition, you learned where the security information is stored and how it is propa-
gated from one process to another or from one system to another. 

You then used this knowledge to understand several access denied errors encoun-
tered in application ranging from a very simple “in the process” access denied error
to the complex cases involving distributed COM. Using the same tools and similar
heuristics, you can now handle any security failure encountered in the development
process or in the deployment phase.
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INTERPROCESS COMMUNICATION

Years ago, software components were working largely in isolation without much inter-
action. The limited interaction was performed using custom mechanisms rarely used
by multiple components—mechanisms based on file system operation or network
protocols, such as IP or UDP. The ability to understand the communication between
components was limited to people who knew the details of the application. 

Today, the omnipresent client-server architecture has changed the software land-
scape even for simple applications. While MS-DOS applications used to write direct-
ly into the video memory buffer to update the visible application state, today’s
Windows components are making system API calls to have the application state
updated. Underneath the system API, Windows calls the process responsible for
managing all windows using one of the communication processes described in this
chapter. Another application writes an event into the Event Log, which results in an
interprocess call to the service responsible for Event Log management. 

Today’s solutions are using more and more systems running on multiple process-
es. Some of them are using this mechanism to provide fault tolerance or security iso-
lations, whereas others use this just to achieve scalability levels beyond those provided
by the single-process systems. Not knowing how to navigate through this complex
infrastructure puts the engineers into a weird situation: They have all the knowledge
to tackle the business problem resolved by the software solution, but they are unable
to spot the problem easily, as the whole interprocess communication process
obstructs them from easily understanding the real problem. 

This chapter provides the necessary tools and information required to successful-
ly investigate the problems in connected software environments—problems that
involve more than one process, or more than one computer. We focus on several com-
munication primitives, and we will introduce a few new tools. In this chapter, you will
get the answers to several basic questions about a client-server application, such as
the following.

■ When the client call fails, how can we find the location and the cause of this
failure? 
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■ When the server does not reply in a predictable manner and must be
debugged, which thread, process, and system are responsible for blocking the
call? 

■ When the server gets called with invalid parameters, how can we identify the
client calling this server method? 

We use a new extension command, !lpc, available in the Windows debuggers exten-
sions loaded by default. This chapter’s sample is a distributed COM application, con-
sisting of a client application, 08cli.exe; a dynamic link library, 08comps.dll, which
contains the communication proxy-stub code; and a server application, 08comsrv.exe.
The source code and binary are in the following folders: 

Source code: C:\AWD\Chapter8
Binary: C:\AWDBIN\WinXP.x86.chk\08cli.exe, 08comps.dll, and
08comsrv.exe.

Communication Mechanisms

Current Windows operating systems, such as Windows XP and Windows Server 2003,
have built-in support for multiple communication protocols. Transport layer proto-
cols, such as connection-based IP or datagram UDP, can be directly used for simple
forms of interprocess communication. However, applications might have complex
requirements, such as reliable communication or secure communication, require-
ments that have to be accomplished using the least amount of code. Furthermore, the
communication between systems having different architecture—such as a 64-bit
processor architecture system communicating with a 32-bit processor architecture
system—should work seamlessly. The messages exchanged between heterogeneous
systems should be independent from the processor type, the operating system, or the
compiler characteristics. 

In such cases, developers select session layer communication protocols imple-
menting all the requirements. DCE Remote Procedure Call (DCE/RPC) is such a
protocol that satisfies the preceding requirements. RPC is used to implement a famil-
iar call-response communication paradigm between components living in different
processes or physical systems. The RPC runtime provides the mechanisms necessary
to marshal and unmarshal messages passed between the client and server process
used to implement the call-response paradigm. Microsoft’s implementation of the
RPC protocol, named MSRPC, can use any protocol at the session layer or below that
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is available between the client and the server, including TPC/IP, Named Pipe, or
HTTP. Not surprisingly, most administration tools in the Windows operating system
use MSRPC to communicate with the servers managed by them. 

With the advent of object-oriented programming practices, developers looked for
communication protocols facilitating those practices. Microsoft created the
Distributed Common Object Model (DCOM) infrastructure on top of the MSRPC
infrastructure. As an added value to MSRPC, the DCOM infrastructure provides the
capability to activate, use, and destroy objects implementing multiple interfaces. The
lifetime of DCOM objects is explicitly managed by the client application.
Accidentally disconnected objects are periodically reclaimed by DCOM’s distributed
garbage collector. 

DCOM objects can be created in virtually every programming language and can
be consumed from any language or tools capable of using them. Newer programming
languages, based on the .NET runtime, can interact transparently with DCOM
objects by exposing the DCOM objects as .NET objects.

The communication between two processes running on the same physical host is
natively supported by the Windows kernel in the form of Local Procedure Call
(LPC). MSRPC using LPC is often referred to as Local RPC or LRPC. Figure 8.1
shows the relationships between the various communication protocols available in the
Windows operating system to aid understanding the entire protocol stack, useful in
debugging interprocess communication. 
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Figure 8.1 Relationship between various communication protocols available in Windows
operating systems
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Most techniques used in debugging a specific protocol are used to debug any proto-
col derived from it or using it as a communication base. For example, to debug the
communication between two processes using DCOM, the developer must also debug
the LRPC communication between the client and the server process. 

Troubleshooting Local Communication

The importance of local communication between various processes cannot be
ignored. Automation objects, which are exposed or used by all complex applications,
are driven by a sequence of DCOM calls against the objects implemented by various
servers. Chances are good that sooner or later, an engineer will either provide the
service or will consume the service provided by someone else’s components. When
the client and the server are running in different processes, the calls do not always
work as expected. The client can pass the wrong arguments, such as the security con-
text. Likewise, the server can take much longer than expected to process the request.
In such cases, the engineer is forced to debug the communication between those
processes. 

Fortunately, the communication between local components is usually performed
using protocols built around the LPC protocol. Mastering this basic protocol, which
is the subject of this section, is essential in debugging the Windows operating system.
The LPC protocol satisfies a set of contradictory requirements that are hard to meet
in local communication with other protocols.

■ The communication channel between the client and the server is secured; no
other process, besides Windows kernel, can watch, intercept, or alter the mes-
sages exchanged between client and server.

■ The communication between the client and the server is optimized for 
performance. 

■ The synchronous communication between the client and the server is fully
traceable; at any moment in the communication process, the client knows what
server thread executes the request, and the server knows what client made the
request. In addition, there is no need to change anything in the system or add
any special instrumentation to enable this tracing. This is a very important
aspect of debugging live systems, and it shows that the protocol was built with
the debugging capability in mind. 

However, not all local communication benefits from LPC capabilities, as there are indi-
vidual cases in which the local communication is done in unconventional ways. For
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example, two processes can send windows messages to each other, can use MSRPC
over a network protocol, or can even use a transport layer protocol directly. The section
“Troubleshooting Remote Communication” is dedicated to debugging the communica-
tion using RPC over network protocols. LPC communication is debugged using a ker-
nel mode debugger either connected to the system or running in local mode.  

LPC Background
Despite the fact the protocol is not documented by Microsoft, plenty of references
are available to help build a good enough understanding of this protocol to be profi-
cient in debugging it. The history of LPC dates back to the first days of the Windows
NT operating system, when the client-server architecture used at the core of the
operating system called for a new communication protocol meeting strong perform-
ance requirements. The LPC protocol is supported by a suite of APIs implemented
directly by the Windows kernel and exposed to user mode code by a series of func-
tions implemented inside ntdll.dll, having the ntdll!Nt[operation]Port form. 

To understand how the protocol is used, engineers must have a basic idea about
its behavior. The basic communication happens in several important steps, as follows.

1. The server initiates the protocol with the creation of a named port by calling
the ntdll!NtCreatePort API. The port is called the connection port. 

2. The server listens on that connection port for new communication requests
using the ntdll!NtListenPort API. The server must have a thread waiting on
the connection port all the time. 

3. The client initiates a new connection by sending a connection request to the
server by using the ntdll!NtConnectPort API. The request is sent to the port
created in step 1. 

4. The server examines the connection request and, based on its policies, accepts
the connection by using the ntdll!NtAcceptConnectPort API followed by a
ntdll!NtCompleteConnectPort call. 

5. After the connection has been established, both the client and the server are
in possession of a communication port object that can be used for actual 
communication. 

6. The server starts a loop dedicated to the connection port in which it receives a
new message, processes the message, and replies to the client using, for exam-
ple, the ntdll!NtReplyWaitReceivePort API. 

7. The client uses ntdll!NtRequestWaitReplyPort to send a new request to the
server and waits for the server to process it. Step 6 and step 7 repeat for the
duration of the entire conversation between the client and the server. 
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Each message exchanged between the client and the server has a DWORD unique
identifier that is stored in the KTHREAD structure representing the client and the
server thread. This identifier is used to track the call path in the kernel mode debug-
ger using the !lpc extension command. 

Debugging LPC Communication
Each thread involved in an LPC conversation maintains a reference to the message
that is currently handled by the thread. This reference is listed every time the thread
information is displayed. In other words, every time a client thread waits on an LPC
request to be processed, the message identifier corresponding to the current request
is available after executing the !thread extension command. Likewise, if the server
thread processes a message, the message identifier is listed by the !thread exten-
sion command. Using the !lpc extension command, all the information about the
client connection port, the server connection port, the server communication port,
and the server process is obtained using the information associated with the message.  

To demonstrate how to use this facility, we examine a call made by the client
08CLI.EXE into the ICalculator::SlowSum method implemented by the 
08COMSRV.EXE server that does not return in a timely fashion. Listing 8.1 shows
the result of executing the !thread extension command within a kernel mode
debugger on the client thread that initiated the request. 

Listing 8.1 Client’s thread waiting on LPC request to complete

kd> !thread ffb10020

THREAD ffb10020  Cid 05b4.04f8  Teb: 7ffdd000 Win32Thread: e16e5eb0 WAIT: (WrLpcRe-

ply) UserMode Non-Alertable

ffb10214  Semaphore Limit 0x1

Waiting for reply to LPC MessageId 00004f99:

Current LPC port e138cd98

Not impersonating

DeviceMap                 e1a60398

Owning Process            ffaa62f0       Image:         08cli.exe

Wait Start TickCount      563720         Ticks: 1391 (0:00:00:13.930)

Context Switch Count      98                 LargeStack

UserTime                  00:00:00.0000

KernelTime                00:00:00.0530

Start Address kernel32!BaseProcessStartThunk (0x7c810867)

Win32 Start Address 08CLI!ILT+1385(_wmainCRTStartup) (0x0042c56e)

Stack Init f6c05000 Current f6c04c50 Base f6c05000 Limit f6c01000 Call 0

Priority 8 BasePriority 8 PriorityDecrement 0 DecrementCount 16

ChildEBP RetAddr  Args to Child
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f6c04c68 804dc6a6 ffb10090 ffb10020 804dc6f2 nt!KiSwapContext+0x2e 

f6c04c74 804dc6f2 ffb10214 ffb101e8 ffb10020 nt!KiSwapThread+0x46 

f6c04c9c 805788ef 00000001 00000011 e100da01 nt!KeWaitForSingleObject+0x1c2 

f6c04d50 804df06b 000006e0 0015c2b8 0015c2b8 nt!NtRequestWaitReplyPort+0x63d 

...

The state of the thread holding LPC information is clearly decoded in the third line
of the thread information shown in Listing 8.1. The message can be passed to the
!lpc extension command to extract the associated information, as shown in Listing
8.2. In this case, the command has been used to dump the message information, using
the !lpc message <message_id> form. 

Listing 8.2 Using !lpc extension to get message information

kd> !lpc message 00004f99

Searching message 4f99 in threads ...

Server thread ffab41c0 is working on message 4f99

Client thread ffb10020 waiting a reply from 4f99

Searching thread ffb10020 in port rundown queues ...

Server communication port 0xe111b878

Handles: 1   References: 1

The LpcDataInfoChainHead queue is empty

Connected port: 0xe138cd98      Server connection port: 0xe14684f0

Client communication port 0xe138cd98

Handles: 1   References: 2

The LpcDataInfoChainHead queue is empty

Server connection port e14684f0  Name: OLE0D6120B10F36435E84795A344064

Handles: 1   References: 9

Server process  : ffab3530 (08comsrv.exe)

Queue semaphore : 8124a248

Semaphore state 0 (0x0)

The message queue is empty

The LpcDataInfoChainHead queue is empty

Done.

The extension command extracts the information available about the client-server com-
munication. In the command output, we can find the server process information—
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including its image name, the connection port name, plus additional information, such
as the message queue length. The queue contains the messages waiting to be served by
the process—messages received on both the connection port and the connected port.
Listing 8.3 shows a case in which the server process has been stopped in the debugger
and the connection requests are pilling up on the connection port. The port address is
used as an argument to the !lpc port <port_id> extension command. 

Listing 8.3 Using !lpc extension to get port information

kd> !lpc port e13f6878

Server connection port e13f6878  Name: OLE9D3C2AF8298042C9A8D0FACAE0FA

Handles: 1   References: 10

Server process  : ffb52020 (08comsrv.exe)

Queue semaphore : 8124f3d0

Semaphore state 2 (0x2)

Messages in queue:

0000 e13f8528 - Busy  Id=00006dcd  From: 0348.077c  Context=80020000

[e13f6888 . e160a858]

Length=0044002c  Type=00380001 (LPC_REQUEST)

Data: 00008701 00040342 00007801 000007f4 8f62e1ae 2ee99a5d

0000 e160a858 - Busy  Id=00006f23  From: 0348.07f0  Context=80020000

[e13f8528 . e13f6888]

Length=0044002c  Type=00380001 (LPC_REQUEST)

Data: 00005b01 00040342 00007801 000007f4 8f62e1ae 2ee99a5d

The message queue contains 2 messages

The LpcDataInfoChainHead queue is empty

Another nice feature of the !lpc extension command is the capability of extracting
the LPC information from a thread passed in as parameter in the following syntax:
!lpc thread <threadid> If the thread identifier is omitted, the extension com-
mand dumps all the LPC activity happening in the system at the time of the execu-
tion, as shown in Listing 8.4. 

Listing 8.4 Using !lpc extension to obtain the entire LPC activity on the system

kd> !lpc thread

Searching message 0 in threads ...

Server thread 8118b7b8 is working on message 5ee

Client thread 81129da8 waiting a reply from 88f

Server thread 81271020 is working on message 1968

Server thread 8112c168 is working on message 47c7
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Server thread 81130c98 is working on message 2f35

Server thread ffb952c8 is working on message 47c4

Server thread 8120fda8 is working on message 5fe

Server thread ffbc1c18 is working on message 887

Server thread ffbcb7f0 is working on message 888

Server thread ffbc17f0 is working on message 88f

Server thread 81122768 is working on message 47ca

Server thread 811323b0 is working on message b6c

Server thread 81134568 is working on message 2fd1

Server thread 81206020 is working on message 4b3

Server thread 81211c58 is working on message 4943

Client thread ffb40da8 waiting a reply from f83

Server thread 8125d020 is working on message 26ff

Server thread ffb42da8 is working on message f83

Server thread ffb06a60 is working on message 2fff

Server thread ffaba020 is working on message 4d1c

Server thread ffb096c0 is working on message 29a5

Server thread ffab1020 is working on message 4e7c

Server thread ffab41c0 is working on message 4f99

Client thread ffb10020 waiting a reply from 4f99

Done.

NOTE It is impressive to see how many threads communicate with each other at any given
moment, even on an idle machine. 

The debugging capabilities of the LPC protocol are wonderful. The client thread is
blocked while the server thread processes the message, and it is easily discoverable
by inspecting the kernel structures using the !lpc extension command. Knowing
these methods, it is not difficult to extend the scope of debugging beyond a single
process, used throughout the book, to the entire machine. For example, the synchro-
nization chapter scenarios about detecting deadlocks inside a single process can be
extended to a group of processes communicating using LPC-based protocols. 

The only caveat to all this is that the LPC information is available only from the
kernel mode debugger. That should not be a problem in newer operating systems,
such as Windows XP or Windows 2003, because it is very easy to start a kernel debug-
ger in local mode and use it in parallel with the other debuggers. Chapter 2,
“Introduction to the Debuggers,” is a good reference for the situations in which mul-
tiple debuggers must be used simultaneously. 

But because the LPC protocol is not documented, it is not used directly outside
the Windows core operating system. With only a few exceptions (Windows system
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APIs using LPC directly), the developer is exposed to the LPC protocol indirectly
through the LRPC protocol or other protocols layered on top of it. Local DCOM
invocation is one such protocol, and it is the focus of the next section. 

Debugging Local DCOM and MSRPC Communication
In the most common scenario, the client makes a call into the server that does not
return in a reasonable amount of time. The first step of the investigation is identifying
the troubled client thread waiting for the server reply. The next step is identifying the
server process and the thread processing the respective call, if any, and finding out the
thread state. The thread can, for example, wait for another kernel object or user input. 

To exemplify this technique, we reuse the client-server sample. The sample calls
the server synchronously in a COM multithreaded apartment, which maps directly to
synchronous LPC communication. While the server code waits before sending back
the response, the client hangs and presents the perfect opportunity for debugging.
We start 08CLI.EXE under the debugger and run it freely for a few seconds to com-
plete the initialization sequence. The time window when the communication is not
tracked is not relevant since it will wait in hung state much longer. In this case, we
realize that the invocation of ICalculator::SlowSum is extremely slow without
any explanation (other than the interface method name). The next step is to list all
stack threads and identify those threads showing LRPC activity. In Listing 8.5, we can
see the first thread having a rpcrt4!LRPC_CCALL object method on the stack. In
turn, this method uses LPC APIs directly. The LPC function used in this case,
ntdll!NtRequestWaitReplyPort, is a good indicator of a client-initiated call. The
client makes a server request and waits for a reply on the LPC port. This technique
works for synchronous RPC only. 

Listing 8.5 Starting the client and listing a partial call stack for each thread

C:\>windbg 08CLI.EXE

...

0:003> * The client has been running freely for a few seconds before stopping it

0:003> ~* k2

0  Id: 5b4.4f8 Suspend: 1 Teb: 7ffdd000 Unfrozen

ChildEBP RetAddr

0012f6e4 7c90e3ed ntdll!KiFastSystemCallRet

0012f6e8 77e7cc55 ntdll!NtRequestWaitReplyPort+0xc

0012f734 77e7aae6 RPCRT4!LRPC_CCALL::SendReceive+0x228

1  Id: 5b4.1d0 Suspend: 1 Teb: 7ffdc000 Unfrozen

ChildEBP RetAddr

00e9fe18 7c90e399 ntdll!KiFastSystemCallRet
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00e9fe1c 77e76703 ntdll!NtReplyWaitReceivePortEx+0xc

00e9ff80 77e76c1b RPCRT4!LRPC_ADDRESS::ReceiveLotsaCalls+0xf4

2  Id: 5b4.278 Suspend: 1 Teb: 7ffdb000 Unfrozen

ChildEBP RetAddr

00b0ff1c 7c90d85c ntdll!KiFastSystemCallRet

00b0ff20 7c8023ed ntdll!NtDelayExecution+0xc

00b0ff78 7c802451 kernel32!SleepEx+0x61

#  3  Id: 5b4.bd0 Suspend: 1 Teb: 7ffdb000 Unfrozen

ChildEBP RetAddr

00b6ffc8 7c9507a8 ntdll!DbgBreakPoint

00b6fff4 00000000 ntdll!DbgUiRemoteBreakin+0x2d

NOTE The naming convention of the CCALL objects is a good indication of the protocol
used for interprocess communication. LRPC_CCALL is the client side capable of handling
local calls over LPC; OSF_CCALL indicates a communication using a connection-based pro-
tocol, such as TCP/IP or named pipes; and DG_CCALL indicates a communication using a
datagram-based protocol, such as UDP. The relationship between those protocols can be
seen in Figure 8.1.

Examining the entire stack of the thread identified previously helps identify exactly
what function call hangs and what layers are involved in handling that call. In the case
shown in Listing 8.6, the client call uses DCOM as indicated by the use of the meth-
ods in ole32.dll, which in turn uses RPC and, ultimately, LPC to dispatch the call to
the server. 

Listing 8.6 Typical stack of clients using DCOM over LRPC

0:003> ~0k

ChildEBP RetAddr

0012f6e4 7c90e3ed ntdll!KiFastSystemCallRet

0012f6e8 77e7cc55 ntdll!NtRequestWaitReplyPort+0xc

0012f734 77e7aae6 RPCRT4!LRPC_CCALL::SendReceive+0x228

0012f740 776016bf RPCRT4!I_RpcSendReceive+0x24

0012f75c 776011b6 ole32!ThreadSendReceive+0xf5

0012f778 7760109a ole32!CRpcChannelBuffer::SwitchAptAndDispatchCall+0x13d

0012f858 7751047c ole32!CRpcChannelBuffer::SendReceive2+0xb9

0012f8c4 77510414 ole32!CAptRpcChnl::SendReceive+0xab

0012f918 77ef3db5 ole32!CCtxComChnl::SendReceive+0x113

0012f934 77ef3ead RPCRT4!NdrProxySendReceive+0x43

0012fd10 77ef3e42 RPCRT4!NdrClientCall2+0x1fa
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0012fd30 77e8a433 RPCRT4!ObjectStublessClient+0x8b

0012fd40 0042ea5b RPCRT4!ObjectStubless+0xf

0012fe48 0042e7ae 08CLI!MTAClientCall+0x7b

0012ff54 0042f902 08CLI!wmain+0xae

0012ffb8 0042f6bd 08CLI!wmainCRTStartup+0x252

0012ffc0 7c816fd7 08CLI!wmainCRTStartup+0xd

0012fff0 00000000 kernel32!BaseProcessStart+0x23

Even if the relevant client thread has been identified, it makes sense to understand
why a second thread is waiting on an outstanding LPC call with a stack shown in
Listing 8.7. The LPC function used in this case, ntdll!NtReplyWaitReceivePort,
indicates a server thread waiting to receive a new operation request. Although it might
seem a little bit confusing that each DCOM client also has a server role, at the begin-
ning of the chapter, we said that DCOM provides added value functionality to the RPC
stack, such as distributed garbage collection. This thread is part of this entire mecha-
nism peculiar to this client process. The client process is notified on this thread when
the server goes away, and it cleans up all the structures associated with that server.

Listing 8.7 Typical stack of a server thread waiting for a new request on DCOM over LRPC

0:003> ~1k

ChildEBP RetAddr

00e9fe18 7c90e399 ntdll!KiFastSystemCallRet

00e9fe1c 77e76703 ntdll!NtReplyWaitReceivePortEx+0xc

00e9ff80 77e76c1b RPCRT4!LRPC_ADDRESS::ReceiveLotsaCalls+0xf4

00e9ff88 77e76a3d RPCRT4!RecvLotsaCallsWrapper+0xd

00e9ffa8 77e76c03 RPCRT4!BaseCachedThreadRoutine+0x79

00e9ffb4 7c80b683 RPCRT4!ThreadStartRoutine+0x1a

00e9ffec 00000000 kernel32!BaseThreadStart+0x37

NOTE Similar to the naming convention of the CCALL objects, the naming convention for
the ADDRESS objects is a good indication of the protocol the process is listening to.
LRPC_ADDRESS is the server side waiting to handle local calls over LPC; OSF_ADRESS indi-
cates that the server waits on connection-based protocols, such as TCP/IP or named pipes;
and DG_CCALL indicates that the server waits on a datagram-based protocol, such as UDP.
The relationship between those protocols can be seen in Figure 8.1.

Listing 8.6 Typical stack of clients using DCOM over LRPC (continued)
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At this time, there are several ways to find out the server thread that processes the
client requests. The first method uses LPC debugging capabilities to track the mes-
sage being processed, a method requiring kernel mode debugger. In the next step,
the engineer hooks the kernel mode debugger to the system or uses it from inside the
system in local mode, as described in the Chapter 2. The remaining steps in this sec-
tion are performed from within the kernel mode debugger. 

The LRPC calls can also be tracked by the same methods used in tracking remote
calls, methods using RPC troubleshooting state information. This method is docu-
mented in the “Troubleshooting Remote Communication” section, and it can be used
without a problem in the LRPC communication. 

Another option can be to interpret information already available on the client
thread and to extract the server information from the MSRPC structures used when
making the call. Unfortunately, that method is not possible using public symbols. It also
requires a deep knowledge of the internal structures stored inside MSRPC. This
method is the least attractive for developers without access to rpcrt4.dll private symbols. 

The same instance of the 08cli.exe process started in Listing 8.5 is inspected with
the kernel mode debugger. We use the !process extension command to list all
process threads, as shown in Listing 8.8. 

Listing 8.8 Listing thread summary information

kd> !process 5b4 4

Searching for Process with Cid == 5b4

PROCESS ffaa62f0  SessionId: 0  Cid: 05b4    Peb: 7ffde000  ParentCid: 00d8

DirBase: 0a5d0000  ObjectTable: e10a97d0  HandleCount:  70.

Image: 08cli.exe

THREAD ffb10020 Cid 05b4.04f8  Teb: 7ffdd000 Win32Thread: e16e5eb0 WAIT

THREAD ffafd698  Cid 05b4.01d0  Teb: 7ffdc000 Win32Thread: 00000000 WAIT

THREAD ffabada8  Cid 05b4.0278  Teb: 7ffdb000 Win32Thread: 00000000 WAIT

In addition to the process identifier, we know the client thread’s identifier, which is
matched against all the threads from Listing 8.8 to obtain the thread ETHREAD struc-
ture address. The structure is then used with the !thread extension command to con-
firm the thread validity and obtain the LPC information, as shown in Listing 8-9.
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Listing 8.9 Dumping the kernel thread information

kd> !thread ffb10020

THREAD ffb10020  Cid 05b4.04f8  Teb: 7ffdd000 Win32Thread: e16e5eb0 WAIT: 

(WrLpcReply) UserMode Non-Alertable

ffb10214  Semaphore Limit 0x1

Waiting for reply to LPC MessageId 00004f99:

Current LPC port e138cd98

Not impersonating

DeviceMap                 e1a60398

Owning Process            ffaa62f0       Image:         08cli.exe

Wait Start TickCount      563720         Ticks: 1391 (0:00:00:13.930)

Context Switch Count      98                 LargeStack

UserTime                  00:00:00.0000

KernelTime                00:00:00.0530

Start Address kernel32!BaseProcessStartThunk (0x7c810867)

Win32 Start Address 08CLI!ILT+1385(_wmainCRTStartup) (0x0042c56e)

Stack Init f6c05000 Current f6c04c50 Base f6c05000 Limit f6c01000 Call 0

Priority 8 BasePriority 8 PriorityDecrement 0 DecrementCount 16

ChildEBP RetAddr  Args to Child

f6c04c68 804dc6a6 ffb10090 ffb10020 804dc6f2 nt!KiSwapContext+0x2e 

6c04c74 804dc6f2 ffb10214 ffb101e8 ffb10020 nt!KiSwapThread+0x46 

f6c04c9c 805788ef 00000001 00000011 e100da01 nt!KeWaitForSingleObject+0x1c2 

f6c04d50 804df06b 000006e0 0015c2b8 0015c2b8 nt!NtRequestWaitReplyPort+0x63d 

f6c04d50 7c90eb94 000006e0 0015c2b8 0015c2b8 nt!KiFastCallEntry+0xf8

(TrapFrame @ f6c04d64)

0012f6e4 7c90e3ed 77e7c968 000006e0 0015c2b8 ntdll!KiFastSystemCallRet

0012f6e8 77e7c968 000006e0 0015c2b8 0015c2b8 ntdll!NtRequestWaitReplyPort+0xc

0012f734 77e7a716 0015c2f0 0012f75c 776009c0 RPCRT4!LRPC_CCALL::SendReceive+0x228

0012f740 776009c0 0016149c 0015ecc0 0012f840 RPCRT4!I_RpcSendReceive+0x24 

...

0012fe48 0042e7ae a2b35800 01c6e05c 7ffde000 08CLI!MTAClientCall+0x7b 

0012ff54 0042f902 00000002 00372e20 00372ea0 08CLI!wmain+0xae 

0012ffb8 0042f6bd 0012fff0 7c816d4f a2b35800 08CLI!wmainCRTStartup+0x252

0012ffc0 7c816d4f a2b35800 01c6e05c 7ffde000 08CLI!wmainCRTStartup+0xd

0012fff0 00000000 0042c56e 00000000 78746341 kernel32!BaseProcessStart+0x23 

The thread information contains the state of this thread decoded as WAIT:
(WrLpcReply), as well as the LPC message for which a reply is expected. The mes-
sage information is used afterward to find out the server thread holding the client exe-
cution, as shown in Listing 8.10.  
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Listing 8.10 Finding additional information about the LPC message

kd> !lpc message 00004f99

Searching message 4f99 in threads ...

Server thread ffab41c0 is working on message 4f99

Client thread ffb10020 waiting a reply from 4f99

Searching thread ffb10020 in port rundown queues ...

Server communication port 0xe111b878

Handles: 1   References: 1

The LpcDataInfoChainHead queue is empty

Connected port: 0xe138cd98      Server connection port: 0xe14684f0

Client communication port 0xe138cd98

Handles: 1   References: 2

The LpcDataInfoChainHead queue is empty

Server connection port e14684f0  Name: OLE0D6120B10F36435E84795A344064

Handles: 1   References: 9

Server process  : ffab3530 (08comsrv.exe)

Queue semaphore : 8124a248

Semaphore state 0 (0x0)

The message queue is empty

The LpcDataInfoChainHead queue is empty

Done.

If present, the second line of Listing 8.10 shows which thread is processing the client
request. In a heavy loaded system, it is possible to not find any server thread pro-
cessing the LPC message. In this case, the developer needs to understand why none
of the server threads are picking up the message. 

Using the !thread extension command, it is possible to find out everything else
about the server process and the thread actively serving the request. This information
can be used for further debugging, possibly using a user mode debugger, if desired.
In this section, the debugging continues using the kernel mode debugger. Listing
8.11 shows the result of listing the server thread information after switching the
debugger view to the server process and reloading the user mode symbols.  
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Listing 8.11 Server’s thread processing the LPC message

kd> .thread /p /r ffab41c0

Implicit thread is now ffab41c0

Implicit process is now ffab3530       

.cache forcedecodeuser done

Loading User Symbols

...............

kd> !thread ffab1020

THREAD ffab1020  Cid 036c.06e0  Teb: 7ffdc000 Win32Thread: 00000000 WAIT: (DelayExe-

cution) UserMode Non-Alertable

ffab1110  NotificationTimer

Not impersonating

DeviceMap                 e1a60398

Owning Process            ffab3530       Image:         08comsrv.exe

Wait Start TickCount      550275         Ticks: 15038 (0:00:02:30.596)

Context Switch Count      8

UserTime                  00:00:00.0010

KernelTime                00:00:00.0020

Start Address kernel32!BaseThreadStartThunk (0x7c810856)

LPC Server thread working on message Id 4f99

Stack Init f73c1000 Current f73c0cbc Base f73c1000 Limit f73be000 Call 0

Priority 9 BasePriority 8 PriorityDecrement 0 DecrementCount 0

Kernel stack not resident.

ChildEBP RetAddr  Args to Child

f73c0cd4 804dc6a6 ffab10d8 ffab1020 804dc5cb nt!KiSwapContext+0x2e 

f73c0ce0 804dc5cb f73c0d64 00e5f428 00e5f448 nt!KiSwapThread+0x46 

f73c0d0c 8056603f 00000001 00000000 f73c0d2c nt!KeDelayExecutionThread+0x1c9 

f73c0d54 804df06b 00000000 00e5f448 00e5f470 nt!NtDelayExecution+0x87 

f73c0d54 7c90eb94 00000000 00e5f448 00e5f470 nt!KiFastCallEntry+0xf8 

(TrapFrame @ f73c0d64)

00e5f414 7c90d85c 7c8023ed 00000000 00e5f448 ntdll!KiFastSystemCallRet 

00e5f418 7c8023ed 00000000 00e5f448 00e5f558 ntdll!NtDelayExecution+0xc 

00e5f470 7c802451 000927c0 00000000 00e5f558 kernel32!SleepEx+0x61 

00e5f480 0043ad9b 000927c0 00e5f55c 00e5f58c kernel32!Sleep+0xf 

00e5f558 77e79dc9 0092267c 00000001 00000002 SRV!CCalculator::SumSlow+0x2b 

00e5f57c 77ef321a 0043857c 00e5f590 00000004 RPCRT4!Invoke+0x30

...

00e5fdfc 77e7bb6a 001625f0 00159360 00165630 RPCRT4!LRPC_SCALL::DealWithRequestMes-

sage+0x2cd 

00e5fe20 77e76784 0015939c 00e5fe38 00165630 RPCRT4!LRPC_ADDRESS::DealWithLRPCRe-

quest+0x16d

...

00e5ffec 00000000 77e76bf0 0015e5e8 00000000 kernel32!BaseThreadStart+0x37 
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At this moment, it is very clear why the server thread needs so much time to add a
few numbers; one of the sample writers intentionally left a kernel32!Sleep func-
tion call for debugging purposes. 

Impersonating Local DCOM and LRPC Calls 
Impersonation is a fundamental concept used in the current versions of the Windows
operating system. It enables a specific thread to execute all the operations under a
security context different from the process owning the thread. The impersonation can
be enabled or disabled on demand by setting or resetting the impersonation token on
the thread. 

But what happens from a security perspective when a client thread makes a call into
a server using the LPC protocol? The client can specify what impersonation token 
must be presented to the server, and the kernel stores that information on the server
thread. When the server impersonates the client using the RPC function
rpcrt4!RpcImpersonateClient or the DCOM function ole32!CoImpersonateClient, 
the impersonation is performed by another LPC function called
ntdll!NtImpersonateClientOfPort. This function uses the impersonation information
stored on the thread by the Windows kernel at the moment the message was transferred
to the server. 

From the user mode debugger, the impersonation information can be checked
only after the server makes a call into one of the impersonation functions by checking
the token currently set on the thread, the method often used in Chapter 7, “Security.” 

From the kernel mode debugger, this is much easier; the information is always
present in the server thread, as a pointer to _PS_IMPERSONATION_INFORMATION
stored in the ImpersonationInfo member of the thread structure, _ETHREAD.
Along with the impersonation token, there are instructions on how to impersonate the
client. In the case shown in Listing 8.12, any impersonation results in a token at iden-
tify level. 

Listing 8.12 Reading ImpersonationInfo stored on the server thread

kd> dt _ETHREAD ffab1020 ImpersonationInfo

+0x20c ImpersonationInfo : 0xe1269038 _PS_IMPERSONATION_INFORMATION

kd> dt 0xe1269038 _PS_IMPERSONATION_INFORMATION

+0x000 Token            : 0xe1acba08

+0x004 CopyOnOpen       : 0 ‘’

+0x005 EffectiveOnly    : 0 ‘’

+0x008 ImpersonationLevel : 1 ( SecurityIdentification )
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The information in this section helps when debugging a simple scenario using local
LRPC or DCOM calls. More complex scenarios, such as DCOM activation, are, from
the perspective of debugging, just a combination of calls and can be handled by fol-
lowing the same simple steps illustrated previously. 

Troubleshooting Remote Communication

MS RPC extends the RPC implementation by providing platform-specific security
models and adding support for LPC communication. Although the local communica-
tion has excellent debugging support, the remote communication is lacking those
facilities. In this section, we explore the option available to developers to compensate
for the debugging support missing in this area. 

One option is to capture all the knowledge required to debug the main scenarios
into a smart extension capable of interpreting all internal structures and the relation-
ship between different structures. The extension can show this information in an
easy-to-understand form and can automate the whole process of detecting the call
path. Unfortunately, no such extension is currently available. 

To answer those challenges, the RPC team introduced a special method of debug-
ging the communication between the client and the server, by using additional trac-
ing information called RPC Troubleshooting State Information. This method is
described in the next section. 

Using RPC Troubleshooting State Information
Since this is the only method accessible today, we focus on it for the remainder of this
section. Because the information is stored in cells of information used only for debug-
ging purposes, the method using them is also called RPC cell debugging, or cell
debugging. The first part of this section describes how to control the RPC runtime
behavior regarding the maintenance of the state information; the second part details
where this information is stored and how it can be accessed; and the third part
describes the tools available to filter and display it. The last part uses those tools to
solve a real-case scenario.  

Please note that the cell debugging is available starting with Windows XP and
Windows 2003. 

Configuring Cell Debugging
Cell debugging is an instrumentation method used by RPC runtime to record the RPC
activity. The instrumentation-enabled status, as well as the instrumentation level, can be
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controlled using a system administrative template available in the Group Policy snap-in.
The snap-in can be started using the gpedit.msc command, or it can be added to an
existing snap-in console by selecting the stand-alone “Group Policy Object Editor” snap-
in targeting the local computer. Regardless of how it was started, the policy that controls
the Remote Procedure Call behavior can be found under System’s Administrative
Templates targeting the Computer configuration, as shown in Figure 8.2. 
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Figure 8.2 Enabling the RPC troubleshooting state information

RPC Troubleshooting State Information is controlled by the enabled state, which can
be in five different states, as follow: 

■ None state: Instructs the RPC runtime not to collect any information regard-
ing its activity.

■ Auto1 state: Instructs the RPC runtime to collect basic information about its
activity.

■ Auto2 state: Instructs the RPC runtime to collect basic information about its
activity, only on systems with more than 128MB of RAM. On a server, this is
the default policy, and a direct consequence is that most, if not all, servers have
basic information about all RPC calls.
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■ Server state: Instructs the RPC runtime to collect basic information about its
activity, regardless of the system configuration.

■ Full state: Instructs the RPC runtime to collect full information about its activ-
ity, regardless of the system configuration.

After analyzing all options available for configuring the RCP Troubleshooting
Information, it becomes clear that there are just three ways to configuring it: none,
server information only, or full information. On a server system, the Auto1 option is
equivalent to Auto2 and the Server option for all systems with more than 128MB
RAM. On client systems, the Auto1 option is equivalent to the Server option on all
systems with more than 64MB RAM.  

From a practical perspective, server systems, such as Windows Server 2003, are
always preconfigured to collect basic information, whereas the client systems, such as
Windows XP, are never configured by default. To use the cell debugging facility on
client systems, the facility must be enabled to the Server or Full option, depending
on the debugging needs. The tracing is claimed to be light, and it can always be
enabled to Server state even on the client system if there is enough memory.  

After changing the RPC troubleshooting state policy, the system must be reboot-
ed before the policy takes effect. Once the system is up and running, the RPC run-
time records information about its activity in each process using RPC and updates all
state changes. 

Cell Debugging Information
After enabling the RPC Troubleshooting Information, the RPC runtime creates the nec-
essary structures to hold the information generated by it. At first glance, the new object
list created in the system afterward reveals multiple section objects with names derived
from the process identifiers. A snapshot of those handles taken using the Process
Explorer tool is shown in Figure 8.3. In the Process Explorer Search dialog box, dis-
played by selecting the Find menu, we enter the “section” string to search for all objects
of the section type. Figure 8.3 shows the sorted result on a system running 08cli.exe.  

Figure 8.3 Debug cell sections 
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The troubleshooting state sections in Figure 8.3 are accessible to any process running
on the local system, a very important aspect when debugging applications spanning
multiple processes. Moreover, because the troubleshooting state information is not
owned by a specific process and does not require a sophisticated mechanism to get it
or update it, we can use the tracing infrastructure even when the system is in really
bad shape. Each section object contains multiple cells; each cell contains information
about how a specific element is created and maintained, as follows:

■ For each new endpoint created in a process, a new cell containing the endpoint
information is added to the process’s RPC troubleshooting state section.

■ For each new thread created by the RPC infrastructure, a new cell containing
the thread information is added to the process’s RPC troubleshooting state sec-
tion. This cell is updated each time the thread state changes, and the time
stamp of the change is updated. 

■ Each time the server processes a new connection or communication request,
the RPC infrastructure creates a cell representing the server information per-
tinent to that call. 

■ For each client-initiated request, a new cell representing the client information
pertinent to that call is created. This cell gets created only when the RPC
Troubleshooting Information policy is set to Full mode. We use the client infor-
mation created this way in the section “Getting the Client Call Information.”

The next section describes the tools used to extract and filter the information stored
in those troubleshooting state sections. It also shows how to interpret and correlate
the cell debugging information to solve the problem at hand. 

Accessing Cell Debugging Information
The cell information can be accessed using the stand-alone tool dbgrpc.exe located in
the directory in which the debuggers are installed. Alternatively, the rpcexts.dll debug-
ger extension—which is installed by default with the Debugging Tools for Windows—
contains a few extension commands for managing the troubleshooting state
information. Although the extension is useful to investigate the problem within a
debugger, the command-line tool can process the information from a remote machine,
calling a RPC interface provided by the RPC infrastructure on that machine, provid-
ed that the caller is an administrator on the remote system. The command-line options
and the debugger extension command are similar and will be presented side-by-side.
Because the information used by the debugger extension is accessible from all process-
es, the extension works from within any user mode debugger running on the system.
The debugger used in this section is attached to the client or the server process. 
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NOTE The extension rpcexts.dll implements multiple extension commands that require
access to private symbols. Because we do not have access to private symbols, those com-
mands are not discussed. Also, the extension is not loaded by default, so the extension com-
mands, or at least the first time an extension command is used, we have to prefix it by the
rpcexts extension name. 

Getting the Current Time Stamp 
The !rpctime extension command shows the time elapsed since the system startup
in a <seconds>.<milliseconds> format, as shown in Listing 8.13. The time reference,
used in the entire tracing infrastructure, is useful to understand the temporal rela-
tionship between cell events. The time stamp is derived from the system time and
increases even when the process is stopped in a user mode debugger. 

Listing 8.13 Using !rpctime to obtain the current time stamp used by troubleshooting
infrastructure

0:003> !rpctime

Current time is: 002960.857 (0x000b90.359)

Getting Endpoint Information
The !getendpointinfo extension command, used without arguments, lists all end-
points exposed by all processes on the system where the debugger runs. The com-
mand output contains five columns in the following order: 

■ PID: The identifier of the server process hosting the endpoint
■ CELL ID: The cell identifier relative to the process PID, identifying the infor-

mation cell
■ ST: The endpoint state telling if the endpoint is active (state equal to one), or

if it has been uninstalled
■ PROTSEQ: The protocol name
■ ENDPOINT: The endpoint name 

Listing 8.14 shows a sample result from a system running Windows XP SP2 without
additional software installed on it. The output can be used to find out which process
owns what endpoints and which protocols are enabled in each process. Protocol names
are self-describing, and they enforce the endpoint name format; the TCP protocol can
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have only numeric endpoints, whereas NMP has the name starting with \pipe\, and so
on. Very long endpoint names might be truncated to the size allowed by the cell.

As an observation, all LRPC endpoints with the name starting with OLE are used
by the DCOM infrastructure for processes in a client or in a server role. 

Listing 8.14 Using !getendpointinfo to list all endpoints known by RPC

0:005> !getendpointinfo

Searching for endpoint info ...

PID  CELL ID   ST PROTSEQ        ENDPOINT                    

-----------------------------------------

...

038c 0000.0001 01           LRPC dhcpcsvc

038c 0000.0003 01           LRPC wzcsvc

038c 0000.0005 01           LRPC OLEA0BD1FB22E8E4CB3AED9EA46E

038c 0000.0009 01            NMP \PIPE\atsvc

038c 0000.000d 01           LRPC AudioSrv

038c 0000.0010 01            NMP \PIPE\wkssvc

038c 0000.0013 01            NMP \pipe\keysvc

038c 0000.0014 01           LRPC keysvc

038c 0000.0016 01           LRPC SECLOGON

038c 0000.0017 01            NMP \pipe\trkwks

038c 0000.0018 01           LRPC trkwks

038c 0000.001a 01            NMP \PIPE\srvsvc

038c 0000.0025 01            NMP \PIPE\browser

038c 0000.0026 01           LRPC senssvc

038c 0000.0028 01            NMP \PIPE\W32TIME

...

0240 0000.0001 01           LRPC OLE9D488805CBAA4A479CDD8DCD0

05cc 0000.0001 01           LRPC OLE9A35F92EE10245499B5520104

06a0 0000.0001 01           LRPC OLE71BE2F37F98B4AE5B9E13F5C2

0078 0000.0001 01           LRPC OLECF2A0CC062794FA78A63DA9A5

0388 0000.0001 01           LRPC OLE73A51130EAFA4D5AB504E5597

The same information can be obtained using the stand-alone dbgrpc.exe tool through
the following command line: 

C:\>dbgrpc –e 

When we focus on a specific endpoint, the command can be followed by the endpoint
name, as in Listing 8.15. The endpoint name acts as a filter for the !getendpointinfo
extension command. 
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Listing 8.15 Using !getendpointinfo to list all endpoints known by RPC

0:003> !getendpointinfo \PIPE\W32TIME

Searching for endpoint info ...

PID  CELL ID   ST PROTSEQ        ENDPOINT                    

-------------------------------

038c 0000.0028 01            NMP \PIPE\W32TIME

The command-line alternative to obtain the same information passes the endpoint as
a parameter to the –E switch, as exemplified in the following:

C:\>dbgrpc –e –E \PIPE\W32TIME

Getting Thread Information
Each process with active RPC endpoints must listen on all registered endpoints using
one or more threads that are part of the RPC thread pool managed by the RPC run-
time. The !getthreadinfo extension command lists all the thread information cells
in the following format: 

■ PID: The identifier of server hosting the thread
■ CELL ID: The cell identifier relative to the process PID, identifying the infor-

mation cell
■ ST: The thread state telling whether the thread is idle or it has been dispatched

to the server code
■ TID: The Win32 thread identifier
■ ENDPOINT: The cell containing additional information about the endpoint

the thread is listening to 
■ LASTIME: The time stamp of the last thread state change 

The command takes the process identifier as a parameter, as shown in Listing 8.16
where the target process has 0x038c as the process identifier. 

Listing 8.16 Using !getthreadinfo to list all threads from the RPC thread pool

0:005> !getthreadinfo 038c

Searching for thread info ...

PID  CELL ID   ST TID      ENDPOINT  LASTTIME

---------------------------------------------

038c 0000.0004 03 000004a8 0000.0003 0009237f

038c 0000.0006 02 000004b4 <IOCP> 009124dd
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038c 0000.0007 03 000004cc 0000.0005 00958d5d

038c 0000.000a 02 000004c8 <IOCP> 00ac3dc1

038c 0000.000b 03 0000052c 0000.0001 008d7e51

038c 0000.000e 03 0000050c 0000.000d 001320ce

038c 0000.001d 03 00000650 0000.0026 00af1978

038c 0000.0020 03 00000794 0000.0016 000a9d76

038c 0000.0023 03 00000090 <IOCP> 00abc898

038c 0000.0024 03 00000790 0000.0018 000a9d76

038c 0000.0027 03 00000688 0000.0026 00af1978

038c 0000.002c 03 0000078c 0000.0014 000a9d76

038c 0000.002e 03 000007dc 0000.0026 00af196e

ENDPOINT INFORMATION The cell column does not always contain the endpoint cell
information, as is the case for threads having the identifiers b4b, 4c8, and 90. In these
cases, the ENDPOINT field has been replaced with the <IOCP> string, indicating that the
respective threads are waiting on IO completion ports associated with multiple endpoints.

The command-line alternative to obtain the same information passes the process
identifier as a parameter to the –t switch, as exemplified next: 

C:\> dbgrpc.exe -t -P 38c

The output can be filtered further by adding the thread identifier to the command argu-
ment list. For example, Listing 8.17 contains the output of the command that filters out
a specific thread, having a 0x4a8 identifier in this case, running in the process 38c.  

Listing 8.17 Using !getthreadinfo to obtain a specific thread RPC information

0:005> !getthreadinfo 038c 000004a8

Searching for thread info ...

PID  CELL ID   ST TID      ENDPOINT  LASTTIME

---------------------------------------------

038c 0000.0004 03 000004a8 0000.0003 0009237f

The alternative way to obtain the same information is for the user to pass the thread
identifier as a parameter to the –T switch, as in the following line: 

C:\> dbgrpc.exe -t -P 38c -T 4a8
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Getting Call Information
One of the most important pieces of the instrumentation is kept in call info cells. To
understand what information is kept there, we provide some background on how
RPC runtime works. Similar to the LRPC protocol described in the first section of
this chapter, the RPC runtime listens on all endpoints for connection requests and
creates the connection object responsible for managing each new connection. The
server code in charge of handling the connection later processes all call requests on
the connection by creating another transient object generically called SCALL object
(more specifically, the call can be served by an LRPC_SCALL, OSF_SCALL, or
DG_SCALL class), depending on the protocol serving that connection, created to
dispatch that specific call. Each connection object and call object has one associated
cell in the list returned by the !getcallinfo extension command, as exemplified in
Listing 8.18. 

The complete listing contains the usual fields—the process hosting that object,
the cell identifier, the last update time, and the state of the cell, along with object-
specific cells in the following format: 

■ PID: The identifier of the server process handling the call.
■ CELL ID: The cell identifier relative to the process PID, identifying the infor-

mation cell.
■ ST: The thread state telling whether the call is active or it has been completed. 
■ PNO: The procedure number from the RPC interface that the call is or was

made to, also known as an opnum.
■ IFSTART: The first 32 bits of the Interface Identifier or IID that the call is or

was made to. 
■ THRDCELL: The identifier of the thread cell containing detailed information

about the thread that handles or handled the call.
■ CALLFLAG: A combination of flags associated with the call well decoded by

the !getdbgcell extension command.
■ CALLID: The call identifier that can be used to link the call information cell

to the client cell information.
■ CONN/CLN: The client connection info. For LRPC calls, the column contains

in this field the process identifier followed by the thread identifier. The 
connection-based protocol calls store in this column the cell identifier con-
taining additional information about the connection used on this call. 
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Listing 8.18 Using !getcallinfo to obtain the call information maintained by the server

0:005> !getcallinfo

Searching for call info ...

PID  CELL ID   ST PNO IFSTART  THRDCELL  CALLFLAG CALLID   LASTTIME CONN/CLN

----------------------------------------------------------------------------

021c 0000.000e 00 009 00000134 0000.000d 00000009 00000001 0014142a 0348.047c

...

038c 0000.001e 00 003 00000132 0000.0029 00000008 00000000 0004a91f 0348.0628

038c 0000.001f 00 000 d674a233 0000.001d 00000009 00000000 00afb51f 038c.0720

038c 0000.0021 00 004 00000132 0000.000a 00000009 00000000 00870be6 0348.05c0

038c 0000.002a 00 005 fdd384cc 0000.0006 00000009 00000000 0003d03f 0740.0750

038c 0000.002f 00 000 629b9f66 0000.0027 00000009 00000000 0004ad58 021c.00ec

038c 0000.0030 00 007 3faf4738 0000.000e 00000009 00000000 0004c874 021c.00cc

038c 0000.0032 00 009 06bba54a 0000.0027 00000009 004f0044 000521b9 01fc.0208

038c 0000.0037 00 005 00000134 0000.0039 00000009 00000003 00059385 05cc.04c0

038c 0000.003a 00 003 609b9557 0000.0039 00000009 00000004 00059335 05cc.04c0

038c 0000.003b 00 000 63fbe424 0000.0027 00000009 00000000 00afe977 0460.0474

0460 0000.0007 02 009 4b112204 0000.0006 00000009 00000000 0005a9a9 038c.07e8

...

0388 0000.0005 02 004 daf50cdb 0000.0003 00000009 0078006f 008a8023 0078.03ac

The command-line alternative to obtain the same information uses the –c switch, as
exemplified here: 

C:\>dbgrpc -c

Because the call list gets very large on production servers, it is advisable to filter that
information. The extension accepts the call identifier, the first 32 bits of the interface
UUID, the procedure number, and the process identifier handling the calls as filter
parameters. Each filter parameter has an optional value described in the command
help. Listing 8.19 uses default values for all but the process identifier to obtain the
call cells available in the process with the 0x38c identifier. 

Listing 8.19 Using !getcallinfo to filter call information to a specific process

0:005> !getcallinfo 0 0 FFFF 38c

Searching for call info ...

PID  CELL ID   ST PNO IFSTART  THRDCELL  CALLFLAG CALLID   LASTTIME CONN/CLN

----------------------------------------------------------------------------

038c 0000.000c 00 000 0a74ef1c 0000.0006 00000009 00000006 008a6272 038c.04e4

038c 0000.000f 00 009 00000134 0000.0007 00000009 0000000c 00908434 0348.047c
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038c 0000.0012 00 00b 3faf4738 0000.000e 00000009 004f0044 000e17b0 06a0.0780

038c 0000.001b 00 00b 3faf4738 0000.000e 00000009 004f0044 0005467f 0240.0314

038c 0000.001e 00 003 00000132 0000.0029 00000008 00000000 0004a91f 0348.0628

038c 0000.001f 00 000 d674a233 0000.001d 00000009 00000000 00afb51f 038c.0720

038c 0000.0021 00 004 00000132 0000.000a 00000009 00000000 00870be6 0348.05c0

038c 0000.002a 00 005 fdd384cc 0000.0006 00000009 00000000 0003d03f 0740.0750

038c 0000.002f 00 000 629b9f66 0000.0027 00000009 00000000 0004ad58 021c.00ec

038c 0000.0030 00 007 3faf4738 0000.000e 00000009 00000000 0004c874 021c.00cc

038c 0000.0032 00 009 06bba54a 0000.0027 00000009 004f0044 000521b9 01fc.0208

038c 0000.0037 00 005 00000134 0000.0039 00000009 00000003 00059385 05cc.04c0

038c 0000.003a 00 003 609b9557 0000.0039 00000009 00000004 00059335 05cc.04c0

038c 0000.003b 00 000 63fbe424 0000.0027 00000009 00000000 00afe977 0460.0474

The command-line alternative to obtain the same information uses the –c parameter,
as exemplified here: 

C:\>dbgrpc –c –P 38c

Getting the Entire Cell Information 
Now it is time to look deeper into each cell to decode the cell information not
explained or exposed in Listing 8.19. The !getdbgcell extension command under-
stands all cell types and can decode them appropriately. The process and the cell
identifier used as parameters in Listing 8.20 are taken from each, obtained after enu-
merating the cells, as shown in Listing 8.19.

Listing 8.20 Using !getdbgcell to obtain the cell information maintained by the server

0:005> * Obtaining information about a call cell

0:005> !getdbgcell 038c 0000.000c

Getting cell info ...

Call

Status: Allocated

Procedure Number: 0

Interface UUID start (first DWORD only): A74EF1C

Call ID: 0x6 (6)

Servicing thread identifier: 0x0.6

Call Flags: cached, LRPC

Last update time (in seconds since boot):9069.170 (0x236D.AA)

Caller (PID/TID) is: 38c.4e4 (908.1252)

0:005> * Obtaining information about an endpoint cell obtained in Listing 8.14

Listing 8.19 Using !getcallinfo to filter call information to a specific process (continued)
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0:005> !getdbgcell 038c 0000.0028

Getting cell info ...

Endpoint

Status: Active

Protocol Sequence: NMP

Endpoint name: \PIPE\W32TIME

The command-line alternative to obtain the same information uses the –l switch fol-
lowed by the cell information, as exemplified by the following: 

C:\>dbgrpc –l –P 38c –L 0000.000c

Getting the Client Call Information 
When the RPC Troubleshooting State Information policy is set to Full, the client 
call information cell recorded by the RPC runtime can be enumerated using the
!getclientcallinfo extension command using the same parameters as the 
!getcallinfo extension command (see Listing 8.21). 

The command output contains the usual fields—the client process identifier, the
cell identifier, the last update time, and the state of the cell, along with object-specific
cells—in the following format: 

■ PID: The identifier of the client process originating the call
■ CELL ID: The cell identifier relative to the process PID, identifying the infor-

mation cell
■ PNO: The procedure number from the RPC interface that the call is or was

made to, also known as opnum
■ IFSTART: The first 32 bits of the Interface Identifier or IID that the call is or

was made to 
■ TIDNUMBER: The cell identifier containing detailed information about the

thread that initiated the call 
■ CALLID: The call identifier that can be used to correlate the call information

cell to the client cell information
■ LASTIME: The time stamp of the last cell update 
■ PS: A combination of flags associated with the call that can be decoded by the
!getdbgcell extension command 

■ CLTNUMER: The cell identifier of the call target cell that contains addition-
al information about the server handling the call 

■ ENDPOINT: The name of the server endpoint servicing this call 
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Listing 8.21 Using !getclientcallinfo to obtain the call information maintained by the client

0:005> !getclientcallinfo

Searching for call info ...

PID  CELL ID   PNO  IFSTART  TIDNUMBER CALLID   LASTTIME PS CLTNUMBER ENDPOINT

------------------------------------------------------------------------------

038c 0000.003f 0009 4b112204 0000.0000 ffffffff 0005a9a9 09 0000.0040 LRPC00000460

0078 0000.0003 0004 daf50cdb 0000.0000 ffffffff 008a8023 09 0000.0004 OLE73A51130E

The command-line alternative to obtain the same information uses the –a switch, as
exemplified in the following: 

C:\>dbrpc –a 

All this state information can be used in some simple scenarios, where you will learn
how to correlate them to get to a resolution faster. 

Using Cell Debugging Information
As in the local client-server scenarios, when debugging remote client-server scenar-
ios, we must often follow the execution path originating from the client process until
the call is processed on the server side. This section uses the RPC Troubleshooting
State Information collected by the RPC runtime while processing the call to track the
execution path. 

In this example, the client process 08cli.exe performs a synchronous DCOM call
into a remote server, which takes longer than expected to complete. In this specific
case, the client and the server system have fixed TPC/IP addresses, 192.168.0.105
and 192.168.0.104, respectively. Both systems are members of the same work-
group, and the list of users is identical between the client and the server, allowing the
client to authenticate to our server using pass-through authentication. On the client
system, the RPC Troubleshooting State Information policy is set to Full mode,
whereas on the server, the policy is set to Server mode. The client starts with the fol-
lowing command line: 

C:\>08cli.exe server:192.168.0.104 

The debugging process starts within the client process, where we identified the
thread waiting on the call to complete. Listing 8.22 shows the stack zero waiting on
the RPC call. 
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Listing 8.22 Typical client stack waiting on remote call made using a connection-based
protocol

0:003> ~0k50

ChildEBP RetAddr

0012f450 7c90e9c0 ntdll!KiFastSystemCallRet

0012f454 7c8025cb ntdll!NtWaitForSingleObject+0xc

0012f4b8 77e80acb kernel32!WaitForSingleObjectEx+0xa8

0012f4d4 77e80a81 RPCRT4!UTIL_WaitForSyncIO+0x20

0012f4f8 77eeb7ba RPCRT4!UTIL_GetOverlappedResultEx+0x1d

0012f52c 77e8520d RPCRT4!WS_SyncRecv+0xca

0012f54c 77e80e8d RPCRT4!OSF_CCONNECTION::TransSendReceive+0x9d

0012f5c8 77e80e0d RPCRT4!OSF_CCONNECTION::SendFragment+0x226

0012f620 77e80c6f RPCRT4!OSF_CCALL::SendNextFragment+0x1d2

...

0012fccc 0042ead1 RPCRT4!ObjectStubless+0xf

0012fe48 0042e846 08CLI!MTAClientCall+0xc1

0012ff54 00430692 08CLI!wmain+0xb6

0012ffb8 0043044d 08CLI!wmainCRTStartup+0x252

0012ffc0 7c816fd7 08CLI!wmainCRTStartup+0xd

0012fff0 00000000 kernel32!BaseProcessStart+0x23

0:003> |

.  0    id: 63c create  name: 08cli.exe

We gather all client information available about that specific thread using the 
!getclientcallinfo extension command. Because there is not much RPC activi-
ty on the client system, we can use the command without a filtering option. In Listing
8.23, the PID column is matched against the client’s process identifier to obtain the
call cell identifier. 

Listing 8.23 Enumerating all the client call info cells

0:002> !rpcexts.getclientcallinfo

Searching for call info ...

PID  CELL ID   PNO  IFSTART  TIDNUMBER CALLID   LASTTIME PS CLTNUMBER ENDPOINT

------------------------------------------------------------------------------

055c 0000.005b 0009 4b112204 0000.0000 ffffffff 0010a534 09 0000.005c LRPC00000384

0590 0000.0006 0009 4b112204 0000.0000 ffffffff 0000e745 09 0000.0007 LRPC00000384

063c 0000.0003 0004 daf50cdb 0000.0000 00000001 004464bb 07 0000.0004 1359

In Listing 8.24, the information about the call is decoded by the !getdbgcell exten-
sion command. The procedure number is shown in the third line (4 means that the
client called the second method of the DCOM interface in which the standard
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IUnknown interface uses the first three procedure slots), the target endpoint is shown
in the eighth line, and the cell containing additional information about the call target
is shown in the seventh line. 

Listing 8.24 Getting more details from the client cell info

0:002> !getdbgcell 063c 0000.0003

Getting cell info ...

Client call info

Procedure number: 4

Interface UUID start (first DWORD only): DAF50CDB

Call ID: 0x1 (1)

Calling thread identifier: 0x0.0

Call target identifier: 0x0.4

Call target endpoint: 1359

Because we don’t know what system handles the call, we decode and use the call tar-
get cell identifier, as shown in Listing 8.25. The current time stamp is useful to under-
stand how long ago this call started—in this case, 004752s – 004482s = 270s, which is
almost five minutes. 

Listing 8.25 Getting more details about the call target

0:002> !getdbgcell 063c 0000.0004

Getting cell info ...

Call target info

Protocol Sequence: TCP

Last update time (in seconds since boot):4482.235 (0x1182.EB)

Target server is: 192.168.0.104

0:002> !rpctime

Current time is: 004752.183 (0x001290.0b7)

NOTE When the client’s information is not available (for example, when it is not enabled),
we can use the netstat.exe tool to obtain some of the information required to find the server.
In this case, we use the current process 1596(0x63c) to identify the TCP communication
connection to the server system. The connection contains both the address of the server and
the port number used for the connection. 

C:\>netstat -o
Active Connections

...

TCP XP-SP2:1734  192.168.0.104:1359 ESTABLISHED 1596
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After finding the address of the server system and the connection endpoint information,
the debugging continues on the server. The first step is to find out which process owns
the endpoint used by the client process, using either the dbgrpc.exe tool or the system-
provided netstat.exe tool. After identifying the server process, we attach a debugger to
that process and identify the pending calls, a process illustrated in Listing 8.26. The
process identifier obtained from dbgrpc.exe must be converted from hexadecimal to
decimal before using it as a parameter to the debugger command-line option -p. 

Listing 8.26 Getting the call info from the endpoint information

C:\>dbgrpc.exe –e -E 1359

Searching for endpoint info ...

PID  CELL ID   ST PROTSEQ        ENDPOINT

-----------------------------------------

058c 0000.0006 01            TCP 1359

C:\>windgg –p 1420

...

0:007> !getcallinfo 0 0 FFFF 58c

Searching for call info ...

PID  CELL ID   ST PNO IFSTART  THRDCELL  CALLFLAG CALLID   LASTTIME CONN/CLN

----------------------------------------------------------------------------

058c 0000.0003 00 004 00000132 0000.0005 00000009 00000000 007b30d4 0338.05d4

058c 0000.0004 00 009 00000134 0000.0006 00000009 00000001 0080b279 0338.0710

058c 0000.000a 02 004 daf50cdb 0000.0008 00000001 00000001 007b34c8 0000.0009

The active calls from this list are in a state (ST column) different from zero. We focus
then on the thread processing those calls. The thread cell identifier is available in the
THRDCELL column. The last column indicates the cell identifier for the connection
object that contains additional connection properties, such as the authentication
level, the authentication service used for this call, and the IP source address, as shown
in Listing 8.27. 

Listing 8.27 Examining the thread and connection object info cell

0:000> !getdbgcell 058c 0000.0008

Getting cell info ...

Thread

Status: Dispatched

Thread ID: 0x760 (1888)

Thread is an IO completion thread

Last update time (in seconds since boot): 8074.440 (0x1F8A.1B8)
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0:000> !getdbgcell 058c 0000.0009

Getting cell info ...

Connection

Connection flags: Exclusive

Authentication Level: Connect

Authentication Service: NTLM

Last Transmit Fragment Size: 144 (0x4CBBA4)

Endpoint for the connection: 0x0.6

Last send time (in seconds since boot): ): 8013.920 (0x1F4D.398)

Last receive time (in seconds since boot): ): 8074.440 (0x1F8A.1B8)

Getting endpoint info ...

Caller is(IPv4): 192.168.0.105

We use the thread identifier of the server thread executing the request to obtain the
execution stack, as shown in Listing 8.28. Not surprisingly, the thread is executing its
long sleep operation, as you saw in the beginning of this chapter.

Listing 8.28 The server thread call stack

0:000> ~~[760]k

ChildEBP RetAddr

010ef458 7c90d85c ntdll!KiFastSystemCallRet

010ef45c 7c8023ed ntdll!NtDelayExecution+0xc

010ef4b4 7c802451 kernel32!SleepEx+0x61

010ef4c4 0043ad9b kernel32!Sleep+0xf

010ef59c 77e79dc9 SRV!CCalculator::SumSlow+0x2b

010ef5c0 77ef321a RPCRT4!Invoke+0x30

010ef9cc 77ef3bf3 RPCRT4!NdrStubCall2+0x297

...

010efdc0 77e8a067 RPCRT4!RPC_INTERFACE::DispatchToStub+0x84

010efe00 77eac1f4 RPCRT4!RPC_INTERFACE::DispatchToStubWithObject+0xc0

The cell information can be used to solve other scenarios involving RPC communi-
cation by combining the techniques explained in this section. Because the RPC trou-
bleshooting state information is available globally in the system, there is no overhead
when it gets accessed by the command-line tool, making it suitable even for various
monitoring scenarios used in the product development phase.  

Listing 8.27 Examining the thread and connection object info cell (continued)
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Analyzing Network Traffic 
In the electronic engineering field, the circuits are diagnosed by analyzing the signals
circulating inside the troubled devices with various testing gears, from simple scalar
meters to sophisticated data analyzers. Because the network traffic is nothing more
than an electrical signal over an electronic circuit, the troubleshooting techniques
used in electronic engineering can be applied to network communication trou-
bleshooting. The question is, what measuring device can provide the most value? 

Although hardware manufacturers use sophisticated tools to measure the electri-
cal characteristics of the networking gear, we can assume that the hardware layer is
fully functional. We are interested only in monitoring the logical data flowing over the
wires. We can read and analyze the data flowing back and forth between computers
using protocol analyzer tools (also known as packet sniffer tools).  

In this section, we use Ethereal network analyzer, which is a very powerful, yet
easy-to-use tool, available under a GNU General Public License. The tool can be con-
figured to completely capture the traffic going in and out the system running the tool.
That is sufficient for analyzing the problems involving just the monitored system.
Alternatively, the tool can be configured to capture the entirety of traffic received by a
Network Interface Card (NIC) attached to the system, regardless of the source or des-
tination address. This mode, called promiscuous capture mode, requires NIC support.
The promiscuous capture mode helps with solving problems involving multiple systems
exchanging messages in that network. The capture is controlled from the Capture
Interfaces dialog box, obtained by selecting the Interface option in the Capture menu.
The dialog box, shown in Figure 8.4, displays real-time statistics for each network inter-
face card and enables starting the capture on any of them. The capture mode used for
each NIC can be changed by clicking the corresponding Prepare button. 
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Figure 8.4 Capture Interface dialog box used to start capturing the traffic  
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Regardless of the method of capturing the network traffic, the capture files can then
be post processed by various parsers; the traffic can be filtered, or it can be analyzed
later. Even if one is not familiar with some of the protocols encountered in the traf-
fic, the decoding performed by the tool is a good guide for further analysis or to clear
a resolution.

When the protocol implemented by a specific application is not known, the cap-
ture files from a well-behaved installation can be used as reference in analyzing the
troubled scenario. In this case, the user focuses on understanding the difference
between the capture files of the misbehaving system and the reference capture files.
The packet sniffer tools can also be used to learn a system behavior or to verify if the
system functionality matches its specification. Questions such as, “Is the network traf-
fic encrypted?” or “How chatty is the protocol?” are answered much faster by analyz-
ing the traffic than by code reviewing the system implementation.

Ethereal shows the packets in an ordered list containing the packet number in the
current capture file, the captured time, the source NIC address, the destination NIC
address, the protocol name, and additional information decoded from the packet. In
a separate window, each packet, interpreted by dissectors, is displayed as a data struc-
ture. Because the dissectors are called to interpret the packets hierarchically, the
basic information is always decoded. If the higher-level protocols do not provide dis-
sector, this part of the packet is shown as an array of bytes. When the protocol is state-
ful and the current packet depends on previous packets not captured in the current
file, the packet cannot be decoded entirely and the information is presented in the
format of a more basic layer. Ethereal also shows a plain dump of the packet content,
very useful for a quick visual scan over the packet content. 

The capture files used in this section, from 08capture1.cap to 08capture4.cap, are
available in the C:\AWDBIN\LOGS folder in the download package containing the
sample binaries. 

Successful DCOM Activation Trace
This section analyzes the packets exchanged between two systems configured in a
workgroup while the client invokes a DCOM method implemented by the server,
using the chapter sample code. Figure 8.5 shows Ethereal traffic captured in this
case, after removing the additional traffic on the network hosting the systems. As in
the previous section, the server has the 192.168.0.104 address, and the client uses
the 192.168.0.105 address. The network traffic illustrating this has been captured
in the 08capture1.cap file. 
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Figure 8.5 Packets exchanged during a DCOM activation followed by a long-running call  

So what are all the packets exchanged in this very simple application? The packets’
roles are interpreted as follows: 

■ Frame 1: The client sends a Bind message to bind the ISystemActivator
interface, identified by the decoder using the {000001A0-0000-0000-C000-
000000000046} GUID. This packet also contains the security negotiation mes-
sage. This message is sent over an existing TPC/IP connection to the DCOM
SCM port established before starting the capture operation. 

■ Frame 2: The server acknowledges the Bind with a Bind_ack packet. This
packet also contains the NTLM challenge message because this is the only com-
mon authentication mechanism accepted by both the server and the client. 

■ Frame 3: The client answers to the challenge with an Alter_context mes-
sage, using information derived from the user TestAdmin credentials. 

■ Frame 4: The server verifies the caller identity and confirms it with an
Alter_context_resp message. The interface is ready to be used. 
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■ Frame 5: The client invokes RemoteCreateInstance, passing the server
CLSID as a parameter (the current decoder does not parse this information),
in this case {31810948-8D81-4E55-BD16-0C27F5629392}. 

■ Frame 8: The server returns an interface pointer of the requested object, along
with the data required to connect to that object instance (information known
as the object exporter identifier, or OXID). The OXID returned contains the
RPC binding string for the object exporter. 

■ Frames 9, 10, 11: The client connects to the object exporter managing the
interface returned by the activation process. 

■ Frames 12, 13, 14: The client binds to the ICalculator interface and authen-
ticates the user, similar to the process described in frames 2–4. 

■ Frame 15: The client invokes IClaculator::SlowSum, identifiable by the
interface IID and the method number or opnum.

■ Frames 41-46: Every two minutes, there is an IOXIDResolver::ComlexPing
call from the client to the server used to inform the server that the client is still
up and running.  

■ Frame 233: The server returns the results from the operation initiated in frame
15. 

■ Frames 234-235: The client obtains an IRemUnknown2 interface using the cur-
rent connection to the server object.

■ Frames 234-235: The client executes the IRemUnknown2::RemRelease on
the interface obtained in frame 235. 

Failing DCOM Activation Trace
Because we use network monitor tools mostly to troubleshoot problems, it is impor-
tant to know how effective this method is for discovering problems in network com-
munication. What kind of problems can be discovered in this way? This section uses
a file capturing a remote DCOM activation failure, which is a fairly common error.  

The traffic captured in the failure case shows the deviation from the communica-
tion flow characteristic to the successful activation. The differences can lead toward the
most likely problem in no time. Figure 8.6 shows the content of the 08capture02.cap
file that contains the whole activity leading to the failure. 
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Figure 8.6 Packets captured during a failed DCOM activation 

The first few packets play similar roles as in the previous section, whereas the last
activation packet is completely different. The packet’s interpretation is as follows: 

■ Frame 1: The client sends a bind request to theISystemActivator interface
and also contains the security negotiation message as described.

■ Frame 2: The server acknowledges the bind with a Bind_ack packet.
■ Frame 3: The client answers to the challenge with an Alter_context mes-

sage, using information associated with the username TestAdmin, such as the
password. 

■ Frame 4: The server verifies the caller identity with an Alter_context_resp
message. The interface is ready to be used. 

■ Frame 5: The client invokes RemoteCreateInstance.
■ Frame 6: The server fails the activation, and the result is sent to the client as a

fault frame that contains the access denied error code 0x00000005 nicely
extracted by the tool from the error frame. 
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The username used for this activation request is clearly visible in frame 3. Because
frame 4 indicates that the user credentials were accepted by the server, the activation
problem is reduced in this case to an authorization problem specific to that user. With
the experience acquired from Chapter 7, it is relatively easy to continue the investi-
gation and pinpoint the source of the problem.  

Failing DCOM Activation Trace by Firewall Filtering
Lately, the network security landscape changed toward restricting inbound network
access with the goal of minimizing the attack surface. Starting with Windows XP,
Service Pack 2, a network firewall is built in the operating system and enabled by
default. Most OEM systems also come with other firewall products preinstalled.
Although each firewall provides a mechanism to log the rejected requests, it is much
easier to use network tracing tools to spot communication problems, facilitated by the
consistent interface independent of the firewall product installed. Furthermore, the
investigation can be easily performed without making changes to the configuration of
the affected system. 

The 08capture03.cap file, displayed in Figure 8.7, illustrates a case of a fire-
wall blocking some but not all inbound requests to the system.

Figure 8.7 Packets captured during a DCOM activation blocked by a firewall
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The packet’s roles are interpreted as follows: 

■ Frame 1 to Frame 9: The client activates the interface implemented by the
server, in this case ICalculator, the same way as in the first trace shown in
“Successful DCOM Activation Trace.” The server returns the marshaled inter-
face along with the RPC binding information required to connect to it. In this
case, the endpoint is a TCP port 1770. 

■ Frame 10 and beyond: The client tries to establish a TCP connection with the
server on port 1770, as shown by the sequence of SYS frames, but there is no reply
from the sever. The client tries several times to establish the connection without
success. Eventually, the activation call returns a failure in the client process. 

In this case, the firewall allows the traffic to the endpoint mapper port 135, but it
blocks the traffic to the ports dynamically opened in the server process. From the
client code perspective, the DCOM activation request fails with a 0x800706ba error.
When the firewall blocks all traffic on the system, even the initial connection to the
epmap port fails, as shown in Figure 8.8. The frames illustrated in this example can
be found in the 08capture04.cap file. 
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Figure 8.8 Packets captured suing a DCOM activation attempt blocked completely by a
firewall
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Other Network Protocols 
Other communication protocols can be analyzed with the same tools and following
the same model. Even if you are not familiar with the wire activity generated by the
high-level API calls, common network protocols are usually decoded by network ana-
lyzer tools. For those protocols, it is relatively easy to find the relationship between
an API call and the associated network activity. 

When you design a new protocol, it would be useful for the protocol acceptance to
provide your own protocol interpreter to be used within the network analyzer tools. This
way, the tools can decode the entire communication between systems. Figure 8.9 shows
the traffic capture as a result of opening the registry on a remote machine. In this case,
the first protocol decoder is decoding the TCP traffic, the next one in the stack decodes
SMB requests, and another one decodes the MSRPC protocol built on the named pipes
communications. Because the remote registry operations are fairly common, another
protocol decoder interprets the MSRPC traffic generated by the remote registry APIs. 

In the 08capture05.cap capture file, it is easy to get an overview of the mes-
sage exchanged between the client and the server. For example, the authentication
sequence is easily recognized in frames 8 to 13, whereas frames 18 and 21 contain
RPC calls made using the SMB protocol. 

Figure 8.9 Packets containing remote registry operations
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In other cases, the client and the server are connected with complex networking
devices, such as load balancing solutions, and the network tracing is the only way to
identify the real cause of the problem. When a packet gets lost in traffic, the network
activity captured on the client’s network is compared to the traffic on the server’s net-
work to prove a mismatch.  

Breaking the Call Path
The previous method of analyzing the network traffic is extremely effective in under-
standing what is right or wrong in the communication between two computers.
Unfortunately, a single wire packet can be the result of a very complex operation,
often involving more than one process. Any complex execution path hides the actual
source of the error, making it difficult to identify the process in which the error is
actually happening and implicitly debug the problem.

What is the most effective way of investigating such a problem? One method is to
visualize the call flow as a circuit starting in the client space, passing through several
communication layers, and surfacing as a server request in the server process, as illus-
trated in Figure 8.10. Furthermore, the server can decide to use services provided by
yet another server before it returned the information to the client and the circuit
extends to the next server. The reverse path is then used to return the results in syn-
chronous calls. 
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Figure 8.10 Sample execution path

We would like to create an analogy between troubleshooting a complicated inter-
process communication and an electronic circuit, with the goal to discover what can
be borrowed from the latter domain. The electronic circuits have various pins, sur-
facing signals essential to the good functionality of the circuit board, called test
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points. To troubleshoot the circuit board, the engineer starts somewhere close to its
output and progressively moves toward the circuit input to localize the faulty section.
Sometimes he will jump between the input and output to localize the section receiv-
ing a proper signal but not generating the expected response, but the majority of the
investigation progresses strictly backward. 

This pattern can be successfully used in troubleshooting distributed system solu-
tions in which an error is raised somewhere in the middle and we don’t know where.
The situation is similar to the circuit when the output signal is different from the
expected response to the input signal. Any error happening in any of the processes
used in the distributed system can be seen as a shortcut in the big circuit that pre-
vents the messages from flowing deeper in the system. Instead of using test points,
not available in software, we can use the Windows debuggers. When one component
that is part of the communication flow is stopped in the user mode debugger, the
whole client-initiated operation cannot proceed, and it hangs. This confirms that this
component has an active role in the functional section of the system. In this case, a
component closer to the end of the chain is most likely the one raising the error. 

One attacks this problem by assuming that the whole scenario works and starts to
troubleshoot from the “bottom” of the call stack. Stop the last process of the call chain
in the debugger (Application 3 from Figure 8.10) and re-execute the entire operation.
If the operation returns with the same failure, that process is not the one generating
the failure because it was not even invoked, and we will move up in the stack
(Application 3 in this case) and repeat the procedure. When the call does not return,
the error must be looked for in that process using the debugging techniques specific
to a single-process scenario. 

For asynchronous or message-based communication, the procedure must be
adapted to the flow of messages within the distributed system.

NOTE Not surprisingly, debugging a distributed application is labor intensive because on
top of the simple-to-use high-level library, we must be aware of the library internal implemen-
tation and the system calls used by it. 

Additional Technical Information

Debugging interprocess communication is a heuristic process of analyzing the infor-
mation from multiple sources to understand the problem being debugged. This sec-
tion describes where to intercept the remote authentication process and how to
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configure the RPC infrastructure to send additional information for each error
encountered while processing a message. The last two tools display information about
various interfaces by interrogating the endpoint mapper database.

Remote Authentication
In the previous chapter, you learned how the remote clients authenticate to the serv-
er using SSPI calls. The call stack of the thread executing the call often reveals the
authentication mechanism used by the client. In the following example, the client
uses NTLM authentication as revealed by its three-leg protocol. The example shown
in Listing 8.29 is taken from the RPCSS service, accepting a remote activation call.
The network activity shown in Figure 8.5 can be mapped to the SSPI calls. The first
secure32!AcceptSecurityContext is performed with the data obtained from
frame 4, and the second call with the data received from frame 6. 

Listing 8.29 Server breakpoints encountered using SSPI

0:009> bp Secur32!AcceptSecurityContext

0:009> bp Secur32!ImpersonateSecurityContext

0:009> g

Breakpoint 0 hit

eax=0009be20 ebx=00200a03 ecx=76f9d1e0 edx=0009722c esi=000971e0 edi=000af088

\eip=76f949ba esp=005bfd14 ebp=005bfd50 iopl=0         nv up ei pl nz na pe nc

Secur32!AcceptSecurityContext:

76f949ba 55               push    ebp

0:003> * The first call to AcceptSecurityContext

0:003> k

ChildEBP RetAddr

005bfd10 780239bc Secur32!AcceptSecurityContext

005bfd50 7802389c RPCRT4!SECURITY_CONTEXT::AcceptFirstTime+0xd7

005bfeac 78010000 RPCRT4!OSF_SCONNECTION::AssociationRequested+0x3b8

...

0:003> g

Breakpoint 0 hit

eax=0009be20 ebx=00000000 ecx=0009722c edx=76f9d1e0 esi=00097220 edi=000000a6

eip=76f949ba esp=005bfe68 ebp=005bfea8 iopl=0         nv up ei pl nz na pe nc

Secur32!AcceptSecurityContext:

76f949ba 55               push    ebp

0:003> * The second call to AcceptSecurityContext

0:003> k

ChildEBP RetAddr

005bfe64 78023b9f Secur32!AcceptSecurityContext

005bfea8 78023b22 RPCRT4!SECURITY_CONTEXT::AcceptThirdLeg+0x3e
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005bff18 78004aed RPCRT4!OSF_SCONNECTION::ProcessReceiveComplete+0x595

005bff28 78001848 RPCRT4!ProcessConnectionServerReceivedEvent+0x20

…

0:003> g

Breakpoint 1 hit

eax=76f9d1e0 ebx=005bf83c ecx=0009722c edx=75867028 esi=000971e0 edi=005bf848

eip=76f95099 esp=005bf75c ebp=005bf768 iopl=0         nv up ei pl nz na pe nc

Secur32!ImpersonateSecurityContext:

76f95099 55               push    ebp

0:003> * The identity of the client is available at the end of the call

0:003> k

ChildEBP RetAddr

005bf758 7802372a Secur32!ImpersonateSecurityContext

005bf768 78023701 RPCRT4!SECURITY_CONTEXT::ImpersonateClient+0x39

005bf770 78004443 RPCRT4!OSF_SCONNECTION::ImpersonateClient+0x3b

005bf778 75852a8f RPCRT4!RpcImpersonateClient+0x64

….

RPC Extended Error Information
The components using RPC-based protocols can benefit from the extended informa-
tion available in the protocol and controlled by the system policy called “Propagation
of Extended Error Information.” The policy that controls the propagation of error
information can be found under the System’s Administrative Templates node target-
ing the computer configuration, as shown in Figure 8.11. 

The policy can be selectively enabled for the processes we are interested in or for
all processes. The error information that travels over the wire can then be analyzed with
packet sniffer tools. Applications can take advantage of this error information when they
encounter errors, if this information is available. Even the simplest approach of logging
this extended information helps the debugging process of this application.

Other Tools
When analyzing RPC failures, there must be a quick way to answer the question, “Is
this interface registered or not?” Two tools used for this type of search are rpc-
dump.exe and ifids.exe, available as free downloads from the company BindView, eas-
ily discoverable using an Internet search engine. The Ifids.exe program lists the
interfaces registered with the endpoint mapper associated with a specific endpoint.
The usage and the tool output are fairly simple, as shown in Listing 8.30.

Listing 8.29 Server breakpoints encountered using SSPI (continued)
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Figure 8.11 Enabling RPC Propagation of Extended Error Information

Listing 8.30 Listing all the interfaces registered on the \PIPE\winreg endpoint on the local
system

C:\>ifids -p ncacn_np -e \PIPE\winreg \\.

Interfaces: 7

c8cb7687-e6d3-11d2-a958-00c04f682e16 v1.0

338cd001-2244-31f1-aaaa-900038001003 v1.0

4b112204-0e19-11d3-b42b-0000f81feb9f v1.0

00000134-0000-0000-c000-000000000046 v0.0

18f70770-8e64-11cf-9af1-0020af6e72f4 v0.0

00000131-0000-0000-c000-000000000046 v0.0

00000143-0000-0000-c000-000000000046 v0.0

rpcdump.exe performs ifids.exe functionality for each endpoint registered on the sys-
tem. Listing 8.31 shows a simplified output generated when running on a Windows XP
SP2 system. The list of registered interfaces is huge and depends on the system 
configuration. 
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Listing 8.31 Listing all the interfaces registered on the local system, identified by \\.    

C:\>rpcdump.exe  \\.

IfId: 906b0ce0-c70b-1067-b317-00dd010662da version 1.0

Annotation:

UUID: 705bd495-44aa-4b4d-8e8d-1927d9dd9e8c

Binding: ncalrpc:[LRPC00000fc4.00000001]

IfId: 3c4728c5-f0ab-448b-bda1-6ce01eb0a6d5 version 1.0

Annotation: DHCP Client LRPC Endpoint

UUID: 00000000-0000-0000-0000-000000000000

Binding: ncalrpc:[dhcpcsvc]

...

IfId: 4b112204-0e19-11d3-b42b-0000f81feb9f version 1.0

Annotation:

UUID: 00000000-0000-0000-0000-000000000000

Binding: ncacn_np:\\\\XP-SP2-BACK[\\PIPE\\winreg]

Summary

In this chapter, we focused on troubleshooting distributed services using different
tools and techniques with the goal of finding the logical execution path in a client-
server application. You learned  the importance of diagnostic capabilities built in a
communication protocol, as well as how to use them when debugging secure
Windows applications. 

Although no general recipe is available, the combination of these techniques can
be used practically in any situation. A good overall understanding of the specific dis-
tributed system and the underlying communication protocols is a precondition to suc-
cessful troubleshooting, but it is also the gateway for creating better systems in the
future. This chapter also demonstrates the usefulness of using established communi-
cation protocols that are supported by the software industry with numerous tools.  
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C H A P T E R  9

RESOURCE LEAKS

Without a doubt, resource leaks are one of the main sources of problems that can lead
to software instability. One “small” resource leak is all it takes for large corporations
to have to restart critical applications and services (and in worst-case scenarios, the
entire system) and in the process lose thousands, or sometimes hundreds of thou-
sands, of dollars. Software houses cannot afford to ignore issues such as memory
leaks. Serious time and effort has to be scheduled to deal with these problems when
they surface during testing. Admittedly, some resource leaks are harder to track down
than others, but no questions should be asked concerning whether they should be
fixed. Armed with the right thought process, coupled with a set of invaluable tools, a
developer can track down these types of problems fairly quickly. This chapter dis-
cusses these thought patterns and tools that enable developers to efficiently track
down resource leaks.

What Is a Resource?

In Windows, a resource is any entity that occupies space in the system. Space, in this
case, is defined as physical or virtual memory. Examples of such entities include handles,
various forms of memory allocations, and COM objects. Although it is true that many of
these constructs boil down to a memory allocation, the means by which a developer
acquires and releases control of these resources varies. For example, allocating an array
of characters using the new statement but forgetting to free it using delete[] causes a
memory leak. (The size of the memory leak is directly proportional to the number of
characters.) In the same fashion, instantiating a COM object using CoCreateInstance
but forgetting to release it also causes a memory leak (and potentially other forms of
leaks, depending on what resources the COM object in turn allocates). In many cases,
the severity of the resource leak is directly proportional to the abstraction level that you
are working with. As is the case with a COM object, it might aggregate other COM
objects, which aggregate other COM objects, and so on. The most important aspect with
regard to debugging resource leak problems is how the resource is acquired and
released. 
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To effectively debug resource leaks, you must first be able to analyze the problem
in front of you. With resource leaks, it simply does not work to sit down and randomly
start debugging, hoping to come across a clue that will yield the source of the prob-
lem. No, much in the same way a detective has to collect and organize clues and the-
ories, so must the developer. Many times, the theories are proven wrong, and you will
find yourself back at the drawing board, looking for other theories on the potential
culprit code. By fully understanding the systematic thought process behind analyzing
a resource leak, you will be able to tackle any resource leak (whether it is a handle,
memory, or a COM object). To aid the developer tackling resource leak problems,
there is also a set of tools that you will find invaluable when verifying your theories.

This chapter takes you on the journey of discovering the root cause behind
orphaned bits. It discusses the thought process behind your work as a bit detective,
as well as explains, in detail, the tools at your disposal to make your work easier. We
use two different types of resources as case studies:

■ Handles
■ Conventional memory allocations

Next, we look at the process of identifying and addressing a resource leak from the
30,000 foot view, and then we start to dig into the details.

High-Level Process

The process of resolving a resource leak in your code is illustrated in Figure 9.1. In
this section, we examine each of the parts of the process in detail.

Step 1: Identify Potential Resource Leaks
The first step in the resource leak process is convincing yourself that what you are
seeing is, in fact, a leak. Many applications will include internal caches that are filled
during heavy load and subsequently released when in an idle state, hence leading to
a false positive. Another false positive might be that an overall increase in memory
usage is observed, but it might not necessarily mean that your application is leaking.
All good investigations start with the basics, and, as such, the first step should be iden-
tifying potentially leaking resources. This is accomplished by a thorough analysis of
the state of the machine, paying careful attention to abnormally large amounts of one
or more resource types. Only after this has been confirmed can you safely move on to
the diagnostics stage. Several different tools are out there that allow you to analyze
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system health. The most basic tool (part of Windows) is the Task Manager
(CTRL+SHIFT+ESC or taskman.exe). Using Task Manager, you get a global view of
the system resource consumption, as well as a more granular view for each process
running, as shown in Figure 9.2.
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Figure 9.1

Task Manager can be customized to show different types of process data. If the
process you are investigating is showing an unusually high amount of resource usage,
chances are good that you are seeing a resource leak.

At this point, the first step of the process is completed. You have identified a large
amount of resources being consumed by the alleged process by using Task Manager,
and it is time to move on to the diagnostics stage. 
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Figure 9.2

Step 2: What Is Leaking?
The next critical step is figuring out what type of resource the application is leaking.
In step 1, we have already touched on how Task Manager can display useful data for
any given process running in the system. You can customize the available options by
opening Task Manager (CTRL+SHIFT+ESC) followed by View, Choose Columns.
This opens the Select Columns dialog in Figure 9.3.

Figure 9.3
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The columns most applicable to resource leaks are

■ Memory Usage (working set size)
■ Memory Usage Delta
■ Peak Memory Usage
■ Virtual Memory Size
■ Handle Count
■ Thread Count
■ GDI Objects (if the application uses UI features) and USER Objects 

After you’ve enabled the columns of interest, Task Manager will display the data as
new columns in the Processes view.

Another great tool that can be used to track resource leaks is Performance Monitor
(Start, Run: perfmon.exe). Performance Monitor has the added benefit of including a
ton of memory-related counters that can be used to track leaks over time. 

Step 3: Initial Analysis
Let’s say that step 2 showed your process using a large number of handles (more than
it should). The next step is to do an initial analysis. Because you are probably familiar
with the code you are analyzing, a great starting point is to look at code paths involv-
ing handles. It is surprising how many resource leaks can be identified simply by fol-
lowing some basic steps and eyeballing the code that works with the resource in
question. What is actually happening to make the resource usage grow in the first
place? If you have the answer to that question, you can begin with either code review-
ing the paths during those operations or stepping through it in the debugger, paying
careful attention to any of those specific resources being used. After you have identi-
fied where the resource is opened, finding the missing resource close is fairly trivial.
Congratulations! You have just identified and fixed a resource leak at a very low cost.

Unfortunately, not all solutions to resource leaks are as trivial as merely eyeballing
the code, and it is sometimes impossible to find the source of the leak that way.
Several reasons for this exist:

■ The issue is not reproducible all the time. If the resource leak you are debug-
ging happens infrequently (even with the same repro steps), it is very difficult
to narrow down where in the code it might be happening.

■ The resource leak is identified on a production server that the customer cannot
afford to let “sit idle” while it is being debugged. Even worse, a lot of times,
restrictions and connectivity issues prevent engineers from even accessing the
servers. 
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■ A lot of times, stress testing an application or service yields very nondetermin-
istic results, and the leaks must be debugged on a server that has been heavily
used and has had a huge amount of resources leaked. 

If you are in any of the previously described situations, your task has just become
harder. But fear not; a great number of tools can aid you in identifying and resolving
resource leaks that would otherwise be impossible or, at the very least, very expensive
to sort out by simple code reviews.

Step 4: Leak Detection Tools
Let’s say that you have developed a service, and it is ready to be included in the night-
ly stress run. By the sheer definition of stress test code, your service will be hit by
thousands of concurrent and different requests, both valid and invalid, for ten hours
straight. After being notified that stress testing will commence starting tonight, you
go home at the end of the day, expecting the worst. In the morning, the report is pub-
lished: “No crashes, BUT at the end of the stress run, the memory consumption and
handle count of the service had skyrocketed.” At the status meeting, the management
team looks to you for answers. 

Presented with this situation, the best course of action is to take full dumps of the
leaking process (see Chapter 13, “Postmortem Debugging”) and ask the test team to
reproduce the resource leak (that is, run the stress testing overnight again). Prior to start-
ing the new stress run, enable one or more leak detection tools that will allow you to track
down the problem much more efficiently. Although the leak is being reproduced, you
can analyze the dump files generated earlier (see Chapter 13). If the team is wary about
letting this particular resource leak go in hopes of reproducing it again, tell them that
without leak detection tools, it might take you weeks of investigation to get to the bot-
tom of it. Really—this is sometimes how long it can take to solve a resource leak post-
mortem without tools. If they still want you to debug the problem without the leak
detection tools, mechanisms are available to make your life a bit easier.

The choice of tools you enable depends entirely on the resource being leaked.
Table 9.1 presents the most common options. 

Table 9.1

Name Resource Leaked Download

htrace Handles Debugging Tools for Windows
UMDH Heap Memory Windows 2003 Server Resource Kit
LEAKDIAG Various forms of ftp://ftp.microsoft.com/PSS/Tools/Developer%

memory allocators 20Support%20Tools/LeakDiag/LeakDiag125.msi
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The basic idea behind all these tools is that by enabling them, you are telling
Windows that you want to track all resource acquisitions and releases. Windows, in
turn, responds by hooking calls to the corresponding resource acquisition/release
API(s) and produces a database of all stack traces that acquired and released that par-
ticular type of resource. Some of these tools (such as UMDH) query the database for
all calls that result in heap memory being allocated and analyze the results to produce
a report of potentially leaked memory. 

After you have identified the offending stack trace, tracking down the resource
leak becomes a much easier task (although not trivial).

Note that some of these tools require support from Windows to work properly
and, as such, require the user to enable stack trace recording in the operating system.
You will see these tools in action in subsequent parts of the chapter.

Step 5: Define a Future Avoidance Strategy
At this point, you have identified that there is a resource leak, done an initial analy-
sis, ran the necessary leak detection tools, and finally identified and fixed the offend-
ing code. The next step, and perhaps the most crucial, is ensuring that what you just
discovered does not happen again; the best way of doing this is to define a future
avoidance strategy for that particular problem. As much as we would like to think that
we never make the same mistake twice, it happens; and it happens often. By making
use of our everyday tools, we can take out part of that human error from our code and
let it be “automatically” handled by the system. 

Reproducibility of Resource Leaks

Reproducibility of resource leaks can take on several different shapes. The three main
categories of reproductions are

■ Sequential and fully reproducible
■ Sporadic and reproducible a majority of the time
■ Sporadic and reproducible very infrequently

Sequential and fully reproducible resource leaks are typically encountered during
development time while running unit tests or an automation test suite. These
resource leaks typically surface each time a test is run. Furthermore, running the
same test with the same input reproduces the same resource leak. As it turns out,
these types of leaks are also the easiest to investigate.
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Sporadic resource leaks that are reproducible most of the time might allow for
the luxury of enabling leak detection tools and waiting for a few days for the leak to
occur again. This assumes that the customer is willing to wait for another occurrence
of the problem. If he is not, the scenario turns into the third category of problems and
also the toughest form of resource leaks.

If a resource leak reproduces infrequently enough, it is not always feasible to sim-
ply tell the customer to enable leak detection tools and then sit back and wait.
Customers running your application or service on production machines might be hes-
itant to install utilities and tools that are not part of the operating system.
Furthermore, some leak detection tools slow the processing down and consume more
memory than desirable. In these cases, the only two options at your disposal are to
either ask for debugging permissions on their servers (hardly ever granted) or to per-
form postmortem debugging. Postmortem involves taking a snapshot of the process
and analyzing the memory snap on a different machine. (For more information on
postmortem debugging, see Chapter 13.) Because no leak detection tools were run
prior to the process starting, you are now faced with finding a resource leak by mere-
ly analyzing the state of the process. These can prove to be daunting tasks that can
make the best of software engineers question their abilities. In the following sections,
you will see specific examples of resource leaks and how to analyze them. Each of the
sections describes a specific type of resource leak. It is important to understand that
although we are only covering a few of the possible resource leaks, the five-step
resource leak analysis process described can be applied to any type of resource leak.

Handle Leaks

The Windows kernel defines a set of object types that are native to the Windows
operating system. Examples of such object types are file objects, process objects, and
thread objects. Each object type has an associated set of properties and APIs that
work on that particular object type. As an example, consider a file object. A file object
has a set of attributes that dictate if a file is hidden, visible, system, and so on. To per-
form work on an object type, the associated set of APIs must be used. For example,
the Win32 API CreateFile allows you to create or open a file object. Although the
Windows kernel is mostly implemented in C, you can view the object type properties
and functions as a method of implementing encapsulation using C. The object types
themselves are not exposed directly; rather they require that the developer manipu-
lates the object types via the C APIs, thereby hiding the details of the type and
enabling the internals of the type to change over time. Furthermore, the encapsula-
tion model promotes a more robust form of development because the encapsulated
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data is never manipulated directly by a caller, thereby minimizing the risk of the caller
misusing the object data. Most of the APIs are exposed to user mode code via the
Win32 APIs. Figure 9.4 depicts the high-level handle architecture.
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In order to work with object types, you must first instantiate an instance of that object
type. Let’s take a file as an example. The CreateFile API allows you to create or
open an existing file. Under the covers, the CreateFile API calls into the kernel,
creates an instance of the file object type, and passes back the resulting handle to the
client. The handle is what the client uses to refer to the newly created instance in the
kernel. If you want to perform other operations on the new file, the handle should
always be used when referring to the correct object instance. When you are done with
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that particular file, you should close the handle so that Windows can properly decre-
ment the reference count on the instance and free the memory when the reference
count reaches zero. 

The most important takeaway is the fact that after an object type is instantiated
and a handle is returned to the caller, memory is consumed to hold the data for that
instance. It should go without saying that if you forget to close the handle, the mem-
ory will never be freed and you will have what is commonly referred to as a handle
leak. A variety of tools display the handle count of various types of handles. The eas-
iest and most convenient tool is Task Manager, which allows you to view the number
of handles for a specific process. 

Because a user mode process uses a handle as an association to the object
instance in kernel mode, where is this handle association stored in the user mode
process? The answer to that question is that it is stored in the process handle table.
Figure 9.4 shows the handle table contained within the user mode process. This illus-
trates the association between the kernel mode object instances and user mode
process. In reality, the process handle table is actually stored down in kernel mode.
Each process is represented by an object instance in Windows, and each of these
objects has an associated handle table. Any given handle in the user mode process is
really just an index into the process handle table. Each row in the table contains a
pointer to the kernel mode object instance, an access mask, and flags. The access
mask dictates what access was requested when the handle was first instantiated. For
example, in the case of files, the process could have opened the file for read access,
which would have been indicated in the access mask.

When a process exits, Windows takes care of closing all the handles in that
process’s handle table to ensure that no kernel mode instances are leaked. Even
though Windows takes care of closing all the handles a process has open upon exit, it
is not an invitation to sloppy coding. Defining the lifetime of an application can some-
times be tricky. Will it run for a few minutes or a few months before exited?
Sometimes, it’s really hard to tell, and relying on process exit to clean up resources is
poor programming practice. 

The Leaky Application
Before we jump in and analyze a leaky application, it is important to understand how
the application works, as well as the steps that make the leak surface. You might won-
der why I would mention something that obvious. The reality is, though, that we are
often faced with fixing other engineers’ code, and it is important to get a good
overview before starting. To illustrate an example of a leaky application, we use a serv-
ice that exposes a function that allows clients to read text files from the server
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machine and return the contents of those files. To make life easier, the function is
exposed as a static library. The test application displays a prompt allowing the user to
type in the filename he is interested in and press Enter. The service call is made fol-
lowed by a display of the first 1023 characters in that file. 

An example of running the application is shown here: 

C:\AWDBIN\WinXP.x86.chk\09Basichleak.exe

Client application console menu

====================

Enter filename to read > c:\boot.ini

Scheduled request successfully

Data read:

[boot loader]

timeout=30

default=multi(0)disk(0)rdisk(0)partition(1)\WINDOWS

[operating systems]

multi(0)disk(0)rdisk(0)partition(1)\WINDOWS=”Microsoft Windows XP Professional”

/fastdetect /NoExecute=OptIn

multi(0)disk(0)rdisk(0)partition(1)\WINXP=”Microsoft Windows XP Professional” /fast-

detect

&

Enter filename to read > _

The source code and binary for the application can be found in the following folders:

Source code: C:\AWD\Chapter9\BasicHLeak\Client and
C:\AWD\Chapter9\BasicHLeak\Server
Binary: C:\AWDBIN\WinXP.x86.chk\09Basichleak.exe

Now that you have a good understanding of what the code architecture looks like cou-
pled with the QA department’s assertion that there is a handle leak, we begin by fol-
lowing the five-step resource leak process. Because we know that we are looking for
handle leaks, steps 1 and 2 are combined.

Steps 1 and 2: Is It Even a Handle Leak?
As always, the first step of investigating a potential resource leak is to confirm that
there really is one. Handle leaks can be easily detected by using Task Manager. By
default, Task Manager does not display the number of handles for a given process. You
can enable this by clicking the Process tab followed by selecting the View and Select
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Columns submenu. This brings up a dialog box that displays a host of options that Task
Manager is capable of displaying. Check the Handle Count check box, and click OK.

The Processes tab now displays an additional column that shows the number of
handles any given process has open. Let’s try it with our supposedly leaky application.
You can find the leaky application under

C:\AWDBIN\WinXP.x86.chk\09Basichleak.exe

When the application has started, you are presented with a prompt asking for a file-
name. Start by entering a valid filename (must include full path), and press Enter.
The output shows the first 1023 characters of the file content, followed by another
prompt for a filename. Now is a good time to bring up Task Manager and look at the
09Basichleak.exe process in the Processes tab. More specifically, you want to look at
the Handles column and see what it shows. It looks like the process at this time has
13 handles open, as shown in Figure 9.5.

Figure 9.5

We type in yet another filename and press Enter. Again, we check the handle count,
which is now 14. Indeed, this does not look good so far. We continue the process of
opening files a dozen or so times, and sure enough, the handle count seems to be going
up by one each time a request has executed. Figure 9.6 shows the number of handles
opened by the 09Basichleak.exe process after executing the read file request 12 times.
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Figure 9.6

Now, there are times when the handle count can go up due to caching, but after letting
the application sit idle for a while, we still don’t see the handle count go down. We can
fairly safely say that at this point, we are seeing an application that is leaking handles. 

Step 3: Initial Analysis
Because a handle is opaque and can represent any number of object types, how do
we go about narrowing down the problem? If we could identify what type of object
the handle is associated with, it might give us a better clue to the source of the leak.
For example, if all the preceding handles are thread handles, we could focus our
efforts in those parts of the code. Unfortunately, Task Manager does not always give
us this type of information, and we have to move to a more powerful diagnostics tool.  

An excellent tool for this, called Process Explorer, is available free at 
www.microsoft.com. Process Explorer has the capability to show a lot of useful infor-
mation about running processes, including the different handles and their associated
types. It is well worth your time to play around with this tool, as it has some great
exploring capabilities. Figure 9.7 shows Process Explorer when run on our leaky
application. 
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Figure 9.7

As you can tell, what makes this tool so much more powerful than Task Manager is
that it is capable of displaying the different types of handles that are opened in the
process. But the fanciness does not stop there; it also displays the name of the handle
that is opened. In our particular run, we kept opening the same file over and over
again (BOOT.INI), and it’s clearly shown in the UI of Process Explorer. The number
of file handles with the BOOT.INI name corresponds to the number of times we
opened that file. It would be a fair statement to say that at this point, we have veri-
fied that there is indeed a leak, and the specific handle being leaked is a file handle.
Because we know exactly what type of handle is being leaked and it seems that we can
reproduce it on every iteration of the command we are executing, the first step we
should take is to follow the code path exactly as it happens when we run the opera-
tion. The test application we are using makes the following call:

CHAR szFiledata[1024];

BOOL bRet=CServer::GetTextFileContents(hCompletionEvent, 

pFileName, 

szFiledata, 1024 ) ;

if(bRet==FALSE)

{
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printf(“\nFailed to read file\n”);

}

else

{

printf(“\nScheduled request successfully\n”);

WaitForSingleObject(hCompletionEvent, INFINITE);

printf(“\nData read:\n”);

printf(“%s\n”, szFiledata);

}

hCompletionEvent is a handle to an event that we created. We use this event as a
notification mechanism that the server can signal when the operation is completed.
This enables us to perform additional work while the service is doing its work.
pFileName in our case is the filename we typed in on the command line
(BOOT.INI), and szFileData is a stack allocated string buffer that contains the first
1024 characters of the file content. The last parameter, 1024, simply indicates the
number of characters our buffer is capable of storing.

So far, nothing in our code indicates that we are the cause of the file handle leak.
We do have a handle, but it’s an event handle that does not appear to leak, according
to Process Explorer. We continue the investigation by looking at the service imple-
mentation of GetTextFileContents:

BOOL CServer::GetTextFileContents(HANDLE hEvent, 

PWSTR pszFileName, 

PSTR pBuffer, 

DWORD dwBufferLen)

{

BOOL bRet=FALSE;

if(hEvent!=NULL && pszFileName!=NULL && pBuffer!=NULL && dwBufferLen!=0)

{

WorkerData* pWorkerData=new WorkerData;

if(pWorkerData!= NULL)

{

pWorkerData->dwBufferLen=dwBufferLen;

pWorkerData->pBuffer=pBuffer;

pWorkerData->pszFileName=pszFileName;

pWorkerData->hCompletionHandle=hEvent;

bRet=QueueUserWorkItem(RequestWorker, 

(LPVOID) pWorkerData, 

WT_EXECUTELONGFUNCTION);

if(!bRet)

{
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delete pWorkerData;

}

}

}

return bRet;

}

A brief glance at this function does not make it clear where the file handle is being
opened. A closer look shows that we are using QueueUserWorkItem with a callback
function called RequestWorker. The Win32 QueueUserWorkItem API enables an
application to queue up a work item on the native Windows thread pool. This means
that the application provides a callback function that the operating system invokes
using one of its own threads. This seems to make sense because the application call-
ing the service is expected (according to the contract) to give an event handle to the
service that is signaled when the request is completed. Based on this information, we
continue the investigation by looking at the RequestWorker function:

DWORD WINAPI CServer::RequestWorker(LPVOID lpParameter)

{

DWORD dwRet=0;

WorkerData* pWorkerData=(WorkerData*) lpParameter;

HANDLE hFile=CreateFile(pWorkerData->pszFileName, 

FILE_READ_DATA, 

FILE_SHARE_READ, 

NULL, 

OPEN_EXISTING, 

FILE_ATTRIBUTE_NORMAL, 

NULL); 

if(hFile!=INVALID_HANDLE_VALUE)

{

DWORD dwBytesRead=0;

BOOL bRet=ReadFile(hFile, 

(LPVOID) pWorkerData->pBuffer, 

(pWorkerData->dwBufferLen-1), 

&dwBytesRead, 

NULL);

if(bRet==TRUE)

{

dwRet=1;

}
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}

SetEvent(pWorkerData->hCompletionHandle);

delete pWorkerData;

return dwRet;

}

Now we seem to be getting somewhere. This function manipulates files judging by
the CreateFile API call, as well as the ReadFile API. The CreateFile API
returns a handle to the opened file, stored in the local variable hFile. Assuming that
no failures occur, the code proceeds by calling the ReadFile API. After the file has
been read, the event handle passed in by the caller is signaled (to indicate that the
operation completed), and the function returns. It is important to note that when we
say that the function returns, it returns to the Windows thread pool. At this point, it
should be clear that we have missed a critical ingredient in this function. We opened
the file, which returned a file handle, but we forgot to close the file handle prior to
returning. Each time the request is run, we leak one file handle. The solution to this
problem is to add a CloseHandle call (only if the file was successfully opened) prior
to returning from the function. I should also note that it is always beneficial, but often
overlooked, that when you find a leak, it is quite useful to look around the same sec-
tion of code to see if perhaps other leaks are lurking about.

You have followed the five-step leak detection process and managed to find the
leak as early as step 3. Finding a leak this early on in the process is very inexpensive.
Unfortunately, it is not always the case that you have a fully reproducible problem in
which the leak occurs on each operation. Let’s make a slight alternation to our code
and show how these types of problems can manifest themselves, as well as how to
track them down.

A More Complex Application
If you can track down a handle leak based on only knowing the type of the handle
being leaked, consider yourself lucky (or a very skilled code reviewer). Most of the
time, further diagnostics is required.

The previous sample shows how you can go about analyzing a fairly simple han-
dle leak and what you can do to get to the bottom of it. Now it’s time to look at yet
another leaky application with added complexity. The key difference between the last
leaky application and this one is that it no longer leaks handles systematically; rather,
the occurrence of the leak is sporadic and, at first sight, random. The basic architec-
ture is the same; there is a client application and a server application (implemented
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as a static library for simplicity sake). The server exposes a set of functions that enable
the client to get security-related information about the caller, such as the token priv-
ilege count, the group count, and the security indentifier (SID). The client applica-
tion is called 09hleak.exe and can be found in the following location:

Source code: C:\AWD\Chapter9\HLeak\Client and
C:\AWD\Chapter9\HLeak\Server

Binary: C:\AWDBIN\WinXP.x86.chk\09hleak.exe

The 09hleak.exe binary allows for the following command-line arguments:

C:\AWDBIN\WinXP.x86.chk\09hleak.exe /t:<num_threads> /i:<iterations_per_thread>

/s:<sleep_time_per_iteration>

/t:<num_threads>

Specifies the number of concurrent threads that the client uses when invoking oper-
ations on the server.

/i:<iterations_per_thread>

Specifies the number of operations that will be performed by each thread.

/s:<sleep_time_per_iteration>

Specifies the number of seconds to wait between each operation in each thread.
Once again, for the sake of simplicity, the client stress application links directly

against a static library that represents the server. Let’s begin by running the applica-
tion once, specifying that we want 5 threads, 5 iterations per thread, and 0 second
sleep time:

C:\AWDBIN\WinXP.x86.chk\09hleak.exe /t:5 /i:5 /s:0

Let the application run and, at the same time, watch the handle consumption in
Process Explorer. Figure 9.8 shows the result of the run in Process Explorer view.

As you can see, our handle count has gone from approximately 8 at the start of
the application run to 13 (don’t worry if your handle count is different; it’s all part of
the exercise) at the end of the run. Not a good sign. Now, let’s run it again, with the
same parameters. Figure 9.9 shows the results in Process Explorer view. 
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Figure 9.8
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446 Chapter 9 Resource Leaks

This time, we ended up with 23 handles, even though we used the same input. If you
keep running the application, you will notice that there isn’t any real pattern to the
leak. The only observation that seems to hold true is that if we increase the number
of threads and iterations, we see a bigger leak. For example, running with the follow-
ing command line

C:\AWDBIN\WinXP.x86.chk\09hleak.exe /t:20 /i:10 /s:0

the handle count goes up dramatically, as shown in Figure 9.10.

Figure 9.10

We know that the client application uses the server in a multithreaded fashion and
that it calls various functions on the server. From the Process Explorer view, we can
also see that it appears to be leaking token handles. How do we go about tracking
down this type of sporadic handle leak? The answer is step 4 in our leak detection
process: making use of leak detection tools.

For this exercise, try not to look at the code ahead of time. We are going to show you
some of the most important tools of tracking down these types of unpredictable issues.
By unpredictable, we mean leaks that do not reproduce consistently and cannot (rea-
sonably) be tracked down via simple code reviews. We will skip steps 1–3 in our five-step
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leak detection process because we already know that there is a handle leak. We also
assume that it cannot be easily spotted by a simple code review. 

Step 4: Make Use of Resource Leak Detection Tools
Okay, we have a sporadic and apparently random handle leak on our hands. Although
this might seem like a doomsday scenario, there is some good news. As odd as it might
seem, the good news is that the leak appears to surface every time the application is run;
it just does not reproduce with the same number of handles being leaked. Why is that
good news? Because it is a prime opportunity to leverage an extremely powerful exten-
sion command called !htrace that can help you detect where the leak is occurring. 

Htrace stands for handle trace, and the basic idea behind the command is to
enable the operating system to track all calls (with associated stack traces) that result in
handles being opened and closed. When a leak has been identified, you can then use
the !htrace extension command to display all the stack traces in the debugger. After
all stack traces are shown, you can track down sporadic handle leaks in a much easier
fashion. Let’s take a look at the available options for the !htrace extension command.
First, start our leaky application (with the same command-line options as before):

C:\AWDBIN\WinXP.x86.chk\09hleak.exe /t:20 /i:10 /s:0

Press any key to start stress application...

Before starting the actual leak reproduction, attach a debugger to the newly created
process, set the symbol path, and type !htrace -?:

0:001> !htrace -?

!htrace [handle [max_traces]]

!htrace -enable [max_traces]

!htrace -disable

!htrace -snapshot

!htrace -diff

The first thing of interest in this help text is the –enable option. Recording all the
stack traces for handle open and close calls is not a feature of the !htrace extension
command per se; rather, it is an operating system feature. !htrace merely tells the
operating system to enable stack tracing for the given process before it can be used.
You can do this by using the –enable command. As a matter of fact, if you try to use
the other !htrace extension command before stack tracing has been enabled, you
will get the following error:

0:001> !htrace -snapshot

Handle tracing is not enabled for this process. Use “!htrace -enable” to enable it.
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Enable stack tracing as shown here:

0:001> !htrace -enable

Handle tracing enabled.

Handle tracing information snapshot successfully taken.

As you can see, the –enable switch is a two-step operation. First, it enables stack
tracing, and second, it takes a snapshot of the current state of the process with regard
to handles (as indicated by the second line in the output). As soon as stack tracing has
been enabled, Windows starts recording all calls that result in handle creation and
deletion. The next time you take a snapshot (using the –snapshot option), the
!htrace extension command queries the operating system for all stack traces that
result in handle creation and deletion and displays them. If you let your application
run a little longer (perhaps leaking some more handles), break in, and take another
snapshot, it will, again, show all the stack traces previously shown plus any additional
handles created or deleted since the last snapshot was taken. By systematically doing
this, you can compare the snapshots and see which portions of your code created
and/or deleted handles, or, more interestingly, which parts created handles but did
not close them (which might be the culprit of the leak). Back to our leaky application.
Because we have just started the process and enabled stack tracing, let the process
run to completion. When finished, you can use the !htrace extension command to
get a list of all the stacks that have created and deleted handles throughout the dura-
tion of the process. Because even “smaller” processes typically create and delete a
fairly large number of handles, the following example only shows segments of the out-
put. Also remember that our leaky application leaks handles very sporadically in the
sense that no one run is guaranteed to leak the same number of handles even with
the same input. Therefore, the output you see in your debug session will more than
likely be different from what is listed here.

…

…

…

0:001> !htrace -enable

Handle tracing enabled.

Handle tracing information snapshot successfully taken.

0:001> g

(d3c.18c): Break instruction exception - code 80000003 (first chance)

eax=7ffdd000 ebx=00000001 ecx=00000002 edx=00000003 esi=00000004 edi=00000005

eip=7c901230 esp=0028ffcc ebp=0028fff4 iopl=0         nv up ei pl zr na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=0038  gs=0000             efl=00000246

ntdll!DbgBreakPoint:
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7c901230 cc               int     3

0:001> !htrace

-------------------

Handle = 0x0000078C - CLOSE

Thread ID = 0x00000410, Process ID = 0x00000D3C

0x0100176A: 09hleak!wmain+0x0000027A

0x01001933: 09hleak!wmainCRTStartup+0x0000012B

0x7C816FD7: kernel32!BaseProcessStart+0x00000023

-------------------

Handle = 0x00000798 - CLOSE

Thread ID = 0x00000410, Process ID = 0x00000D3C

0x0100176A: 09hleak!wmain+0x0000027A

0x01001933: 09hleak!wmainCRTStartup+0x0000012B

0x7C816FD7: kernel32!BaseProcessStart+0x00000023

-------------------

<output truncated>

…

…

…

-------------------

Handle = 0x00000480 - CLOSE

Thread ID = 0x00000C04, Process ID = 0x00000D3C

0x01001E1E: 09hleak!CServer::GetGroupCount+0x000000BE

0x01001499: 09hleak!ThreadWorker+0x000000E9

0x7C80B683: kernel32!BaseThreadStart+0x00000037

-------------------

Handle = 0x00000480 - OPEN

Thread ID = 0x00000C04, Process ID = 0x00000D3C

0x01001E85: 09hleak!CServer::GetToken+0x00000055

0x01001D81: 09hleak!CServer::GetGroupCount+0x00000021

0x01001499: 09hleak!ThreadWorker+0x000000E9

0x7C80B683: kernel32!BaseThreadStart+0x00000037

-------------------

<output truncated>

…

…

…

-------------------

Parsed 0x191 stack traces.

Dumped 0x191 stack traces.
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The output of  the !htrace extension command consists of two major sections:

■ A list of all stack traces recorded
■ A summary section toward the end

The summary section shows how many stack traces were parsed and how many were
dumped to the debugger. Let’s take a close look at the stack trace section correspon-
ding to the handle 0x480. 

Handle = 0x00000480 - OPEN

Thread ID = 0x00000C04, Process ID = 0x00000D3C

0x01001E85: 09hleak!CServer::GetToken+0x00000055

0x01001D81: 09hleak!CServer::GetGroupCount+0x00000021

0x01001499: 09hleak!ThreadWorker+0x000000E9

0x7C80B683: kernel32!BaseThreadStart+0x00000037

Each stack trace recorded consists of a header and the stack trace itself. The header
consists of the following information:

■ Handle value represented as Handle = <value>. In our example, the han-
dle value is 0x00000480. 

■ Next to the handle value is the type of operation performed. It can be one of
the following: OPEN or CLOSE. Our particular example shows OPEN, which
means that the stack trace shown is the stack trace that opened the handle.

■ Thread ID and Process ID represented as Thread ID = <value> and Process
ID = <value>. These values show which thread the stack trace belongs to, as
well as the process ID. One might be inclined to say that the process ID is a waste
of space since handles are process relative, and hence the process ID must match
the currently running process. This is true most of the time, but as we show later
on, there are times when other processes might inject a handle into your
process—in which case, the process ID will be different.

The stack trace resembles

0x01001E85: 09hleak!CServer::GetToken+0x00000055

0x01001D81: 09hleak!CServer::GetGroupCount+0x00000021

0x01001499: 09hleak!ThreadWorker+0x000000E9

0x7C80B683: kernel32!BaseThreadStart+0x00000037
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Judging from the stack trace, it looks like 09hleak.exe spawned a new thread. (The
clue is the kernel32!BaseThreadStart frame.) The main thread entry point is
ThreadWorker, which calls the server function called GetGroupCount, which in
turn calls GetToken. So it appears that the GetToken function in the server caused
this handle to be opened. The number next to each frame in the stack trace is the
return address for that particular frame. Now that we’ve identified a stack trace that
resulted in opening a handle, there should be a corresponding stack trace that closes
the specific handle (0x00000480). The easiest way to find this information is to
search for the handle value in the output.
Handle = 0x00000480 - CLOSE

Thread ID = 0x00000C04, Process ID = 0x00000D3C

0x01001E1E: 09hleak!CServer::GetGroupCount+0x000000BE

0x01001499: 09hleak!ThreadWorker+0x000000E9

0x7C80B683: kernel32!BaseThreadStart+0x00000037

The stack trace seems to make perfect sense. The thread ID(s) match, and the stack
traces themselves make sense (GetGroupCount originally called GetToken, which
opened the handle. Then GetGroupCount closed the handle.) It should be clear that
the key to finding the leaking stack traces is to find the ones that have opened handles
but have no associated close stack trace. This can be a tedious exercise because it
involves checking each opened handle for an associated close in an output that can be
pages and pages long. Fortunately, the !htrace extension command comes to the res-
cue. You can use the –diff option in !htrace to do all that work for you. It basical-
ly correlates all paths that resulted in creation and deletion (since the last snapshot)
and reports only the stack traces that do not have a delete stack associated. Let’s try it. 

0:001> !htrace -diff

Handle tracing information snapshot successfully taken.

0x191 new stack traces since the previous snapshot.

Ignoring handles that were already closed...

Outstanding handles opened since the previous snapshot:

-------------------

Handle = 0x000004D0 - OPEN

Thread ID = 0x000001B0, Process ID = 0x00000D3C

0x01001E85: 09hleak!CServer::GetToken+0x00000055

0x01001B91: 09hleak!CServer::GetSID+0x00000021

0x0100141B: 09hleak!ThreadWorker+0x0000006B

0x7C80B683: kernel32!BaseThreadStart+0x00000037

-------------------

Handle = 0x000004E0 - OPEN
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Thread ID = 0x00000E64, Process ID = 0x00000D3C

0x01001E85: 09hleak!CServer::GetToken+0x00000055

0x01001B91: 09hleak!CServer::GetSID+0x00000021

0x0100141B: 09hleak!ThreadWorker+0x0000006B

0x7C80B683: kernel32!BaseThreadStart+0x00000037

-------------------

Handle = 0x000004E4 - OPEN

Thread ID = 0x000002D0, Process ID = 0x00000D3C

0x01001E85: 09hleak!CServer::GetToken+0x00000055

0x01001B91: 09hleak!CServer::GetSID+0x00000021

0x0100141B: 09hleak!ThreadWorker+0x0000006B

0x7C80B683: kernel32!BaseThreadStart+0x00000037

-------------------

Handle = 0x000004EC - OPEN

Thread ID = 0x000001B0, Process ID = 0x00000D3C

0x01001E85: 09hleak!CServer::GetToken+0x00000055

0x01001B91: 09hleak!CServer::GetSID+0x00000021

0x0100141B: 09hleak!ThreadWorker+0x0000006B

0x7C80B683: kernel32!BaseThreadStart+0x00000037

-------------------

Handle = 0x000004F0 - OPEN

Thread ID = 0x00000C04, Process ID = 0x00000D3C

0x01001E85: 09hleak!CServer::GetToken+0x00000055

0x01001B91: 09hleak!CServer::GetSID+0x00000021

0x0100141B: 09hleak!ThreadWorker+0x0000006B

0x7C80B683: kernel32!BaseThreadStart+0x00000037

-------------------

Handle = 0x00000504 - OPEN

Thread ID = 0x00000E64, Process ID = 0x00000D3C

0x01001E85: 09hleak!CServer::GetToken+0x00000055

0x01001B91: 09hleak!CServer::GetSID+0x00000021

0x0100141B: 09hleak!ThreadWorker+0x0000006B

0x7C80B683: kernel32!BaseThreadStart+0x00000037

-------------------

Handle = 0x00000508 - OPEN

Thread ID = 0x000002D0, Process ID = 0x00000D3C

0x01001E85: 09hleak!CServer::GetToken+0x00000055

0x01001B91: 09hleak!CServer::GetSID+0x00000021

0x0100141B: 09hleak!ThreadWorker+0x0000006B

0x7C80B683: kernel32!BaseThreadStart+0x00000037
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-------------------

Handle = 0x0000050C - OPEN

Thread ID = 0x00000D18, Process ID = 0x00000D3C

0x01001E85: 09hleak!CServer::GetToken+0x00000055

0x01001B91: 09hleak!CServer::GetSID+0x00000021

0x0100141B: 09hleak!ThreadWorker+0x0000006B

0x7C80B683: kernel32!BaseThreadStart+0x00000037

-------------------

<output truncated>

…

…

…

-------------------

Handle = 0x00000754 - OPEN

Thread ID = 0x00000EA0, Process ID = 0x00000D3C

0x01001E85: 09hleak!CServer::GetToken+0x00000055

0x01001B91: 09hleak!CServer::GetSID+0x00000021

0x0100141B: 09hleak!ThreadWorker+0x0000006B

0x7C80B683: kernel32!BaseThreadStart+0x00000037

-------------------

Displayed 0x29 stack traces for outstanding handles opened since the previous 

snapshot.

Interesting, isn’t it? It showed 0x29 stack traces that have no associated close handle
calls. Even more interesting is the fact that all these stack traces seem to be nearly
identical:

0x01001E85: 09hleak!CServer::GetToken+0x00000055

0x01001B91: 09hleak!CServer::GetSID+0x00000021

0x0100141B: 09hleak!ThreadWorker+0x0000006B

0x7C80B683: kernel32!BaseThreadStart+0x00000037

The server function GetSID calls GetToken, which opens the handle, but there is no
associated close call. Now is the right time to turn to some code reviewing. Looking
at the GetSID function in the server code, we see the following:

PSID CServer::GetSID()

{

PSID pSid = NULL;

HANDLE hToken = INVALID_HANDLE_VALUE;

hToken = GetToken();

if(hToken!=INVALID_HANDLE_VALUE)

{
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DWORD dwNeeded=0;

BOOL bRes=GetTokenInformation(hToken,

TokenUser,

NULL,

0,

&dwNeeded

);

if(bRes==FALSE && GetLastError()==ERROR_INSUFFICIENT_BUFFER)

{

TOKEN_USER* pBuffer=reinterpret_cast<TOKEN_USER*>(new BYTE[dwNeeded]);

if(pBuffer!=NULL)

{

BOOL bRes=GetTokenInformation(hToken,

TokenUser,

(LPVOID)pBuffer,

dwNeeded,

&dwNeeded

);

if(bRes==TRUE)

{

DWORD dwSidLen=GetLengthSid(pBuffer->User.Sid);

pSid=static_cast<PSID>(new BYTE[dwSidLen]);

if(pSid!=NULL)

{

if(CopySid(dwSidLen, pSid, pBuffer->User.Sid)==FALSE)

{

delete pSid;

pSid=NULL;

}

}

}

}

delete pBuffer;

}

}

return pSid;

}

The line in bold returns a token to the server GetSID function. The returned handle
is located on the stack and is not passed out of the function. Furthermore, there
seems to be no CloseHandle call at all in the GetSID function, essentially resulting
in a handle leak.

As we have seen, when it comes to sporadic handle leaks that are not easy to track
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down by solely employing code reviews, the !htrace extension command gives
invaluable help. It has the capability to show nice and clean stack traces, including
deltas of different runs. The general strategy for using !htrace is

1. Prior to starting the actual reproducing of the leak, enable handle tracing
(using !htrace –enable).

2. Run the reproduction and let the process handle leaks.
3. Use !htrace –diff to find the offending stacks. 

Repeating steps 1–3 will give you enough information to narrow the problem down
in the code and find the leak by using code reviews.

The handle tracing mechanism just described works extremely well when track-
ing down handle leaks. However, there is a caveat to be aware of. The handle tracing
uses an array to track all handles. If the array is exhausted, older entries in the array
are replaced with new ones. In effect, this means that the longer you run with handle
tracing turned on, the greater the chances of the individual array slots being reused;
hence, information about older and potentially leaked handles is lost. The best
approach when using the handle tracing mechanism is to narrow the problem down
to a fairly small and quickly reproducible scenario to ensure that the handle tracing
array is not reused. 

Handle Injection and !htrace
As discussed earlier, handles to kernel object instances are process relative and stored
in the process handle table. As such, a handle from process A cannot be used in
process B because it has no presence of the handle in its handle table. One might be
tempted to conclude that all handles in any given process are opened by that process
itself. This is true in most cases, but as always, there are exceptions to the rule. It is
possible for a process to open a handle and inject that handle into another process,
assuming that the injecting process has the right access rights. When that happens,
and the injected handle isn’t closed by the target process, a handle leak occurs. Even
worse, the !htrace extension command yields a fairly odd stack trace for that par-
ticular handle. Let’s look at an example. There are two console applications in this
scenario. Console application one is called 09target.exe and is a standard console-
based application with the following code:

#include <windows.h>

#include <stdio.h>

#include <conio.h>
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int __cdecl wmain (int argc, wchar_t* pArgs[])

{

printf(“Waiting for handles...\n”);

printf(“Press any key to exit application...\n”);

_getch();

return 1;

}

The source code and binary for the application can be found in the following folders:

Source code: C:\AWD\Chapter9\HInject\Target
Binary: C:\AWDBIN\WinXP.x86.chk\09htarget.exe

As you can see, this code does very little. It simply sits idle and waits for the user to
press any key, at which point, it terminates. To illustrate the troubleshooting of han-
dle injection, the source code for the other process in play is not shown. Simply run
the application (09hsource.exe). 

C:\AWDBIN\WinXP.x86.chk\09hsource.exe

Enter process ID to inject handle into: _

Using Task Manager, find the process ID of the target process (note the handle
count) and enter it in the 09hsource.exe prompt. When it’s finished doing its job, it
will again present you with the same prompt. Again, bring up Task Manager, and you
will see that the handle count has gone up by one. Type the same process ID again
and check Task Manager. Again, you will see that the handle count for 09htarget.exe
has gone up by one. Keep iterating, and you will see that every time you run through
an iteration of the 09hsource.exe application, the handle count goes up by one in the
09htarget.exe process. Furthermore, using the !htrace technique described previ-
ously, we dump out all the stack traces for the 09htarget.exe process, and we notice
that we indeed have a few stack traces that indicate leaked handles. The odd part is
that the stack trace looks very convoluted. Here is an example of a stack trace report-
ed by !htrace in the 09htarget.exe process:

Handle = 0x000007D8 - OPEN

Thread ID = 0x00000854, Process ID = 0x0000093C

0x01001363: 09htarget!XcptFilter+0x00000009

0x010014D3: 09htarget!_NULL_IMPORT_DESCRIPTOR+0x000000CB

0x7C816FD7: kernel32!BaseProcessStart+0x00000023
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Besides the stack trace itself not making much sense for our 09htarget.exe applica-
tion, the process ID does not seem to make sense either. As a matter of fact, the
process ID listed in the stack trace does not correspond to the 09htarget.exe process
ID. Using Task Manager, we can quickly correlate the reported process and find the
process that !htrace is reporting. Not surprisingly, the process ID is that of the
09hsource.exe process. Going back to our systematic approach to leak detection, we
can safely list the following observations:

■ The target process is leaking handles. Furthermore, the target process is leak-
ing handles it is not responsible for.

■ Judging by the stack traces given by !htrace in the 09htarget.exe process, the
originating process of the handle is 09hsource.exe.

The biggest problem of figuring out the origins of the handle is that the stack we have
doesn’t seem to make sense. The stack frames point to locations in our binary that do
not seem to be in a valid code path. Let’s stop and rethink the scenario as a whole.
The originating process is 09hsource.exe, and we would expect to see the stack trace
of how the handle was obtained in this process when using !htrace. The only prob-
lem is that we have attached the debugger to the 09htarget.exe process, and the stack
obtained looks odd. The only reason it looks odd is that the debugger is trying to
resolve the call frame addresses in the context of 09htarget.exe, but in reality the call
frame addresses are only reliable in the context of the 09hsource.exe process. (After
all, that process actually opened the handle.) If we tried to resolve the call frame
addresses in the context of the 09hsource.exe process, we should be able to get the
true stack trace. Let’s use the stack trace that didn’t seem to make any sense and give
it a try. Attach a debugger to the 09hsource.exe process, break in, and resolve each of
the addresses listed in the stack trace. We use the ln command to resolve an address
to its corresponding symbolic name:

…

…

…

0:001> ln 0x7C816FD7

(7c816fb4)   kernel32!BaseProcessStart+0x23   |  (7c816ff1)   kernel32!CsrBasepNlsGe-

tUserInfo

0:001> ln 0x010014D3

(010013a8)   09HSource!wmainCRTStartup+0x12b   |  (0100152e)   09HSource!XcptFilter

0:001> ln 0x01001363

(010012c0)   09HSource!wmain+0xa3   |  (010013a8)   09HSource!wmainCRTStartup
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The resolution of addresses to possible symbols yields the following potential call stack.

09HSource!wmain+0xa3

09HSource!wmainCRTStartup+0x12b

kernel32!BaseProcessStart+0x23

This looks very reasonable. The BaseProcessStart function in kernel32 calls the
wmainCRTStartup function in our 09hsource.exe process followed by a call to the
actual wmain function. So far, nothing indicates that we have opened a handle and
injected it into the target process. The key here is to look at the top of the stack:

09HSource!wmain+0xa3

This frame is making a call to another function. If we unassemble this function at the
offset specified, we see the following:

0:001> u 09HSource!wmain+0xa3

09HSource!wmain+0xa3:

01001363 8945f0           mov     [ebp-0x10],eax

01001366 837df000         cmp     dword ptr [ebp-0x10],0x0

0100136a 7515             jnz     09HSource!wmain+0xc1 (01001381)

0100136c ff151c100001   call dword ptr [09HSource!_imp__GetLastError (0100101c)]

01001372 50               push    eax

01001373 68ac100001       push    0x10010ac

01001378 ff156c100001     call    dword ptr [09HSource!_imp__printf (0100106c)]

0100137e 83c408           add     esp,0x8

Nothing in this unassembled code seems to point to a function call that would open
a new handle and inject it. Remember from Chapter 5, “Memory Corruption I—
Stacks,” that the address listed in the stack trace is the address that the register EIP
points to, which also happens to be the address right after a CALL instruction. Let’s
unassemble again, but this time subtract a few bytes:

0:001> u 09HSource!wmain+0xa3-11

09HSource!wmain+0x92:

01001352 8b55ec           mov     edx,[ebp-0x14]

01001355 52               push    edx

01001356 ff1510100001 call dword ptr [09HSource!_imp__GetCurrentProcess (01001010)]

0100135c 50               push    eax

0100135d ff1518100001 call dword ptr [09HSource!_imp__DuplicateHandle (01001018)]

01001363 8945f0           mov     [ebp-0x10],eax

01001366 837df000         cmp     dword ptr [ebp-0x10],0x0

0100136a 7515             jnz     09HSource!wmain+0xc1 (01001381) 
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Now we’re getting somewhere. The instruction prior to the current instruction point-
er is in fact a CALL instruction. Furthermore, the CALL instruction indicated a call
to the DuplicateHandle API. If we look up DuplicateHandle in MSDN, we see
that the API not only allows us to duplicate an existing handle in the current process,
but also into a different process. It is now trivial to investigate the parameters sent to
the DuplicateHandle API and see that we are, in fact, specifying the process ID for
the 09htarget.exe process. 

Step 5: Define a Future Avoidance Strategy for Handle Leaks
Last, but not least, we should always make sure that we have learned from our expe-
riences to avoid making the same mistakes twice. One great way of making sure that
handles are not lost is to employ an auto acquire/release construct. Very similar to
auto pointers, this construct allows you to acquire a handle at any given scope and
automatically free it when the auto construct goes out of scope. In our server exam-
ple, the GetSID function could have been altered similar to the following to use an
auto handle construct:

PSID CServer::GetSID()

{

PSID pSid = NULL;

HANDLE hToken = INVALID_HANDLE_VALUE;

hToken = GetToken();

AutoHandle autoHandle(hToken);

…

…

}

The AutoHandle class takes ownership of the specified handle and closes it when it
goes out of scope. Extending the AutoHandle class with the following functionality
makes it even more flexible:

■ Overloading the assignment operator would allow you to write code such as
AutoHandle autoHandle=GetToken();

■ Overloading the cast operator to allow casting an AutoHandle to a HANDLE
allows for easier access to the underlying HANDLE

■ Removing the ownership of the underlying HANDLE in cases in which the han-
dle must be passed out of the current scope
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This is an example of a very effective way of ensuring that handles are closed proper-
ly when they go out of scope. Without a doubt, many ways and alternatives exist for
making sure that we make proper use of our tools and code to ensure handle cleanup.
Which one you chose depends entirely on your personal preference and coding style.

Memory Leaks

Whereas the previous section focuses on handle leaks, this section discusses more
conventional memory leaks. By conventional, I mean memory leaks that occur while
directly allocating and working with memory using any of the memory allocation con-
structs (such as new and HeapAlloc). Before we dive in and look at how to analyze
memory leaks, let us begin by a quick review of how memory is managed in Windows. 

The memory manager in Windows can be broken down into several layers, as
shown in Figure 9.11.

Application

Heap Manager

[NTDLL] Runtime Memory API

Virtual Memory Manager

C Runtime
Heap

Default
Process

Heap

Application
Specific
Heaps

Figure 9.11
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The bottom and most low-level component is the Virtual Memory Manager (VMM).
The VMM is the last stop for all memory-related requests in the system and works with
memory in a much more low-level form than application developers are accustomed
to. The VMM operates on the basis of large memory chunks (pages). To make memo-
ry allocations of small sizes more efficient, Windows places an abstraction layer on top
of the VMM. The abstraction layer is called the heap manager, consisting of an API
that application developers can use to allocate memory in a very simple fashion. A heap
is best thought of as an isolation layer that enables applications to create separate
memory arenas within its address space and work with these arenas (or heaps) in an
isolated fashion. Of course, applications are not required to create one or more heaps
before they can start manipulating memory. Rather, Windows makes the very logical
assumption that any given application will probably need to use at least some memo-
ry and create a default process heap when the process is first created. The initial
reserved size of the default process heap is 1Mb and grows as needed. 

As you can see from Figure 9.11, another layer exists between the VMM and the
heap manager, called the Runtime Memory API. It is a very thin layer that simply for-
wards calls down to the VMM. For example, the heap manager exposes an API called
HeapAlloc, which is really just a forwarder to the underlying RtlAllocateHeap
API, which in turn calls the VMM.

On top of the heap manager is the application layer, which uses one or more heaps
when allocating memory. The application can choose to use either the default process
heap or private heaps (explicitly created by the application). Quite often, applications
will make use of multiple heaps unbeknownst to themselves. For example, using the
C runtime (such as malloc or new) causes memory to be allocated on the C runtime
heap (created during initializing of the C runtime). A note of caution: Careful atten-
tion must be paid when working with multiple heaps. Because multiple heaps are
treated in an isolated fashion, allocating memory from one heap and deleting that
memory on a different heap is undefined behavior (see Chapter 6, “Memory
Corruption II—Heaps”). 

When a process is about to terminate, Windows frees all memory associated with
that process and destroys all active heaps.

Now that you have an understanding of how memory is managed in Windows,
let’s take a look at an example application that leaks memory and see how we can ana-
lyze the memory leak and ultimately fix it. 

A Simple Memory Leak
In the “handle leaks” section, we used a client-server paradigm to illustrate a handle leak
scenario. Once again, we turn to the same code (slightly modified) to illustrate an exam-
ple of a memory leak. The server enables the clients to make any of the following calls:
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■ GetSID Gets the SID of the caller’s token (thread or process
token)

■ GetPrivilegeCount Gets the privilege count of the caller’s token (thread or
process token)

■ GetGroupCount Gets the group count of the caller’s token (thread or
process token)

The client application (09basicmleak.exe) spawns a number of threads and randomly
picks an operation to perform. 

The source code and binary for the application can be found in the following folders:

Source code: C:\AWD\Chapter9\BasicMLeak\Client and
C:\AWD\Chapter9\BasicMLeak\Server
Binary: C:\AWDBIN\WinXP.x86.chk\09basicmleak.exe

Based on initial reports, the application apparently reports an increase in memo-
ry usage, and we are now faced with fixing this potential leak. Let’s start by following
the first two steps of the resource leak process.

Steps 1 and 2: Is It Even a Leak, and What Is Leaking?
Using Task Manager, memory consumption can be slightly trickier to identify. The
primary reason for this is the way that Task Manager reports memory consumption for
processes in comparison to, let’s say, handles. Let’s start by bringing up Task Manager
and selecting the Memory Usage and Virtual Memory columns, which tell us how
much memory the process is consuming.

Next, start the 09basicmleak.exe process with 5 threads and 50 iterations per
thread (0 sleep time) using the following command line:

C:\AWDBIN\WinXP.x86.chk\09basicmleak.exe /t:10 /i:50 /s:0

Before actually starting the application, bring up Task Manager, find 09basicmleak.exe,
and record the Mem Usage and VM Size columns, as shown in Figure 9.12.

From Figure 9.12, we can see that before running any tests, the 09basicmleak.exe
process is using 896Kb of memory and 264Kb of virtual memory. Virtual memory indi-
cates how much memory the process is using overall (both in and out of physical mem-
ory), whereas the Mem Usage column shows how much physical memory the process is
consuming (also known as the process working set). Typically, the best indicator for mem-
ory leaks is an increase in virtual memory size and not fluctuations in working set size. 

Now, let’s allow the 09basicmleak.exe process to run to completion and see what
happened with the memory consumption.
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Figure 9.12

As you can see from Figure 9.13, both the working set size and the virtual mem-
ory size have increased. Not a good sign. Increasing the number of threads and the
number of iterations per thread yields the result in Table 9.2.
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Table 9.2

Threads Iterations Memory (Kb) Virtual Memory (Kb)

10 200 948 292
10 200 944 288
10 200 944 288

20 300 956 300
20 300 964 308
20 300 956 300

Judging from Table 9.2, the theory of a potential memory leaks is now realized. In
addition, the memory leak is not constant with the same number of thread and itera-
tions per thread. This is similar in nature to the handle leak scenario shown earlier.
Rather than going to step 3, we assume that the memory leak is expensive to track
down through code reviews, so we dive into step 4: use leak detection tools. Tracking
down handle leaks proved to be much easier using the incredibly valuable !htrace
extension command. Is there something similar for memory leaks? Absolutely! The
tool that will save the day is called UMDH.

Working Set Size Adjustments

The working set size for any process is constantly adjusted by Windows. The adjustments
occur because of changes in system load and process priorities. When running the previous
memory leak scenario, you might find that the memory consumption reported is slightly dif-
ferent from what we have shown. This is indeed expected. The memory leak is sporadic
and (more than likely) doesn’t yield the same leak twice. Even though you should see small
differences in memory consumption, you should definitely not see large ones. If you do, it
might be due to minimizing the command window when looking at the resource consump-
tion. When you minimize a command window, Windows automatically assumes that the
window should be put in the background (that is, not being used), and as such trims the
working set of any command-line application currently running in the context of that com-
mand window. By reducing the amount of physical memory the command shell is using, it
can give that memory to other applications that might now be in need of it. 
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Step 4: Using Leak Detection Tools
Several tools are available to help efficiently track down memory leaks. In the fol-
lowing sections, we discuss several of the most commonly used tools.

UMDH
UMDH is a tool that comes as part of the Debugging Tools for Windows installation.
The basic idea behind the tool is very similar to the !htrace extension command. We
begin by simply telling the operating system to store away stack traces for all calls
resulting in memory allocations. We take a snapshot of the memory usage before the
application begins executing, and when the reproduction is finished, we take another
snapshot and compare the results. This yields all stack traces that have not yet been
freed, and we can take a more tactical approach to our code review to find the culprit.

First, we need to enable stack traces for memory allocations. To accomplish this,
we use the gflags tool and enable ‘Create user mode stack trace database’ for
09basicmleak.exe. For mode details on how to enable instrumentation using gflags,
see Chapter 1, “Introduction to the Tools.”

When you have enabled gflags for the 09basicmleak.exe application, run
09basicmleak.exe with the following command line:

C:\AWDBIN\WinXP.x86.chk\09basicmleak.exe /t:10 /i:200 /s:0

Press any key to start stress application...

Before starting the actual reproduction, we need to run UMDH to take the initial
snapshot. UMDH can be run in three modes:

■ Mode 1: Creates a dump of the heap allocations grouped by stack traces. This
mode tells UMDH to create a dump of all heap allocations. Several options
exist for this mode, and most are self-explanatory. The following options are of
most interest:

■ –p tells UMDH which process ID to record stack traces for.
■ –l prints file and line number information as part of stack traces.

■ Mode 2: Compares two dumps of heap allocations created in mode 1. This is a
very convenient way of analyzing the dumps. Rather than walking the two logs
by hand, we can let UMDH do all the work of reporting the difference.

■ Mode 3: This mode is a shortcut to using modes 1 and 2.
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To illustrate the usage of UMDH, we will show how to use modes 1 and 2 rather than
the shortcut mode. 

One final note about UMDH before we begin. As with most leak detection tools,
to get good stack traces, we must tell the tool where to find symbols. This is required
for the tool to be capable of resolving the frames to symbolic information. UMDH
expects the symbol path to be set in the _NT_SYMBOL_PATH environment variable. 

set _NT_SYMBOL_PATH=<path to your symbol store>

For more information about symbols, see Chapters 2 and 4.
Now, find the process ID of the newly launched instance of 09basicmleak.exe and

type the following on the command line. (UMDH can be found under the root fold-
er of the debugger installation directory.)

UMDH.exe -p:<process ID> > firstsnap.txt

Run the application to completion and take another snapshot:

UMDH.exe -p:<process ID> > secondsnap.txt

Now that we have both log files, run the following command to tell UMDH to com-
pare the two log files and pipe the difference to a new file called diff.txt:

UMDH.exe -v firstsnap.txt secondsnap.txt > diff.txt

We now have a file called diff.txt that should tell us the source of our leaked allo-
cations. Let’s open diff.txt and take a closer look:

//                                                                          

// Each log entry has the following syntax:                                 

//                                                                          

// + BYTES_DELTA (NEW_BYTES - OLD_BYTES) NEW_COUNT allocs BackTrace TRACEID 

// + COUNT_DELTA (NEW_COUNT - OLD_COUNT) BackTrace TRACEID allocations      

//     ... stack trace ...                                                  

//                                                                          

// where:                                                                   

//                                                                          

//     BYTES_DELTA - increase in bytes between before and after log         

//     NEW_BYTES - bytes in after log                                       

//     OLD_BYTES - bytes in before log                                      

//     COUNT_DELTA - increase in allocations between before and after log   

//     NEW_COUNT - number of allocations in after log                       

//     OLD_COUNT - number of allocations in before log                      

//     TRACEID - decimal index of the stack trace in the trace database     
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//         (can be used to search for allocation instances in the original  

//         UMDH logs).                                                      

//                                                                          

+    d482 (  d482 -     0)    2a0 allocs    BackTrace00081

+     2a0 (   2a0 -     0)    BackTrace00081    allocations

ntdll!RtlAllocateHeap+00001292

09basicmleak!CServer::GetSID+00000115

09basicmleak!ThreadWorker+0000006E

kernel32!BaseThreadStart+0000003A

+     bca (  2f28 -  235e)      2 allocs    BackTrace00066

ntdll!RtlAllocateHeap+00001292

kernel32!LocalAlloc+00000081

ADVAPI32!AppmgmtInitialize+00000023

ADVAPI32!DllInitialize+00000105

ntdll!LdrpRunInitializeRoutines+000004D7

ntdll!LdrpInitializeProcess+00001BB6

ntdll!LdrpInitialize+0000018F

ntdll!KiUserApcDispatch+00000015

kernel32!BaseProcessStart+00000000

-      be (  3970 -  3a2e)     65 allocs    BackTrace00068

ntdll!RtlAllocateHeap+00001292

msvcrt!malloc+00000060

msvcrt!malloc_crt+0000002A

msvcrt!_mbtow_environ+0000005E

msvcrt!_wgetmainargs+00000079

09basicmleak!wmainCRTStartup+0000013C

kernel32!BaseProcessStart+00000029

-      be (  2c30 -  2cee)      2 allocs    BackTrace00072

ntdll!RtlAllocateHeap+00001292

msvcrt!malloc+00000060

msvcrt!malloc_crt+0000002A

msvcrt!stbuf+00000073

msvcrt!printf+00000045

09basicmleak!wmain+0000003E

09basicmleak!wmainCRTStartup+00000171

kernel32!BaseProcessStart+00000029

Total increase == ded0 
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The first part of the file contains some very useful and detailed help text on the for-
mat of the file. What is really nice about UMDH is that it sorts the stack traces listed
according to the size and number of allocations. The stack traces with the biggest and
most number of allocations are at the beginning of the file. Let’s break down the first
stack trace:

+    d482 (  d482 -     0)    2a0 allocs    BackTrace00081

+     2a0 (   2a0 -     0)    BackTrace00081    allocations

ntdll!RtlAllocateHeap+00001292

09basicmleak!CServer::GetSID+00000115

09basicmleak!ThreadWorker+0000006E

kernel32!BaseThreadStart+0000003A

The first line tells us that we have a net increase of d482 bytes because of the alloca-
tions performed by the stack trace shown. It also tells us that that particular stack trace
was invoked 2a0 times, resulting in 2a0 allocations. Also shown is the TRACEID for
that particular stack trace. This can be useful when you want to coordinate specific
stack traces in the original snap files. The second line tells us about the net increase in
allocations because of the stack trace. In our case, we see that 2a0 allocations have
occurred. Finally, we have the stack trace itself, the most interesting piece of informa-
tion. The first frame (kernel32!BaseThreadStart) is the function that all threads
start their execution from. The second frame enters the 09basicmleak.exe function
ThreadWorker. This makes perfect sense because the 09basicmleak.exe applica-
tion spawns threads that in turn call the server. The third frame enters the server func-
tion GetSID, which in turn calls AllocateHeap. It seems as if the server is allocating
memory, but not freeing it. Looking at the code for GetSID, it is clear that it, in fact,
does allocate memory for the SID, but it never releases it. One might be tempted to
immediately fix it with a free call in the GetSID function, but is that the correct fix?
More careful analysis shows that the server allocated the memory for the SID but pass-
es the SID back to the client expecting the client to free it. Looking at the client code,
we quickly see that the client has forgotten to free it. The solution is to simply add the
corresponding free call, and the leak is gone. The remainder of the stack traces in the
log file show some pretty standard stacks that are not leaks. Remember, the applica-
tion is still running (albeit ready to terminate), and allocations made by the operating
system  are only freed when the process exits. For example, the second stack trace
shows that the Windows loader allocated memory during initialization of a DLL.
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+     bca (  2f28 -  235e)      2 allocs    BackTrace00066

ntdll!RtlAllocateHeap+00001292

kernel32!LocalAlloc+00000081

ADVAPI32!AppmgmtInitialize+00000023

ADVAPI32!DllInitialize+00000105

ntdll!LdrpRunInitializeRoutines+000004D7

ntdll!LdrpInitializeProcess+00001BB6

ntdll!LdrpInitialize+0000018F

ntdll!KiUserApcDispatch+00000015

kernel32!BaseProcessStart+00000000

This allocation is not something that we were responsible for, and we can safely dis-
card this stack trace. 

UMDH is a pretty powerful tool to track down memory leaks. However, it does
have some limitations. More specifically, UMDH works best with non-FPO opti-
mized code. Starting with Windows XP SP2, all operating system code is compiled
with FPO optimizations turned off, so that should not be a big problem. Another
drawback is that UMDH only works with the default Windows heap manager.
Customized allocators (such as the C runtime) are not tracked very well using
UMDH. To accommodate these shortcomings, another tool was created called
LeakDiag, which we examine next.

UMDH and BSTRs

A BSTR is essentially nothing more than a COM-compatible string (encapsulating the length
of the string as well as content). Most of the time, when we’re using COM interfaces that
accept strings as input, they will be of type BSTR. Allocating BSTRs using the SysAlloc APIs
and forgetting to free them leads to a memory leak. These types of memory leaks are not
guaranteed to be caught by UMDH. As a matter of fact, most of the time, the stack traces
shown by UMDH do not make any sense and can lead you down a long and expensive
false path. OLE caches BSTRs to avoid continuous round-trips to the memory manager. As
such, allocating a BSTR, freeing it, and then subsequently allocating another BSTR that you
forget to free cause UMDH to report the original and nonleaking stack trace to the alloca-
tion. If you are ever in a situation in which you suspect that you are leaking BSTRs, there is
fortunately a way to turn the caching off. Set the following environment variable,
OANOCACHE=1, prior to starting the application, and the caching will be turned off. If you
are analyzing a service (not started from a specific command shell), you can set the environ-
ment variable in the global system environment table.
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LeakDiag
LeakDiag allows you to track numerous allocations coming from sources other than
the default Windows heap manager. For example, if an application calls the
VirtualAlloc API directly and forgets to free it, it will not be reported by UMDH;
however, LeakDiag will show this leak. In addition, LeakDiag does not require you to
enable stack trace recording via gflags. Instead, LeakDdiag uses the Microsoft
Detours technology to intercept calls to specified memory allocators. 

LeakDiag can be run in two different modes. The first mode is via the command
line, and the second mode is via a UI. The former will be demonstrated here.
Running LeakDiag is a two-step process:

1. Selecting the target process. This merely tells LeakDiag which process it
should intercept memory allocations for, as well as which allocator to intercept:
ldcmd.exe /p <processed> /start /a 2

The /a option selects the specific allocator you are interested in. In the pre-
ceding example, 2 refers to the NT Heap Allocator. As of version 1.25, the fol-
lowing allocators are supported:

■ Virtual Allocator (VirtualAlloc) 
■ NT Heap Allocator (HeapAlloc)[DEFAULT] 
■ MPHeap Allocator (MPHeap) 
■ COM Allocator (CoTask) 
■ COM Private Allocator (PrivateMemAlloc) 
■ C Runtime Allocator (msvcrt new)

2. Generating log files. Whenever you want to generate a log file for the selected
target process, use the /dump switch. For example,

ldcmd.exe /p <processed> /dump /a 2

The preceding example generates the log file and saves it to the default log file
folder. The default log folder is the Logs folder in the installation path of
LeakDiag.

Let’s return to our 09basicmleak.exe application and use LeakDiag to track down the
same memory leak we saw earlier. Start the 09basicmleak.exe application using the
following command line:

C:\AWDBIN\WinXP.x86.chk\09basicmleak.exe /t:10 /i:200 /s:0
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Next, find the process ID of the 09basicmleak.exe instance we just started and issue
the following command:

C:\LeakDiag\Logs>c:\LeakDiag\ldcmd.exe /p 3028 /start /a 2

Sent Start Tracing command for pID 3832

Allocator 1:     TRACING OFF

Allocator 2:     TRACING ON

Allocator 3:     TRACING OFF

Allocator 4:     TRACING OFF

Allocator 5:     TRACING OFF

Allocator 6:     TRACING OFF

Remember to specify the process ID relative to your execution. The /start com-
mand sends a signal to the process to start intercepting allocation calls, and the /a 2
tells it to intercept all allocations from the heap allocator.

The next step involves dumping all the allocation stack traces. Before issuing a
dump command with LeakDiag, you have to make sure that the symbol path is set cor-
rectly. Unlike UMDH, LeakDiag does not honor the _NT_SYMBOL_PATH environ-
ment variable; rather, it relies on a registry value stored under the following key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\LeakDiag

The registry value is named SymPath and needs to be set to the directory containing
the symbols. After the symbol path has been set, continue the execution of 09basicm-
leak.exe and, before exiting, type the following command:

C:\LeakDiag\Logs>c:\LeakDiag\ldcmd.exe /p 3028 /dump /a 2

Sent Dump Log command for pID 3832

Allocator 1:     TRACING OFF

Allocator 2:     TRACING ON

Allocator 3:     TRACING OFF

Allocator 4:     TRACING OFF

Allocator 5:     TRACING OFF

Allocator 6:     TRACING OFF

This time, we used the /dump switch to tell LeakDiag to produce a log file of all the
allocations collected in the process. The actual log filename is a conglomerate of var-
ious file attributes (such as filename, date of run, and so on). If you have a lot of log
files in the directory, the best way to find the correct one is simply to look at the date
and time of the file. In this particular run, the filename corresponding to the run is

05/31/2005  03:54 PM   12,631 09basicmleak_2296_WindowsHeapAllocator_050531-

155419_sess_01.xml
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As you can tell by the xml extension, the log file is stored in XML format. A good way to
view an XML file is to load it in Internet Explorer. You will also see that the log file comes
with the associated schema and is quite large. Rather than listing the entire log file here,
we will simply focus on the most important parts, namely how the stack traces are rep-
resented. If you want to see the entire log file, it can be found in the following location:

C:\AWDBIN\WinXP.x86.chk\09basicmleak_2296_WindowsHeapAllocator_050531-

155419_sess_01.xml

The overall structure of the log file resembles the following:

<?xml version=”1.0” ?>

<logdata>

<xs:schema id=”logdata” xmlns:xs=”http://www.w3.org/2001/XMLSchema”

xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata”> </xs:schema>

<LEAKS ver=”1.31.03.0915”> </LEAKS>

<SUMMARY_INFO> </SUMMARY_INFO>

</logdata>

Whereas the schema section details the structure of the XML data, the LEAKS sec-
tion details allocation history in the application run and finally a summary section that
shows information such as LeakDiag settings, modules loaded, overall memory sta-
tistics, and so on. The most interesting section is the LEAKS section. Expanding the
LEAKS section reveals a number of STACK sections—each one detailing allocations
made throughout the lifetime of the application. Looking at the first stack trace yields

<STACK numallocs=”0710” size=”028” totalsize=”019880” totalalloccount=”0710” totalal-

locsize=”019880”>

<STACKSTATS>

<SIZESTAT size=”028” numallocs=”0710” type=”N/A” /> 

<HEAPSTAT handle=”80000” numallocs=”0710” /> 

</STACKSTATS>

<FRAME num=”0” dll=”09basicmleak.exe” function=”CServer__GetSID” offset=”0xC8”

filename=”c:\zone\pwd\cd\code\resleak\memleak\scenario1\server\srv.cpp” line=”42”

addr=”0x1001C38” /> 

<FRAME num=”1” dll=”09basicmleak.exe” function=”ThreadWorker” offset=”0x6B” file-

name=”c:\zone\pwd\cd\code\resleak\memleak\scenario1\client\client.cpp” line=”36”

addr=”0x100142B” /> 

<FRAME num=”2” dll=”kernel32.dll” function=”BaseThreadStart” offset=”0x37” file-

name=”” line=”” addr=”0x7C80B50B” /> 

<STACKID>008E5C88</STACKID> 

</STACK>

Although the log file is represented in XML, it yields results very similar to the
UMDH logs. The STACK element attributes give information, such as number of 
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allocations from the stack trace, size of each allocation, and finally total size. The
HEAPSTAT shows which heap the allocation was made on. The final part is a list of
frames that make up the stack trace. As we can see, the bottommost frame is the ker-
nel32 function BaseThreadStart calling into a ThreadWorker function, which calls
into the server GetSID function, which forgets to release the memory allocated.
Although this is essentially the same leak we discovered using UMDH, it should be
clear that using LeakDiag can come in handy when you are dealing with leaks that do
not originate from the default heap manager.

The !address Extension Command

The !address extension command comes in very handy when you want to get a quick overview
of where the memory in your process is really located. The command gives statistics, such as
memory region usage in heaps, stack, free, and so on. To see for yourself, start notepad.exe
under the debugger and issue the !address command. The first part of the output gives a more
in-depth look at the memory usage, and toward the end of the output, you will see the summary.
…
…
---------- Usage SUMMARY -------------

TotSize   Pct(Tots) Pct(Busy)   Usage
001d4000 : 0.09%       10.59%       : RegionUsageIsVAD
7eeab000 : 99.16%       0.00%       : RegionUsageFree
00e0d000 : 0.69%       81.36%       : RegionUsageImage
00040000 : 0.01%       1.45%       : RegionUsageStack
00001000 : 0.00%       0.02%       : RegionUsageTeb
00120000 : 0.05%       6.51%       : RegionUsageHeap
00000000 : 0.00%       0.00%       : RegionUsagePageHeap
00001000 : 0.00%       0.02%       : RegionUsagePeb
00001000 : 0.00%       0.02%       : RegionUsageProcessParametrs
00001000 : 0.00%       0.02%       : RegionUsageEnvironmentBlock

Tot: 7fff0000 Busy: 01145000

…
…
Largest free region: Base 01014000 - Size 71fec000

This can come in quite handy if you are trying to figure out which tool to use to further
track down the leak. For example, if you see a large increase in memory usage attributed to
a leak, but you do not see any major increase when looking at the RegionUsageHeap (in
bold), chances are pretty good that the allocations are originating from non-heap-related
memory activity (such as calls to VirtualAlloc). This eliminates precious time spent on
running UMDH (tracks heap allocations only), and you can focus your efforts on running a
more suitable tool, such as LeakDiag.
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Our example is a simple server for illustrative purposes, but imagine an extremely
complex server that has been hammered all day long with client requests and is leak-
ing memory. Where do you begin to look without any tools? Many times, UMDH or
LeakDiag can be your answer in these types of situations. But wait, you say! UMDH
and LeakDiag assume that we have access to the system and can run these tools.
What about the situations in which you simply get a memory dump of the leaked
process and are required to analyze the leak postmortem. In this case, runtime leak
detection tools are not an option. Fortunately, some powerful commands exist in the
debugger that allow you to do some pretty amazing leak analysis.  

The !heap Extension Command
The !heap extension command is part of the debugger extension exts.dll and is an
extremely powerful command that allows users to get an in-depth look at the memory
consumption of a process. For example, the !heap extension command is capable of
searching the address space for leaked blocks, performing custom searches on all heaps,
giving detailed stack traces of allocations, setting breakpoints in the heap manager, and
much more. In this section, we use a modified version of the 09basicmleak.exe appli-
cation used in the previous section. The client code is nearly identical with the excep-
tion of the return type. Instead of returning a raw SID structure, the server returns a
pointer to a CIdentity class instance. The CIdentity class instance simply wraps the
SID structure in a more programmer-friendly fashion.

class CIdentity 

{

public:

virtual BOOL GetUsername(WCHAR** pUserName) { return FALSE; }

virtual BOOL GetDomain(WCHAR** pUserName) { return FALSE; }

protected:

CIdentity(PVOID pIdentBlob):m_pIdentityBlob(pIdentBlob){};

virtual ~CIdentity(){};

PVOID GetBlob() { return m_pIdentityBlob; }

PVOID    m_pIdentityBlob;

};

The overall idea is for the CIdentity class to hold the raw data representing an iden-
tity and expose a set of virtual functions that can interpret the data. For example, the
virtual function GetUserName returns the username of the identity. When a new
identity surfaces, a subclass has to be derived from the CIdentity class and the
appropriate functions overridden. The main point here is that the client always works
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with instances of the CIdentity class, thereby abstracting the specifics of whatever
underlying identity might be used at that point. This is a perfect example of the com-
monly used technique called polymorphism: one interface, multiple implementations.
In this particular case, we have a CSID class that derives from CIdentity to repre-
sent the common security identifier used in Windows. For simplicity’s sake, the CSID
class relies on the default implementation of the functions (returns FALSE).

The client code has changed slightly to work with instances of CIdentity instead
of the raw SID structures previously used. 

As you have probably already guessed, we have a reported memory leak when
running the application. Let’s take a look at how we can use the !heap extension com-
mand to analyze the problem.

Heap Statistics
A very useful trick when looking at resource leaks is to always get a good idea of the
overall memory consumption of the leaking process. This includes details, such as how
much memory is being consumed, as well as information, such as which heap the
memory belongs to. The !heap extension command allows you to get a detailed look
at the heap summary of the process.

Let’s dive right in and take a look at our leaky application. 
The source code and binary for the application can be found in the following folders:

Source code: C:\AWD\Chapter9\MemLeak\Client and
C:\AWD\Chapter9\MemLeak\Server

Binary: C:\AWDBIN\WinXP.x86.chk\09memleak.exe

Run the client application with the following command:

C:\AWDBIN\WinXP.x86.chk\09memleak.exe /t:64 /i:1000 /s:0

After it has finished executing, attach a debugger to the process and use the !heap
extension command to dump out a summary of all the heaps in the process.

0:001> !heap -s

Heap     Flags   Reserv  Commit  Virt   Free  List   UCR  Virt  Lock  Fast

(k)     (k)    (k)     (k) length      blocks cont. heap

---------------------------------------

00090000 00000002    1024     20     20      3     1     1    0      0   L

00190000 00001002      64     24     24     15     1     1    0      0   L

001a0000 00008000      64     12     12     10     1     1    0      0

00030000 00001002    3136 1232 1232     8     3     1    0      0   L

---------------------------------------
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The –s switch provides some basic information on each heap in the process. The
most important data in regards to resource leaks is shown here:

■ Heap: The heap address.
■ Flags: The flags associated with each heap. Later on, we show a much more

readable way of identifying the flags.
■ Reserv (k): The amount of memory reserved for the given heap.
■ Commit (k): The amount of memory committed for the given heap.
■ Virt (k): The amount of virtual memory for the given heap.

The heap overview is always a good starting point when looking at memory leaks, as it
gives a breakdown of the activity in each heap in the process. Out of all the heaps, the
heap with identifier 00030000 is using up the most memory. More specifically, the
amount of reserved memory for the heap is 3136kb, and the amount of committed
memory is 1232kb. Confronted with this information, heap 00030000 will be the heap
that we start our investigation in. Although seeing this overview allows us to target our
leak search, it does not tell us more heap-specific information. For example, it would
be really useful to get a list of all the allocations of a particular heap. Fortunately, the
!heap extension command allows us to get that information. Using the same command,
but specifying a specific heap address, achieves the results we need.

0:001> !heap -s 00030000

Walking the heap 00030000 ...

0: Heap 00030000

Flags          00001002 - HEAP_GROWABLE

Reserved       3136 (k)

Commited       1232 (k)

Virtual bytes  1232 (k)

Free space     8 (k)

External fragmentation          0% (3 free blocks)

Virtual address fragmentation   0% (1 uncommited ranges)

Virtual blocks  0

Lock contention 0

Segments        3

Lookaside heap   00030688

Default heap   Front heap       Unused bytes

Range (bytes)     Busy  Free    Busy   Free     Total  Average

---------------------------------

0 -   1024    43604      1      0      0     438533     10

1024 -   2048        2      0      0      0          8      4

2048 -   3072        1      3      0      0          8      8
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4096 -   5120        1      0      0      0          8      8

6144 -   7168        1      0      0      0          8      8

---------------------------------

Total            43609      4      0      0     438565     10

Additional information includes human-readable heap flags, heap fragmentation
information, and unused byte count. 

This gives us a little more information but certainly not enough to figure out what
might be leaking in this heap. If we could use the !heap extension command to get
even more detailed information, such as information of each allocation made on the
heap, we could get closer to tracking down the leak. The !heap extension command
does expose such functionality by using the –a switch. Be warned; the –a switch per-
forms an exhaustive dump of the heap in question. Typically, this can take several sec-
onds or even minutes to finish, and you might end up with so much information that
you can’t create a console buffer big enough to hold it. Typically, the best thing to do
is open a log file using the .logopen <filename> command. Run the !heap exten-
sion command and finally close the log file using the .logclose command. Now you
can just open the log file and proceed with the analysis. For our example, the log file
can be located at the following location:

C:\AWDBIN\WinXP.x86.chk\heaplog.txt

The log file is split into two sections:

■ General information about the heap specified. 
■ A list of one or more segments with some basic information followed by all

heap blocks currently seen in the segment. The heap blocks listed might or
might not be in use, as you will see later on.

The first part, overall heap information, is a superset of data gathered by using the
!heap –s extension command, as previously explained. The most important part of
the log file is the second part: detailed segment information. After the initial segment
overview, a long list of heap block information is displayed. Each line of output is
organized as follows:

<heap block address>: <previous size> . <size> [<Flags>] - <status> (user allocation

size), <debug flags>

■ Heap block address: The heap block address shows the address of the heap
block. Note that the heap block address is not the same as the actual user mode
pointer address. It turns out that the address that the !heap extension command
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shows is the address for the block itself and not the contents (that is, the user
allocation) of the allocation. The first 8 bytes of a block structure contains heap
block metadata (such as size and flags) kept by Windows to be capable of man-
aging the heapblock. Following that information is the actual data we are inter-
ested in. If we wanted to dump out the contents of the user data contained in
that block, we would add 8 bytes to the block address.

■ Previous size: The size of the previous heap block. The size is in units of allo-
cation granularity and not user data size. 

■ Size: The size of the allocated block. It is important to note that the size spec-
ified is not the same size that the user specified when making the allocation.
The reason behind that is simple. The heap manager will allocate memory
based on sizes of allocation granularity. 

■ Flags: The status of the heap block. Examples of status are a free heap block
and busy heap block.

■ Status: The status field tells you if the block is free or busy. When the block is
busy, the allocation is active; when it is free, it is available for use. When it
comes to memory leaks, we are typically only concerned with busy allocations.

■ User allocation size: This is perhaps the most useful piece of the data when it
comes to memory leaks. It tells us the user allocation size that is the cause of
the allocation. With this information, we can correlate the size to various allo-
cations we make in the application and see if any of them matches.

■ Debug Flags: The heap block flags tell you what type of heap debugging sup-
port is enabled. For example, tail fill tells us that the end of the heap block is
filled with a well-known pattern. 

Presented with this information, how do you actually go about finding a leak? Well,
the keyword is patience. The typical strategy employed is to find a pattern in the
blocks listed. Most commonly, you will try to find a large number of blocks with the
same user allocation size. This is usually a good indicator that they are potentially
leaked blocks. In our log file, a few pages down the first segment listing (segment 00),
we see the following:

0003a4f0: 00028 . 00010 [01] - busy (8)

0003a500: 00010 . 00028 [01] - busy (1c)

0003a528: 00028 . 00010 [01] - busy (8)

0003a538: 00010 . 00028 [01] - busy (1c)

0003a560: 00028 . 00010 [01] - busy (8)

0003a570: 00010 . 00028 [01] - busy (1c)

0003a598: 00028 . 00010 [01] - busy (8)

0003a5a8: 00010 . 00028 [01] - busy (1c)
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0003a5d0: 00028 . 00010 [01] - busy (8)

0003a5e0: 00010 . 00028 [01] - busy (1c)

0003a608: 00028 . 00010 [01] - busy (8)

0003a618: 00010 . 00028 [01] - busy (1c)

0003a640: 00028 . 00010 [01] - busy (8)

0003a650: 00010 . 00028 [01] - busy (1c)

0003a678: 00028 . 00010 [01] - busy (8)

0003a688: 00010 . 00028 [01] - busy (1c)

0003a6b0: 00028 . 00010 [01] - busy (8)

0003a6c0: 00010 . 00028 [01] - busy (1c)

0003a6e8: 00028 . 00010 [01] - busy (8)

0003a6f8: 00010 . 00028 [01] - busy (1c)

0003a720: 00028 . 00010 [01] - busy (8)

0003a730: 00010 . 00028 [01] - busy (1c)

0003a758: 00028 . 00010 [01] - busy (8)

0003a768: 00010 . 00028 [01] - busy (1c)

0003a790: 00028 . 00010 [01] - busy (8)

0003a7a0: 00010 . 00028 [01] - busy (1c)

0003a7c8: 00028 . 00010 [01] - busy (8)

0003a7d8: 00010 . 00028 [01] - busy (1c)

0003a800: 00028 . 00010 [01] - busy (8)

0003a810: 00010 . 00028 [01] - busy (1c)

0003a838: 00028 . 00010 [01] - busy (8)

0003a848: 00010 . 00028 [01] - busy (1c)

There appears to be tons and tons of blocks allocated of user sizes 8 and 1c. As a mat-
ter of fact, sampling random blocks in the log file yields a fairly large number of these
allocated blocks. Considering that the execution is over and the application is about
to terminate, chances are good that we have discovered a memory leak. 

At this point, we are halfway there. The next step is to find out what these blocks
actually contain. If we were leaking memory, it would be reasonable to expect data
related to our application contained within those blocks. The tricky and sometimes
lengthy part is finding out what the blocks contain. Let’s look at the memory of one
of these blocks.

0:001> dd 0003a7c8+0x8

0003a7d0  010012bc 0003a7a8 00020005 000c01e4

0003a7e0  00000501 05000000 00000015 42f831d9

0003a7f0  125f5219 2b3be507 000003ec 00000000

0003a800  00050002 0008011f 010012bc 0003a7e0

0003a810  00020005 000c011d 00000501 05000000

0003a820  00000015 42f831d9 125f5219 2b3be507

0003a830  000003ec 00000000 00050002 00080118

0003a840  010012bc 0003a818 00020005 000c0116
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Do the first two DWORDs seem to resemble anything? From this point on, it is a
matter of trying to recognize something in the data that can be applicable to your
application. Try to use a variety of the different dump command flavors to see if you
can find anything that makes sense. For example, using the da or du commands
allows you to dump a particular pointer as a string. If that doesn’t work, you can try
resolving the contents of the allocation. For example, by using the ln command on
the first DWORD, you get the following result.

0:001> ln 010012bc

(010012bc)   09memleak!CSID::`vftable’ |  (010012c8)

09memleak!CIdentity::`vftable’

Exact matches:

Now that is too good to be a coincidence. Our test application definitely works with
classes of type CIdentity. And as we already know, CSID is a class derived from
CIdentity. Because virtual function tables typically come first in the object layout,
we can hypothesize

■ Judging from the pattern of allocations in the !heap extension command out-
put, chances are good one of these heap blocks is leaked.

■ Furthermore, by looking around at the heap block contents, we can see that it
contains virtual function tables of objects that we are working with.

It can sometimes be a daunting task trying to recognize the contents of leaked heap
blocks. Fortunately, after looking at memory leaks for some time, you will learn to
recognize certain categories of data by simply using the dd command. 

Heap Searching
Before we come to the conclusion that this is in fact a leak (remember—caching can
cause objects to stay around even after they are done being used), we should verify
the theory. If these potentially leaked blocks were being used (perhaps cached), there
would also need to be a reference somewhere in memory that points to that heap
block. If there are no references, it means that we definitely have a leak. Once again,
the !heap extension command provides us the means of finding this out. Using the
–x and –v switches, we can ask the !heap extension command to search the entire
memory space of the process for the presence of a specified address. In our example,
searching for address 0003a7d0 (remember, block address + 0x8 gives the user mode
allocation) yields the following:
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0:001> !heap -x -v 0003a7d0

Entry     User      Heap      Segment       Size  PrevSize  Unused    Flags

---------------------------------------

0003a7c8  0003a7d0  00030000  00030640        10        28       8     busy

Search VM for address range 0003a7c8 - 0003a7d7 :

The search yielded zero results. As stated before, if a currently allocated heap block is
not referenced anywhere in memory, we can safely say that we are leaking that block.

Because we know (by code analysis) that we are working with a CIdentity class
instance (CSID inherits from this class), we can now turn to code reviewing those
specific portions of the code. Starting with the client code, we can see that the func-
tion called ThreadWorker uses the CIdentity class.

if(dwOperation==GETSID)

{

CIdentity* pSid=serverInst.GetSID();

if(pSid==NULL)

{

printf(“Failed to get SID!\n”);

}

else

{

printf(“.”);

}

}

The client calls the server function called GetSID, which returns an instance of the
CIdentity class. Because we didn’t allocate space in the client code, the server must
have been in charge of the allocation and passes it back to the client, if successful. But
who is responsible for deleting it? In this case, the answer is that it is the client’s
responsibility. We can also fairly quickly tell that the code failed that responsibility
and is not deleting the memory. The fix is simple; if the server succeeds and passes
back an instance, we add the corresponding delete call when we are done with the
instance.

After the fix has been made and we rerun the application and go through the same
procedure as before using the !heap extension command, we notice that all the heap
blocks of user allocation size 0x8 are now gone. Interestingly enough, all the reported
leaked blocks of sizes 0x8 are gone, but the allocations of size 0x1c still remain. It’s
time to take a closer look at the first leak we identified and fixed, the CIdentity class:
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class CIdentity 

{

public:

virtual BOOL GetUsername(WCHAR** pUserName) { return FALSE; }

virtual BOOL GetDomain(WCHAR** pUserName) { return FALSE; }

protected:

CIdentity(PVOID pIdentBlob):m_pIdentityBlob(pIdentBlob){};

virtual ~CIdentity(){};

PVOID GetBlob() { return m_pIdentityBlob; }

PVOID    m_pIdentityBlob;

};

If an instance of this class is allocated, a common allocation layout would contain the
virtual function table pointer (because the class contains virtual functions) and any
data members. The only data member in this class is a pointer to a VOID
(pIdentityBlob). Because both members are pointers (4 bytes each on 32-bit
machines), the total size of the object should be 0x8. That matches up with the leaked
blocks of user allocation size 0x8 that we saw, but what about the leaked blocks with
size 0x1c? The answer is quite simple. We have already determined that we were
leaking instances of a particular class. As such, if you leak an instance of a class, it
means that the destructor will never be called. It is quite common practice for class-
es to delete any encapsulated data in its destructor. Hence, if you leak the instance,
you also leak any data contained within that class. The only data member in the
CIdentity class is a PVOID, which we all know is not something we can delete.
These observations, coupled with the presence of virtual functions, imply that a
derived class might be involved. Let’s look at the GetSID server implementation:

CIdentity* CServer::GetSID()

{

PSID pSid = NULL;

HANDLE hToken = INVALID_HANDLE_VALUE;

hToken = GetToken();

if(hToken!=INVALID_HANDLE_VALUE)

{

DWORD dwNeeded=0;

BOOL bRes=GetTokenInformation(hToken,

TokenUser,

NULL,

0,

&dwNeeded

);



483Memory Leaks

if(bRes==FALSE && GetLastError()==ERROR_INSUFFICIENT_BUFFER)

{

TOKEN_USER* pBuffer=(TOKEN_USER*) new BYTE[dwNeeded];

if(pBuffer!=NULL)

{

BOOL bRes=GetTokenInformation(hToken,

TokenUser,

(LPVOID)pBuffer,

dwNeeded,

&dwNeeded

);

if(bRes==TRUE)

{

DWORD dwSidLen=GetLengthSid(pBuffer->User.Sid);

pSid=(PSID) new BYTE[dwSidLen];

if(pSid!=NULL)

{

if(CopySid(dwSidLen, pSid, pBuffer->User.Sid)==FALSE)

{

delete[] pSid;

pSid=NULL;

}

}

}

delete[] pBuffer;

}

}

CloseHandle(hToken);

}

CSID* pIdentity=NULL ;

if(pSid!=NULL)

{

pIdentity=new CSID(pSid);

if(pIdentity==NULL)

{

delete pSid;

}

}

return (CIdentity*) pIdentity;

}

The code listed is strikingly similar to the GetSID function used earlier in this chapter.
The high-level overview shows that the server attempts to get the caller token (thread or
process) and retrieves the SID from the token. As part of retrieving this SID, it allocat-
ed memory to hold the SID (pSid local variable). At the end of the function, the server
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code allocates an instance of the CSID class (which derives from CIdentity) and pass-
es this SID pointer to the class constructor. The constructor then assigns ownership of
this allocated memory to the class (stores the pointer in the PVOID data member of the
CIdentity class). It stands to reason that it is now the responsibility of the class to free
the memory associated with the PVOID pointer, but if we look at the code for the CSID
class, it does not free the memory it allocated. The fix in this scenario is to add code to
the destructor of the CSID class that frees the memory it just took responsibility for. 

Now if we run the application once again and go through the same process of
using the !heap extension command, we see that all allocations previously leaked are
now properly deleted and not shown as busy allocations in the output. 

Anytime you work with leaked instances of any kind of encapsulation construct
(such as a class), it is also imperative to take a close look at the class itself to make sure
that it’s freeing the resource it has acquired. It is quite a common programming mis-
take to forget to release all the resources encapsulated within a particular class. 

Leak Detection
The act of dumping out all heap blocks and systematically searching for any poten-
tially leaked blocks by using the search capabilities takes a toll and can be very expen-
sive. Fortunately, the !heap extension command combines these steps into one by
using the –l switch. The –l switch tells the !heap extension command to use a
garbage collection algorithm to detect all the active allocations that are not references
anywhere in the process. The following debug output shows running the !heap –l
extension command on our leaky application (partial output).

0:001> !heap -l

Heap 00090000

Heap 00190000

Heap 001a0000

Heap 00030000

Scanning VM ...

Entry     User      Heap      Segment       Size  PrevSize  Unused    Flags

---------------------------------------

…

…

...

012904e8  012904f0  00030000  01280000        28        10       c    busy 

01290510  01290518  00030000  01280000        10        28       8    busy 

01290520  01290528  00030000  01280000        28        10       c    busy 

01290548  01290550  00030000  01280000        10        28       8    busy 

01290558  01290560  00030000  01280000        28        10       c    busy 

01290580  01290588  00030000  01280000        10        28       8    busy 

01290590  01290598  00030000  01280000        28        10       c    busy 



485Memory Leaks

012905b8  012905c0  00030000  01280000        10        28       8    busy 

012905c8  012905d0  00030000  01280000        28        10       c    busy 

012905f0  012905f8  00030000  01280000        10        28       8    busy 

01290600  01290608  00030000  01280000        28        10       c    busy 

01290628  01290630  00030000  01280000        10        28       8    busy 

01290638  01290640  00030000  01280000        28        10       c    busy 

01290660  01290668  00030000  01280000        10        28       8    busy 

01290670  01290678  00030000  01280000        28        10       c    busy 

01290698  012906a0  00030000  01280000        10        28       8    busy 

012906a8  012906b0  00030000  01280000        28        10       c    busy 

012906d0  012906d8  00030000  01280000        10        28       8    busy 

012906e0  012906e8  00030000  01280000        28        10       c    busy 

01290708  01290710  00030000  01280000        10        28       8    busy 

01290718  01290720  00030000  01280000        28        10       c    busy

…

…

…

42710 leaks detected.

The results of the !heap extension command show a ton of allocations with the block
sizes of 28 and 10. (Note that the sizes are heap block sizes and not user allocation
sizes.) In addition, the last line of output tells you how many leaks were detected. In
this case, 42710 leaked blocks were found. This is an extremely useful feature of the
!heap extension command, as it eliminates the need to do a lot of searching by hand.

Pageheap
The previous example showed a leak that was fairly easy to spot by analyzing the state of
the heap and code reviewing. At times, it might not be apparent what is leaking. In those
cases, after you have identified a potential leak culprit, it would be useful to see which
stack trace made the allocation to begin with. If we had that, we could find out exactly
what the code was doing and what it was allocating. The !heap extension command can
work in tandem with the stack trace recording capabilities of Windows. To make use of
this feature, make sure to enable stack tracing using Application Verifier (see Chapter 1).
The applicable switches to the !heap extension command are –p and –a. –p tells the
!heap extension command that pageheap information is being requested, and the –a
switch allows you to specify an address that you want to see the stack trace for. In the
previous section, the address that we thought was leaking was 0026ab88. Issue the fol-
lowing command, and you will see the originating stack trace for that allocation:

0:001> !heap -p -a 0003a7c8

address 0003a7c8 found in

_HEAP @ 30000
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in HEAP_ENTRY: Size : Prev Flags - UserPtr UserSize - state

3a7a8: 0007 : N/A  [N/A] - 3a7b0 (1c) - (busy)

Trace: 003c

7c96d6dc ntdll!RtlDebugAllocateHeap+0x000000e1

7c949d18 ntdll!RtlAllocateHeapSlowly+0x00000044

7c91b298 ntdll!RtlAllocateHeap+0x00000e64

77c2c3c9 msvcrt!_heap_alloc+0x000000e0

77c2c3e7 msvcrt!_nh_malloc+0x00000013

77c29cd4 msvcrt!operator new+0x0000000f

1001c52 09memleak!CServer::GetSID+0x000000d2

100143b 09memleak!ThreadWorker+0x0000006b

7c80b683 kernel32!BaseThreadStart+0x00000037

Not only do we see general information about the leaked address (such as which heap
it’s in and the trace ID), but we also get the full stack trace of the code that made the
allocation. From here, it is a trivial exercise to code review and find the culprit code. 

It goes without saying that enabling stack tracing—the –p –a option of the
!heap extension command—saves you an incredible amount of time. 

Other Heap Extension Command Tricks
If you look at the help for the !heap extension command (by typing !heap -?), you
will notice some commands listed that are not documented in the debugger docu-
mentation. More specifically, the following commands allow you to do some useful
heap filtering and searches. Let’s begin with the filtering command. The filtering
command allows you to tell the debugger that you are only interested in knowing
about allocations that match a specific size (or range). The syntax for the command is

!heap -flt s SIZE

where SIZE is the size that you are interested in. Alternatively, if you do not know the
exact size, rather a range, you can use the following syntax:

!heap -flt r SIZEBEGIN SIZEEND

where SIZEBEGIN is the starting size, and SIZEEND is the ending size in the range.
Once again, we will use our leaky 09memleak.exe. From prior investigation, we

know that the leaked block sizes are 0x8 and 0x1c. Run the 09memleak.exe applica-
tion with the following command:

C:\AWDBIN\WinXP.x86.chk\09memleak.exe /t:64 /i:1000 /s:0
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After it has finished executing, attach a debugger to the process and execute the
!heap extension command.

0:001> !heap -flt s 0x1c

_HEAP @ 90000

_HEAP @ 190000

_HEAP @ 1a0000

_HEAP @ 30000

HEAP_ENTRY: Size : Prev Flags - UserPtr  UserSize   - state

33768: 0007 : N/A  [N/A] - 33770 (1c) - (busy)

35ae0: 0008 : N/A  [N/A] - 35ae8 (1c) - (busy)

37ec8: 0007 : N/A  [N/A] - 37ed0 (1c) - (busy)

37f40: 0007 : N/A  [N/A] - 37f48 (1c) - (busy)

37f78: 0007 : N/A  [N/A] - 37f80 (1c) - (busy)

37ff0: 0007 : N/A  [N/A] - 37ff8 (1c) - (busy)

38028: 0007 : N/A  [N/A] - 38030 (1c) - (busy)

380a0: 0007 : N/A  [N/A] - 380a8 (1c) - (busy)

380d8: 0007 : N/A  [N/A] - 380e0 (1c) - (busy)

38150: 0007 : N/A  [N/A] - 38158 (1c) - (busy)

38188: 0007 : N/A  [N/A] - 38190 (1c) - (busy)

38200: 0007 : N/A  [N/A] - 38208 (1c) - (busy)

38238: 0007 : N/A  [N/A] - 38240 (1c) - (busy)

382b0: 0007 : N/A  [N/A] - 382b8 (1c) - (busy)

382e8: 0007 : N/A  [N/A] - 382f0 (1c) - (busy)

38360: 0007 : N/A  [N/A] - 38368 (1c) - (busy)

38398: 0007 : N/A  [N/A] - 383a0 (1c) - (busy)

38410: 0007 : N/A  [N/A] - 38418 (1c) - (busy)

…

…

…

The result of the !heap extension command neatly displays all heap blocks of size
0x1c and associated block information. The busy state indicates that the block is cur-
rently in use. Even though this information is quite useful for finding out all blocks
with a specific size, we are still left with the task of finding out what those blocks actu-
ally contain. As you might have already guessed, the !heap extension command
comes to the rescue. In conjunction with the –p and –h switches, the !heap exten-
sion command dumps all heap blocks and tries to resolve the first DWORD. The fol-
lowing debug output shows the result of running the heap –p –h command on the
heap that is supposedly leaking.

0:001> !heap -p -h 00030000

_HEAP @ 30000

_HEAP_LOOKASIDE @ 30688
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_HEAP_SEGMENT @ 30640

CommittedRange @ 30680

HEAP_ENTRY: Size : Prev Flags - UserPtr  UserSize   - state

* 30680: 0303 : N/A  [N/A] - 30688 (1800) - (busy)

31e98: 0014 : N/A  [N/A] - 31ea0 (88) - (busy)

31f38: 0093 : N/A  [N/A] - 31f40 (480) - (busy)

323d0: 0103 : N/A  [N/A] - 323d8 (800) - (busy)

msvcrt!_iob

32be8: 0007 : N/A  [N/A] - 32bf0 (20) - (busy)

32c20: 000b : N/A  [N/A] - 32c28 (3a) - (busy)

32c78: 000a : N/A  [N/A] - 32c80 (32) - (busy)

32cc8: 0008 : N/A  [N/A] - 32cd0 (26) - (busy)

32d08: 000a : N/A  [N/A] - 32d10 (34) - (busy)

32d58: 000a : N/A  [N/A] - 32d60 (38) - (busy)

32da8: 0009 : N/A  [N/A] - 32db0 (2e) - (busy)

32df0: 000a : N/A  [N/A] - 32df8 (36) - (busy)

32e40: 000b : N/A  [N/A] - 32e48 (3a) - (busy)

32e98: 000b : N/A  [N/A] - 32ea0 (32) - (busy)

32ef0: 0011 : N/A  [N/A] - 32ef8 (70) - (busy)

32f78: 0010 : N/A  [N/A] - 32f80 (62) - (busy)

32ff8: 0008 : N/A  [N/A] - 33000 (28) - (busy)

33038: 0004 : N/A  [N/A] - 33040 (8) - (busy)

09memleak!CSID::`vftable’

33058: 000c : N/A  [N/A] - 33060 (48) - (busy)

As you can see, a lot of allocations with size 1c and 8 are being displayed. What’s even
more interesting is that all allocations with size 8 have additional information associ-
ated with them. More specifically, they show the following:

33038: 0004 : N/A  [N/A] - 33040 (8) - (busy)

09memleak!CSID::`vftable’

This is one of the really nice features of using the !heap extension command with the
–p switch. Whenever a heap block is encountered, the !heap extension command
tries to resolve the first DWORD of that block. In our case, it resolves nicely to our
CSID virtual function table (as we discovered earlier). 

The next command we will look at is the –srch command. The syntax of the com-
mand resembles the following:

!heap  -srch [-b|-w|-d|-q] PATTERN

It scans all heap allocations and it searches

for the given pattern.

The size of the pattern can be specified.
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The –srch command allows a search for particular patterns in all heap allocations.
This can come in really handy if we have an idea (or gut feeling) of what might be leak-
ing. Let’s say that we wanted to see if any of the leaked blocks in the 09memleak.exe
process were leaking CSID instances. The first thing we must do is find out the
address to our virtual function table. This can be done by using the X command (see
Chapter 2), which allows us to resolve a symbolic name in one or more modules:

0:001> X 09memleak!CSID*

01001e20 09memleak!CSID::`scalar deleting destructor’ (void)

01001e60 09memleak!CSID::~CSID (void)

01001d40 09memleak!CSID::CSID (void *)

010012bc 09memleak!CSID::`vftable’ = <no type information>

The * is used as a wildcard. The virtual function table is the last entry shown with an
address of 010012bc. Now we can use that address as part of the –srch command:

0:001> !heap -srch 010012bc

_HEAP @ 30000

in HEAP_ENTRY: Size : Prev Flags - UserPtr UserSize - state

34f18: 0002 : N/A  [N/A] - 34f20 (8) - (busy)

09memleak!CSID::`vftable’

_HEAP @ 30000

in HEAP_ENTRY: Size : Prev Flags - UserPtr UserSize - state

3ace0: 0002 : N/A  [N/A] - 3ace8 (8) - (busy)

09memleak!CSID::`vftable’

_HEAP @ 30000

in HEAP_ENTRY: Size : Prev Flags - UserPtr UserSize - state

3ad18: 0002 : N/A  [N/A] - 3ad20 (8) - (busy)

09memleak!CSID::`vftable’

_HEAP @ 30000

in HEAP_ENTRY: Size : Prev Flags - UserPtr UserSize - state

3ad50: 0002 : N/A  [N/A] - 3ad58 (8) - (busy)

09memleak!CSID::`vftable’

_HEAP @ 30000

in HEAP_ENTRY: Size : Prev Flags - UserPtr UserSize - state

3ad88: 0002 : N/A  [N/A] - 3ad90 (8) - (busy)

09memleak!CSID::`vftable’

_HEAP @ 30000

in HEAP_ENTRY: Size : Prev Flags - UserPtr UserSize - state

3adc0: 0002 : N/A  [N/A] - 3adc8 (8) - (busy)

09memleak!CSID::`vftable’

_HEAP @ 30000

in HEAP_ENTRY: Size : Prev Flags - UserPtr UserSize - state

3adf8: 0002 : N/A  [N/A] - 3ae00 (8) - (busy)

09memleak!CSID::`vftable’
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Judging from the excessive number of CSID virtual function tables left at the end of
the application run, this is a good indication that something has forgotten to delete
instances of the CSID class.

The final command is the –stat command with the following syntax:

!heap -stat [-h HANDLE [-grp A|B|S [MaxDisplay]]]

This command calculates usage statistics on all the heaps (sorting by committed

bytes) or on the given heap.

The -grp A|B|C options specifiy a Group-By criteria.

-grp A groups by Allocation Size

-grp B groups by Block count

-grp S groups by Total Size for each allocation size

If HANDLE is 0, it iterates over all the heaps.

The –stat command gives some very nice statistics on the usage of one or more of
the heaps by grouping the output by allocation (user) size, the number of blocks with
that size, total size of all blocks with that size, and finally the percentage of currently
busy blocks. By default, -stat sorts by the biggest totals. Because we know which
heap is more than likely leaking in our process (00030000), we select that one for fur-
ther analysis: 

0:001> !heap -stat -h 00030000

heap @ 00030000

group-by: TOTSIZE max-display: 20

size     #blocks     total     ( %) (percent of total busy bytes)

1c 52c2 - 90d38  (75.89)

8 52c2 - 29610  (21.68)

1000 1 - 1000  (0.52)

800 1 - 800  (0.26)

480 1 - 480  (0.15)

318 1 - 318  (0.10)

164 2 - 2c8  (0.09)

220 1 - 220  (0.07)

58 6 - 210  (0.07)

54 6 - 1f8  (0.06)

18c 1 - 18c  (0.05)

62 4 - 188  (0.05)

32 7 - 15e  (0.04)

2a 8 - 150  (0.04)

2c 7 - 134  (0.04)

4c 4 - 130  (0.04)

64 3 - 12c  (0.04)

5e 3 - 11a  (0.04)

88 2 - 110  (0.03)

5a 3 - 10e  (0.03)
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This can quickly give you an overview of which allocations you should be looking at
first. In this case, allocations of size 0x1c account for 75.89% of all heap usage. The
–grp sub switch gives you the flexibility to group the information in different ways:

■ -grp A: Groups the output by allocation size, showing the biggest allocations
first. The top-ranked allocation might be the biggest single allocation but will
more than likely not be the biggest user of the heap.

■ -grp B: Groups the output by block count, showing the allocations with the
largest block count first. If you are in fact looking at a leaked allocation, typi-
cally, the top contender in the block count category will match the block size
that you are leaking.

■ -grp S: Groups by total size. This is the default setting.

I cannot state enough the power that the !heap extension command packs. It allows
you to see virtually everything you would like to see on heap activity. As a bonus, the
search capabilities save a lot of time when looking for culprit leaked objects. It is well
worth your time to experiment with this powerful command.

Step 5: Future Avoidance Strategies
Knowing how to use all these powerful tools is a lifesaver when it comes to tracking
down memory leaks. But we would like to avoid using them as much as possible to save
us time and frustration during the development process. Much in the same way that
we did with handle leaks, now is the time to sit down and think about what we can do
in the future to make sure that we don’t forget to delete memory when we are done
with it. Again, an extremely useful technique is to use an auto construct that automat-
ically deletes memory when the variable goes out of scope. As a matter of fact, it was
considered so useful that it was included as part of the standard template library
(auto_ptr). Many different flavors of auto constructs are available today. Some do noth-
ing more than a delete at the end of the scope (as with auto_ptr), and some do com-
plicated things (such as reference counting). The bottom line is that you should make
use of auto constructs as much as possible when it comes to memory. If one isn’t avail-
able to suit your needs, write one. It will be well worth your time. Besides merely for-
getting to free memory, other things can go wrong in code. Code that isn’t exception
safe, for example, can very easily cause leaks. Here is a simple example:

void myfunc()

{

BYTE* ptr = new BYTE[255];
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SomeFunc();

delete[] ptr;

}

If the SomeFunc function throws exceptions (that might or might not be caught above
you), this function will definitely leak. More specifically, it will leak 255 bytes’ worth
of memory. If we were to use an auto_ptr, we would be guaranteed that it would not
leak—even in the presence of exceptions—because stack unwinding guarantees that
all local objects (that is, allocated on the stack) are cleaned up when exiting the func-
tion.

Another possibility is to overload the allocation APIs used in your application.
This allows for trapping all calls to memory allocations, thereby giving you hooks to
all memory allocations performed by your applications. The allocation hooks can then
be used to track memory allocations, simulate failures in memory allocations, and
much more. 

Summary

Resource leaks are some of the biggest reasons behind software instability and, as
such, should be treated as high-priority bugs in any piece of software. In this chapter,
we explained the overall process of the leak detection process and two different types
of resource leaks (handle and memory leaks), as well as the associated tools to make
life much easier when tracking down and fixing leaks. We described how to use
UMDH, LeakDiag, and a number of extremely powerful extension commands
(!htrace and !heap) to help more efficiently track down resource leaks. In addition,
we have introduced some (but definitely not all) ways of making the tools we use
every day (such as the compiler) alleviate the burden of accidentally forgetting to free
a resource when you are done using it. The auto construct is a very popular and pow-
erful mechanism to achieve fewer resource leaks in your software.

Armed with the knowledge of the overall resource leak detection process, as well
as a good understanding of the most fundamental types of resources, you will be able
to tackle any type of resource leak.
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C H A P T E R  1 0

SYNCHRONIZATION

In this chapter, we take a close look at some very common synchronization problems
and how to troubleshoot and find the root cause as efficiently as possible. The chap-
ter starts out by explaining the basic synchronization primitives available in Windows
followed by a number of practical debugging scenarios showcasing common synchro-
nization problems and how to use the debuggers to find the root cause. 

Synchronization Basics

The Windows operating system is a preemptive and multithreaded operating system.
Multithreading refers to the capability to run any number of threads concurrently. If
the system is a single-processor machine, Windows creates the illusion of concurrent
thread execution by enabling each thread to run for a short period of time (known as
a time quantum). After that time quantum is exhausted, the thread is put into a wait
state and the processor switches to another thread (known as a context switch), and
so on. On a multiprocessor machine, two or more threads are capable of running con-
currently (one thread per physical processor). 

By being preemptive, all active threads in the system must be capable of yielding
control of the processor to another thread at any point in time. Given that the oper-
ating system can take away control from a thread, developers must take care to always
be in a state in which control can safely be taken away. 

If all applications were single threaded, or if all the threads were running in iso-
lation, synchronization would not be a problem. Alas, for the sake of efficiency,
dependent multithreading is the norm today and also the source of a lot of bugs in
applications. Dependent multithreading occurs when two or more threads need to
work in tandem to complete a task. Code execution for a given task might, for exam-
ple, be broken up between one or more threads (with or without shared resources),
and hence the threads need to “communicate” with each other with regard to the
order of thread execution. This communication is referred to as thread synchroniza-
tion and is crucial to any multithreaded application. 

To synchronize threads, Windows provides a set of synchronization primitives. 
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Event
The event is a kernel mode primitive accessible in user mode via an opaque handle.
An event is a synchronization object that can take on one of two states: signaled or
nonsignaled. When an event goes from the non-signaled state to the signaled state
(indicating that a particular event has occurred), a thread waiting on that event object
will be woken up and allowed to continue execution. Event objects are very com-
monly used to synchronize code flow execution between multiple threads. For exam-
ple, the Win32 API ReadFile can read data asynchronously by passing in a pointer to
an OVERLAPPED structure. Figure 10.1 illustrates the flow of events. 

THREAD 1 THREAD 2

CreateEvent

ReadFile(…,…,hEvent) Read operation executes in
the background

Read operation competes,
SetEvent(hEvent)

Do other work

WaitForSingleObject(hEvent)

Execution Resume

Figure 10.1

Part of the OVERLAPPED structure is a handle to an event that the caller passes in.
Because the presence of the OVERLAPPED parameter indicates that it is an asyn-
chronous operation, ReadFile returns to the caller immediately and processes the
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read operation in the background. The caller is then free to do other work. When the
caller is ready for the results of the read operation, he simply waits (using the
WaitForSingleObject API) for the state of the event to become signaled. When
the background read operations succeeds, the event is set to a signaled state, thereby
waking up the calling thread, and allows execution to continue.

There are two forms of event objects: manual reset and auto reset. The key dif-
ference between the two is what happens when the event is signaled. In the case of a
manual reset event, the event object remains in the signaled state until explicitly
reset, thereby allowing any number of threads waiting for the event object to be
released. In contrast, the auto reset event only allows one waiting thread to be
released before being automatically reset to the nonsignaled state. If no threads are
waiting, the event remains in a signaled state until the first thread tries to wait for the
event.

In user mode, an event object is represented as an opaque handle to an underly-
ing kernel object. As such, in user mode, looking at how the handle object is laid out
in memory is not possible. However, an extension command exists that lets you get
some information about a particular handle. The extension command is called 
!handle. To see how the !handle extension command works, attach the debugger to
an instance of notepad.exe and issue the !handle command. Listing 10.1 shows the
abbreviated output of the !handle extension command. (Note that the output might
look different, depending on the state Notepad was in when you issued the command.)

Listing 10.1

0:001> !handle

Handle 74

Type          File

Handle 3c8

Type          Section

Handle 3cc

Type          Mutant

Handle 3d8

Type          Mutant

Handle 3dc

Type          Mutant

Handle 3e0

Type          Mutant

Handle 3e4

Type          Mutant

Handle 3e8

Type          Mutant
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Handle 3f0

Type          Section

Handle 42c

Type          Key

Handle 438

Type          Section

Handle 43c

Type          Port

Handle 47c

Type          Event

37 Handles

…

…

…

Type            Count

None            1

Event           5

Section         4

File            4

Port            2

Directory       3

Mutant          6

WindowStation   2

Semaphore       5

Key             4

Desktop         1

As you can see, the !handle extension command (without parameters) dumps out all
the handles opened in the process with abbreviated information. To get more detailed
information on a particular handle, you add the handle value to the !handle exten-
sion command followed by a value that represents the depth of the information to be
displayed. Using a value of f gives you the most exhaustive information. Let’s use han-
dle 47c (an event) as an example (see Listing 10.2). 

Listing 10.2

0:001> !handle 47c f

Handle 614

Type          Event

Attributes    0

Listing 10.1
(continued)



497Synchronization Basics

GrantedAccess 0x1f0003:

Delete,ReadControl,WriteDac,WriteOwner,Synch

QueryState,ModifyState

HandleCount   2

PointerCount  4

Name          <none>

Object Specific Information

Event Type Auto Reset

Event is Set

Listing 10.2 shows the type of the handle, its attributes, its granted access, its handle
counts, and so on. It also gives information on the type of event (auto reset), as well
as the state of the event, which in this particular case happens to be set. Another
interesting piece of information is the name of the event (set to <none>). As part of
the event creation, it is possible to name an event, thereby enabling the event to be
used across processes rather than just within a single process. Two or more process-
es agree on an event name, and when trying to open an event with that particular
name, the event will either be created, if it’s the first call, or the reference count on
the existing event will simply be incremented. 

Critical Section
Critical sections are most commonly used to protect shared resources among threads
by guaranteeing exclusive access (that is, only one thread is capable of gaining access
to the resource). To illustrate the usage of a critical section, imagine the following
piece of pseudo-code:

1. Enter Critical Section

…

…

2. Access Shared Resource

…

…

3. Leave Critical Section

Furthermore, imagine two threads (T1 and T2) both executing the preceding code,
trying to get access to the shared resource. Let’s assume that T1 gets to step 1 first.
The first thing that happens when T1 tries to enter the critical section is that it checks
to see if the critical section is available (that is, that no other thread is currently inside
the critical section). Because that is the case, T1 enters the critical section and starts
accessing the shared resource in step 2. Now, a context switch occurs, and T2 is
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allowed to run and gets to step 1 and tries to enter the critical section. Because T1
already owns the critical section, T2 is instructed to wait at the critical section entry
point until T1 leaves the critical section. Another context switch occurs, and T1 fin-
ishes by executing step 3 and leaves the critical section. At the next context switch, T2
enters the critical section and execution continues. 

The way that a thread waits for a critical section to become available is different
between single-processor and multiprocessor machines. On single-processor machines,
the thread really does go into an efficient wait state (kernel transition), whereas on mul-
tiprocessor machines, the thread might try to spin X number of times in hopes that the
critical section will become available while spinning. This is to avoid the expense of
going into a wait state, which requires a kernel transition and context switch. 

Let’s take a closer look at the memory layout of a critical section. The underlying
critical section data structure is RTL_CRITICAL_SECTION and can be viewed by
using the dt command:

0:001> dt RTL_CRITICAL_SECTION

+0x000 DebugInfo        : Ptr32 _RTL_CRITICAL_SECTION_DEBUG

+0x004 LockCount        : Int4B

+0x008 RecursionCount   : Int4B

+0x00c OwningThread     : Ptr32 Void

+0x010 LockSemaphore    : Ptr32 Void

+0x014 SpinCount        : Uint4B

The individual fields in the RTL_CRITICAL_SECTION structure are discussed in
more detail here:

■ DebugInfo
The DebugInfo field is a system-allocated companion structure that contains
an assortment of augmented information about the critical section (discussed
later). 

■ LockCount
This field indicates how many threads are waiting to acquire the critical sec-
tion. It is by default initialized to –1, which indicates that the critical section
has not been acquired. A value of 0 or more indicates that it has been acquired.
To find out how many other threads are waiting for the critical section, the fol-
lowing formula can be used:

Number of waiting threads=LockCount-RecursionCount+1
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In Windows 2003 Server SP1 and later, this field has changed into a bit field to
eliminate a very common problem with critical sections known as the lock con-
voy problem. Later in the chapter, we take a closer look at what a lock convoy is
and how to detect it. 

■ RecursionCount
It is possible for a thread to acquire a critical section more than once. This field
indicates how many times the same thread has acquired the critical section. By
default, the value of this field is 0, indicating that there is no thread owning the
critical section. 

■ OwningThread
If the critical section has been acquired, this field contains the ID of the thread
that acquired the critical section. 

■ LockSemaphore
This field actually contains a handle to an auto-reset event rather than a semaphore.
Its primary usage is to indicate when a critical section is free and ready to be
acquired. The event is created whenever an attempt is made to acquire a critical
section already acquired by a different thread. To avoid a handle leak, it is critical
to call the DeleteCriticalSection API when finished with the critical section. 

■ SpinCount
This field is used only on multiprocessor systems. If a thread already owns a crit-
ical section and another thread tries to acquire it, that thread will go into a wait
state until the critical section is released. Going into this wait state requires a ker-
nel transition, which is an expensive transition. To try and eliminate this transi-
tion on multiprocessor systems, rather than immediately going into a wait state,
the thread spins SpinCount number of times, trying to acquire the critical sec-
tion on each spin, improving performance in cases in which the critical section
was just about to be released. By default, this value is 0, but it can be changed by
using the InitializeCriticalSectionAndSpinCount API. 

Now let’s take a closer look at the DebugInfo field.

0:001> dt RTL_CRITICAL_SECTION_DEBUG

+0x000 Type             : Uint2B

+0x002 CreatorBackTraceIndex : Uint2B

+0x004 CriticalSection  : Ptr32 _RTL_CRITICAL_SECTION

+0x008 ProcessLocksList : _LIST_ENTRY

+0x010 EntryCount       : Uint4B

+0x014 ContentionCount  : Uint4B

+0x018 Flags            : Uint4B

+0x01c Spare            : Uint4B
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The various parts of the DebugInfo are explained in the following:

■ Type
This field is unused (defaults to 0).

■ CreatorBackTraceIndex
If extended instrumentation has been enabled by running gflags, this field con-
tains the index used while collecting stack trace information.

■ CriticalSection
This field contains a pointer to the critical section associated with this struc-
ture, essentially allowing you to backtrack from the debug structure to the crit-
ical section.

■ ProcessLocksList
For any given process, a list is maintained by the operating system that con-
tains all the active critical sections in that process. This field represents a node
in that list and contains the forward and backward pointers. You can use the
FLINK and BLINK pointers of this node to traverse the process-critical section
list.

■ EntryCount
This field is incremented anytime a thread goes into a wait state trying to
acquire a critical section already owned. 

■ ContentionCount
This field is incremented anytime a thread goes into a wait state trying to
acquire a critical section already owned.

■ Flags
This field is unused.

■ Spare
This field is unused.

It is important to note that although the RTL_CRITICAL_SECTION_DEBUG seems to
contain mainly debugging types of information, it is required by the earlier versions
of Windows for a critical section to be considered usable. In fact, if the operating sys-
tem is unable to allocate memory for this structure during initialization, the API will
fail. In Windows Server 2003 SP1 and above, the debug info is no longer necessary
for a critical section to function. It is important to note this discrepancy while debug-
ging because a NULL DebugInfo field can make you think that the critical section is
in a bad and unusable state.

Rather than having to traverse the critical section list maintained by the operat-
ing system by hand, the !cs extension command can be used. Listing 10.3 shows an
abbreviated example on a newly started instance of notepad.exe.



501Synchronization Basics

Listing 10.3

0:000> !cs

---------------------

DebugInfo          = 0x7c97c420

Critical section   = 0x7c97c0a0 (ntdll!RtlCriticalSectionLock+0x0)

NOT LOCKED

LockSemaphore      = 0x0

SpinCount          = 0x00000000

---------------------

DebugInfo          = 0x7c97c440

Critical section   = 0x7c97c080 (ntdll!DeferedCriticalSection+0x0)

NOT LOCKED

LockSemaphore      = 0x0

SpinCount          = 0x00000000

---------------------

DebugInfo          = 0x7c97c100

Critical section   = 0x7c97c0d8 (ntdll!LdrpLoaderLock+0x0)

LOCKED

LockCount          = 0x0

OwningThread       = 0x00000b48

RecursionCount     = 0x1

LockSemaphore      = 0x0

SpinCount          = 0x00000000

…

…

…

As you can see from Listing 10.3, the information displayed is simply a trimmed down
version of the actual critical section structure we looked at earlier. If the critical sec-
tion is acquired, it additionally shows the LockCount, OwningThread, and
RecursionCount fields. The !cs extension command can also be used to display
information for a single critical section by adding the address of the critical section to
the command, as shown here.

0:000> !cs 0x7c97c0d8

---------------------

Critical section   = 0x7c97c0d8 (ntdll!LdrpLoaderLock+0x0)

DebugInfo          = 0x7c97c100

LOCKED

LockCount          = 0x0

OwningThread       = 0x00000b48

RecursionCount     = 0x1

LockSemaphore      = 0x0

SpinCount          = 0x00000000
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Here’s one word of caution about the EnterCriticalSection API on Windows
2000—it can raise an out of memory exception during low memory conditions.
Remember that a critical section uses an event to perform its job, and this event might
end up being initialized in the EnterCriticalSection API. If the system is low on
memory, it will raise the exception. If you want critical sections to work reliably on
Windows 2000, you should use the InitializeCriticalSectionAndSpinCount
API, which allocates the event during initialization of the critical section and doesn’t
throw any exceptions when subsequently used.

Mutex
A mutex is a kernel mode synchronization construct that can be used to synchronize
threads both within a process as well as across multiple processes (by naming the
mutex during creation). Generally speaking, if your synchronization chores are all
within the same process, you should use a critical section. If, on the other hand, you
need to synchronize across processes, a named mutex is the right approach. Because a
mutex is a kernel mode construct, the user mode code accesses the mutex via an
opaque handle value. To get more information about a mutex while debugging in user
mode, you can use the !handle extension command. Attach a debugger to an instance
of Notepad and enter !handle, as shown in the abbreviated output in Listing 10.4.

Listing 10.4

0:001> !handle

Handle c

Type          File

Handle 368

Type          Section

Handle 36c

Type          Mutant

Handle 3a4

Type          Section

Handle 3a8

Type          Mutant

Handle 3b4

Type          Mutant

Handle 3b8

Type          Mutant

Handle 3bc

Type          Mutant

…

…
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…

39 Handles

Type            Count

Event           5

Section         5

File            4

Port            2

Directory       3

Mutant          7

WindowStation   2

Semaphore       5

Key             4

Desktop         1

KeyedEvent      1

The first important thing to notice in Listing 10.4 is that the debugger refers to a
mutex as a mutant, and the listing shows that there are seven open mutants. To get
extended information for any given mutant, you can issue the !handle extension
command, the handle value, and a number that indicates the extent of information to
display:

0:001> !handle 3b4 f

Handle 3b4

Type          Mutant

Attributes    0

GrantedAccess 0x1f0001:

Delete,ReadControl,WriteDac,WriteOwner,Synch

QueryState

HandleCount   22

PointerCount  24

Name          \BaseNamedObjects\CTF.TMD.MutexDefaultS-1-5-21-1123561945-308236825-

725345543-1004

Object Specific Information

Mutex is Free

In addition to the general kernel object information fields described in the “Event” sec-
tion of this chapter, the object-specific information shows whether the Mutex is free or
busy. (In our case, it’s free.) If you dump out extended information for all the mutants
in the Notepad instance, you will also see that most of them are named mutants, which
indicates that access to that mutant can be made from other processes.

A mutex is considered abandoned if the thread that currently owns it exits without
freeing the mutex, thereby preventing any other threads from acquiring it. The oper-
ating system detects this scenario and automatically puts the mutex in the signaled
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state, enabling waiting threads to acquire the mutex. Under this scenario, when a
thread wakes up to acquire the mutex, the wait API returns a status code
(WAIT_ABANDONED), thereby signaling to the waiting thread that the mutex was
abandoned. Typically, a situation such as this indicates a bug in the code, and the sce-
nario should be investigated. 

Semaphore
A semaphore is a kernel mode synchronization object accessible from user mode. It
is similar to a critical section and a mutex in the sense that it allows exclusive access
to a resource. The main difference, however, is that a semaphore employs resource
counting, thereby allowing X number of threads access to the resource. An example
of when to use a semaphore is in a system with four USB ports that are accessed by
a piece of code. Because there are four USB ports, we would like to allow four threads
to concurrently use one of the available USB ports. To accomplish this, we would cre-
ate a semaphore with a max resource count of 4. As threads try to acquire the sema-
phore, the reference count (initialized to 4) is checked whether it is greater than 0; if
so, it allows the acquisition and decrements the reference count. When the reference
count reaches 0, a thread trying to acquire the semaphore will be put to sleep until a
thread releases the semaphore and the reference count is incremented. As with
events and mutexes, you would use the !handle extension command in the debug-
ger to get extended information on a semaphore. Attach a debugger to an instance of
Notepad, and list out all the handles in the process. Find a handle that represents a
semaphore, and dump out extended information:

0:001> !handle 7f4 f

Handle 7f4

Type          Semaphore

Attributes    0

GrantedAccess 0x100003:

Synch

QueryState,ModifyState

HandleCount   2

PointerCount  3

Name          <none>

Object Specific Information

Semaphore Count 0

Semaphore Limit 2147483647

The object-specific output shows the state of the semaphore, including the current
semaphore count. 
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High-Level Process

The process of resolving a synchronization problem in your code is illustrated in
Figure 10.2. 10.
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Dump out all threads

Done

Analyze threads for possible
synchronization problems

Yes

Fix the problem

Define future avoidance
strategy

Exhibits synchronization
symptoms?

No

Figure 10.2

The process is examined in greater detail in the following sections.

Step 1: Recognize the Symptoms
The first step in analyzing a possible synchronization problem is learning to recognize
the symptoms. Although it is not possible to list all the different symptoms that might
surface, it is definitely possible to list a great majority of them. The basic premise of
a synchronization problem and corresponding symptom is that progress of an appli-
cation has halted. This might occur at an easily recognizable level, such as the entire



506 Chapter 10 Synchronization

application seeming hung and not responding or when executing specific tasks in the
application. A good indicator of a “hanging” application is the CPU usage of the appli-
cation while performing a task that you know should generate an increase in CPU
usage. CPU usage can easily be monitored by using Task Manager
(CTRL+SHIFT+ESC). If, for example, your application uses 0% CPU while calcu-
lating π to the 100,000th decimal, it is quite possible that the application has hung. 

Another common symptom of hang is that the CPU has spiked in its usage but
does not finish processing within expected time limits. Fundamentally, the applica-
tion is in a “hung” state, but rather than being hung because two or more threads are
waiting on each other using an efficient wait state, these same threads might not be
making progress due to spinning viciously and thereby spiking the CPU usage. 

If the application is exhibiting the symptoms of not making progress, you should
move on to the next step in the process.

Step 2: Dump Out All the Threads
Okay, so now you have an application that refuses to make any progress on the task
at hand. You are fairly certain that you are dealing with a synchronization problem.
What do you do next? Situations such as this warrant taking a closer look at the
process to see if problems can be identified. Because these types of problems typi-
cally involve two or more threads that have not been synchronized properly, the first
step is to attach a debugger and list all the threads with their associated stack trace.
Looking at the threads and their stacks can give us clues to where to focus our efforts
and where the problem might be. The easiest way to dump out all the threads and
stack traces is by using the ~*kb command. Listing 10.5 shows the output of the com-
mand run on a newly started instance of notepad.exe.

Listing 10.5

0:001> ~*kb

0 Id: ea4.e9c Suspend: 1 Teb: 7ffdf000 Unfrozen

ChildEBP RetAddr  Args to Child

0007feb8 77d491be 77d491f1 0007fefc 00000000 ntdll!KiFastSystemCallRet

0007fed8 01002a1b 0007fefc 00000000 00000000 USER32!NtUserGetMessage+0xc

0007ff1c 01007511 01000000 00000000 00bd0ffb notepad!WinMain+0xe5

0007ffc0 7c816fd7 00090000 0007fa0c 7ffd5000 notepad!WinMainCRTStartup+0x174

0007fff0 00000000 0100739d 00000000 78746341 kernel32!BaseProcessStart+0x23

#  1 Id: ea4.974 Suspend: 1 Teb: 7ffde000 Unfrozen

ChildEBP RetAddr  Args to Child

02d5ffc8 7c9507a8 00000005 00000004 00000001 ntdll!DbgBreakPoint

02d5fff4 00000000 00000000 00000000 00000000 ntdll!DbgUiRemoteBreakin+0x2d



507High-Level Process

As can be seen from Listing 10.5, the process has only two threads active. The first
thread appears to be the main message pump. (The second frame
USER32!NtUserGetMessage+0xc is the clue.) The second thread is the debugger
break thread and really has nothing to do with the application itself, as you will always
see this type of thread anytime the debugger breaks execution.

After all threads are dumped out, it is time to see if any of them exhibit signs of
synchronization problems.

Step 3: Analyze Threads for Possible Synchronization
Problems
A number of scenarios can lead to synchronization problems. This step identifies the
offending threads. We defer the process of analyzing the threads to the “Synchronization
Scenarios” section of the chapter, where we look at a number of common synchroniza-
tion problems. 

A very common indicator of improper synchronization techniques is when two or
more threads are waiting for each other to release some synchronization primitive,
but none of the threads are willing to release it until the other thread does so. The
key to identifying this scenario is to understand what it means for a thread to “wait.”
A thread can go into a wait state using a myriad of different techniques. Most com-
monly, however, a thread will use one of two ways:

■ By trying to acquire a synchronization primitive using the primitive’s own
API(s). A great example of this is when trying to enter a critical section (using
the EnterCriticalSection API). A common stack trace in which a thread
tries to enter a critical section but is unable to resembles the following:

1  Id: 25c.6e0 Suspend: 1 Teb: 7ffde000 Unfrozen

ChildEBP RetAddr  Args to Child

007eff18 7c90e9c0 7c91901b 000007f4 00000000 ntdll!KiFastSystemCallRet

007eff1c 7c91901b 000007f4 00000000 00000000 ntdll!NtWaitForSingleObject+0xc

007effa4 7c90104b 00002008 01001144 01002008 ntdll!RtlpWaitForCriticalSection+

0x132

007effac 01001144 01002008 7c80b683 00000000

ntdll!RtlEnterCriticalSection+0x46

007effb4 7c80b683 00000000 00081000 005cadf8 simple!ThreadProc+0xb

007effec 00000000 01001139 00000000 00000000 kernel32!BaseThreadStart+0x37

■ If there is no specific API for the synchronization primitive (such is the case with
all kernel mode synchronization primitives), the most common APIs used to wait
are the WaitForSingleObject(/Ex) or WaitForMultipleObjects(/Ex)
APIs. These API(s) take one or more handles to kernel mode synchronization
primitives. A common stack trace in this scenario resembles
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1  Id: f38.b60 Suspend: 1 Teb: 7ffdd000 Unfrozen

ChildEBP RetAddr  Args to Child

007eff2c 7c90e9c0 7c8025cb 000007e8 00000000 ntdll!KiFastSystemCallRet

007eff30 7c8025cb 000007e8 00000000 00000000 ntdll!NtWaitForSingleObject+0xc

007eff94 7c802532 000007e8 ffffffff 00000000

kernel32!WaitForSingleObjectEx+0xa8

007effa8 01001147 000007e8 ffffffff 7c80b683 kernel32!WaitForSingleObject+0x12

007effb4 7c80b683 00000000 00081000 005cadf8 simple!ThreadProc+0xe

007effec 00000000 01001139 00000000 00000000 kernel32!BaseThreadStart+0x37

If any of the threads of interest are in this wait state, the next step is to see which of
the threads might potentially not be making progress because of a synchronization
problem.  

If there are no threads in a wait state or if the threads that were in a wait state
were all working fine, the next thing to look for is spinning threads. A number of dif-
ferent ways exist to find out which (if any) threads are spinning. The most basic
involves setting breakpoints in suspicious threads at various spots in the call chain and
looking to see when and how the breakpoint is hit and under which conditions the
thread ends up spinning. This can be a rather time-consuming effort and, fortunate-
ly, there is a extension command that makes life simpler. The !runaway extension
command lists all the threads according to how much time they have spent executing.
An example of the !runaway extension command is shown here:

0:001> !runaway

User Mode Time

Thread       Time

0:9d8       0 days 0:00:00.046

1:e48       0 days 0:00:00.000

The time shown for each thread is the time the thread has spent in user mode. From
the output, we can see that the thread with an ID of 9d8 has been using the most user
mode time. If you want a more detailed breakdown of the time the thread has spent
executing, you can issue the runaway command and pass in a flags parameter.
Specifying parameter 7 yields the most detailed information.

0:001> !runaway 7

User Mode Time

Thread       Time

0:9d8       0 days 0:00:00.046

1:e48       0 days 0:00:00.000

Kernel Mode Time
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Thread       Time

0:9d8       0 days 0:00:00.031

1:e48       0 days 0:00:00.000

Elapsed Time

Thread       Time

0:9d8       0 days 0:00:38.000

1:e48       0 days 0:00:36.734

The user mode and kernel mode times specify the amount of time each thread has
been executing in that context. The elapsed time shows how long the thread has been
executing since it started (independent of whether the thread was utilizing the CPU).

In a scenario in which the application is hung due to one or more threads spin-
ning, this command can very quickly tell you which threads are spinning. 

After the culprit threads have been identified and the source of the problem has
been found, the next step of the process is to look for an appropriate fix. 

Step 4: Fix the Problem
Depending on the nature of the synchronization problem, there can be several dif-
ferent fixes. For example, deadlocks are fixed by ensuring that the condition in which
the deadlock occurs is resolved, orphaned locks are fixed by ensuring that all lock
acquisitions are followed by the appropriate release calls, and lock convoys can be
fixed by redesigning the code to eliminate contentious locks. We look at a variety of
techniques for fixing synchronization problems in more detail in the “Synchronization
Scenarios” section of the chapter. 

The last step of the process is to define a future avoidance strategy and make sure
that the problem diagnosed and fixed does not surface again. 

Step 5: Define Future Avoidance Strategy
As computer scientists, we often pride ourselves on our ability to manage complexity.
Just as important as figuring out complex problems, we also need to ensure that sim-
ilar problems do not reappear in the future. This final step of the process takes what
we have learned investigating a synchronization problem and devises a plan for how
to avoid similar problems in the future. This might be in the form of changing engi-
neering practices to using tools that can uncover problems early on in the develop-
ment process.
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Synchronization Scenarios

This part of the chapter shows examples of some of the most common forms of syn-
chronization problems. It shows how to use the debuggers to efficiently track down
the problem to find the root cause and what tools and techniques can be used to pre-
vent similar problems in the future.

Basic Deadlock
Deadlocks are perhaps the most common and frustrating problems that developers
encounter when writing multithreaded applications. In essence, a deadlock occurs
when two or more threads hold protected resources and refuse to let go of those
resources until others have let go of theirs. Because none of threads are willing to
release their protected resources, what ultimately happens is that none of the threads
will ever make any progress. They simply sit there and wait for the others to make a
move, and a deadlock ensues. A deadlock can occur tons of different ways, and we
take a look at some common ones throughout this chapter. However, before getting
into some of the more complicated cases, we illustrate a simple and simulated dead-
lock scenario. This will give you a good idea of what a deadlock looks like in the
debugger and the commands that can be used to get to the bottom of the deadlock. 

The sample application we use to illustrate the deadlock is rather simplistic and
is shown in Listing 10.6. 

Listing 10.6

#include <windows.h>

#include <stdio.h>

#include <conio.h>

CRITICAL_SECTION cs_DB1;

CRITICAL_SECTION cs_DB2;

DWORD WINAPI ThreadProc( LPVOID lpParam ) 

{ 

EnterCriticalSection(&cs_DB1);

//

// Do work on stack

//

printf(“Updating database 1\n”);

Sleep(3000);
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EnterCriticalSection(&cs_DB2);

printf(“Updating database 2\n”);

LeaveCriticalSection(&cs_DB2);

LeaveCriticalSection(&cs_DB1);

return 1;

}

void __cdecl main ( )

{

HANDLE hThread=NULL;

DWORD dwId=0;

InitializeCriticalSection(&cs_DB1);

InitializeCriticalSection(&cs_DB2);

hThread = CreateThread(NULL, 0, ThreadProc, NULL, 0, &dwId);

if(hThread)

{

Sleep(2000);

EnterCriticalSection(&cs_DB2);

printf(“Updating database 2\n”);

Sleep(2000);

EnterCriticalSection(&cs_DB1);

printf(“Updating database 1\n”);

LeaveCriticalSection(&cs_DB1);

LeaveCriticalSection(&cs_DB2);

WaitForSingleObject(hThread, INFINITE);

CloseHandle(hThread);

}

DeleteCriticalSection(&cs_DB1);

DeleteCriticalSection(&cs_DB2);

}
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The source code and binary for Listing 10.6 can be found in the following folders:

Source code: C:\AWD\Chapter10\DeadLock
Binary: C:\AWDBIN\WinXP.x86.chk\10DeadLock.exe

The application is a multithreaded application (two threads) that uses two different
databases. Each thread needs access to both databases to be capable of performing
its work. Because the underlying database access API(s) are not thread safe, the appli-
cation uses two critical sections, each protecting one database. To avoid polluting the
sample code, the code that uses the databases is simulated by simply putting the
thread to sleep for a number of milliseconds. When you run this application, you will
quickly see that it never finishes. In this simple application, you might have already
spotted the problem in the code, but let’s attach a debugger to a running instance and
see what is actually happening. The first step is to dump out all the threads current-
ly running in the process, which is illustrated in Listing 10.7.

Listing 10.7

0:002> ~*kb

0  Id: 978.960 Suspend: 1 Teb: 7ffde000 Unfrozen

ChildEBP RetAddr  Args to Child

0006fe9c 7c90e9c0 7c91901b 000007dc 00000000 ntdll!KiFastSystemCallRet

0006fea0 7c91901b 000007dc 00000000 00000000 ntdll!NtWaitForSingleObject+0xc

0006ff28 7c90104b 00002008 01001286 01002008 ntdll!RtlpWaitForCriticalSection+0x132

0006ff30 01001286 01002008 000007e8 00001210 ntdll!RtlEnterCriticalSection+0x46

0006ff44 01001406 00000001 00264e20 00263328 10DeadLock!main+0x86

0006ffc0 7c816fd7 00090000 0007fa0c 7ffdf000 10DeadLock!mainCRTStartup+0x12f

0006fff0 00000000 010012d7 00000000 78746341 kernel32!BaseProcessStart+0x23

1  Id: 978.1210 Suspend: 1 Teb: 7ffdd000 Unfrozen

ChildEBP RetAddr  Args to Child

002bff14 7c90e9c0 7c91901b 000007f4 00000000 ntdll!KiFastSystemCallRet

002bff18 7c91901b 000007f4 00000000 00000000 ntdll!NtWaitForSingleObject+0xc

002bffa0 7c90104b 00002020 010011c4 01002020 ntdll!RtlpWaitForCriticalSection+0x132

002bffa8 010011c4 01002020 002bffec 7c80b683 ntdll!RtlEnterCriticalSection+0x46

002bffb4 7c80b683 00000000 000822c8 02080028 10DeadLock!ThreadProc+0x34

002bffec 00000000 01001190 00000000 00000000 kernel32!BaseThreadStart+0x37

#  2  Id: 978.1074 Suspend: 1 Teb: 7ffdc000 Unfrozen

ChildEBP RetAddr  Args to Child

002fffb4 7c80b683 00000000 00919920 0308f7dc kernel32!CtrlRoutine+0xbd

002fffec 00000000 7c875280 00000000 00000000 kernel32!BaseThreadStart+0x37
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Albeit simplistic, the threads shown in Listing 10.7 illustrate a very common recogni-
tion technique for deadlocks. Two (or more) threads are each waiting to acquire a dif-
ferent critical section, but nothing seems to be happening. To verify that our
assumption of a deadlock is indeed correct, we need to take a closer look at the crit-
ical sections involved. How do we find the address of the critical section for each
thread? From the stacks, we can see that our code is calling the
RtlEnterCriticalSection API. It seems a bit odd considering that our code is
using the EnterCriticalSection API. What is going on here is that
EnterCriticalSection (defined in kernel32.dll) is simply an API forwarder to
RtlEnterCriticalSection (defined in ntdll.dll). You can easily detect which
API(s) are forwarders by using the linker as illustrated here (abbreviated output):

C:\>link /dump /exports %SystemRoot%\system32\kernel32.dll

Microsoft (R) COFF/PE Dumper Version 7.10.4035

Copyright (C) Microsoft Corporation.  All rights reserved.

Dump of file kernel32.dll

File Type: DLL

Section contains the following exports for KERNEL32.dll

00000000 characteristics

44AB7FD3 time date stamp Wed Jul 05 02:01:07 2006

0.00 version

1 ordinal base

949 number of functions

949 number of names

ordinal hint RVA      name

1    0 0000A644 ActivateActCtx

2    1 000354ED AddAtomA

3    2 000326C1 AddAtomW

4    3 00070CBF AddConsoleAliasA

5    4 00070C81 AddConsoleAliasW

6    5 00058F26 AddLocalAlternateComputerNameA

7    6 00058E0A AddLocalAlternateComputerNameW

8    7 0002BF01 AddRefActCtx

…

…

…

151   96    EnterCriticalSection (forwarded to NTDLL.RtlEnterCriticalSection)

152   97 00038211 EnumCalendarInfoA
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153   98 00075749 EnumCalendarInfoExA

…

…

…

Because the EnterCriticalSection API is just a forwarder, we can also reason-
ably expect the parameters to the forwarded function to be identical. More specifi-
cally, the first parameter to RtlEnterCriticalSection should be the address to
the critical section. In Listing 10.7, we see that the first thread is calling
RtlEnterCriticalSection, and the first parameter passed is 01001286. We can
now use the !cs extension command to dump out the fields of the critical section:

0:002> !cs 01002008

---------------------

Critical section   = 0x01002008 (10DeadLock!cs_DB1+0x0)

DebugInfo          = 0x7c97c8c0

LOCKED

LockCount          = 0x1

OwningThread       = 0x00001210

RecursionCount     = 0x1

LockSemaphore      = 0x7DC

SpinCount          = 0x00000000

A lot of information exists in the critical section data structure that we can make use of.
Besides the obvious fact that the critical section is in a LOCKED state, the first field,
“Critical section,” gives us a symbolic reference to the critical section (in our case
10DeadLock!cs_DB1+0x0). This immediately tells us that the critical section in ques-
tion relates to the first database in the application. We can also very quickly see which
thread is currently holding the critical section—namely thread 0x1210. But, which
thread has an ID of 0x1210? The top line of each stack trace shows us a number of dif-
ferent IDs. In Listing 10.7, we can see that the top of the stack contains the following:

Id: 978.960 Suspend: 1 Teb: 7ffde000 Unfrozen

The two numbers in bold serve to identify two entities: The first number identifies the
process, and the second the thread. So, the first thread in our process has an ID of
0x960. Using the same mechanism, we can easily see that the thread corresponding
to thread ID 0x1210 is our second thread. Using the same mechanism of dumping out
the critical section that the second thread is trying to acquire, we see the following:

0:002> !cs 01002020

---------------------
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Critical section   = 0x01002020 (10DeadLock!cs_DB2+0x0)

DebugInfo          = 0x7c97c8e0

LOCKED

LockCount          = 0x1

OwningThread       = 0x00000960

RecursionCount     = 0x1

LockSemaphore      = 0x7F4

SpinCount          = 0x00000000

Once again, we see that the lock in question is our second database lock and that the
owning thread is a thread with ID of 0x960 (which also happens to be our first thread).
The picture should now be clear. The first thread in our process is holding the second
database lock while waiting for the first database lock to become available. The second
thread holds the critical section associated with the first database lock while waiting for
the second to become available. The net result is a deadlocked application.

Now that we know which threads are deadlocking on what, the final step is to do
source code analysis to try to break the deadlock. From our simple example, it should
be quite evident why the deadlock happened and how it can be broken. 

Unfortunately, not a whole lot of help (in the form of tools) is available for devel-
opers wanting to more efficiently track down deadlocks. It’s mostly a matter of being
able to detect the deadlock and manually use the debugger to get the information
necessary to resolve it. One potential technique exists that allows you to be notified if
the debugger believes that a deadlock might be occurring. That technique comes in
the form of a registry value located at

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\CriticalSection-

Timeout

This value specifies the number of seconds (default is the number of seconds in 30
days) that a critical section is allowed to be held before the debugger displays a warn-
ing message. Changing this setting requires a system reboot for the changes to go into
effect. Let’s try it on our sample application. Start by changing the value to 60 (1
minute), reboot the system, and rerun the application under the debugger. After
about 60 seconds, you should see the following debug spew:

0:000> g

Updating database 1

Updating database 2

RTL: Enter Critical Section Timeout (60 secs) 0

RTL: Pid.Tid e9c.eb8, owner tid ea0 Critical Section 01002020 - ContentionCount == 1

RTL: Re-Waiting

RTL: Enter Critical Section Timeout (60 secs) 0
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RTL: Pid.Tid e9c.ea0, owner tid eb8 Critical Section 01002008 - ContentionCount == 1

RTL: Re-Waiting

What the system is doing is giving the critical section another chance by rewaiting
after the expired time period. Eventually, though, the debugger will break execution
and display the following:

Possible Deadlock in ntdll!RtlInitializeSListHead Lock 10DeadLock!cs_DB2 (01002020)

Possible Deadlock in ntdll!RtlInitializeSListHead Lock 10DeadLock!cs_DB2 (01002020)

!!! second chance !!!

eax=002bff38 ebx=00000000 ecx=7c910833 edx=000000d8 esi=01002020 edi=7c97c140

eip=7c942426 esp=002bff2c ebp=002bffa0 iopl=0         nv up ei pl zr na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000246

ntdll!RtlInitializeSListHead+0x9416:

7c942426 68ca24947c       push    0x7c9424ca

If you have very specific lock duration times in your application, this technique can
be used to detect possible deadlocks. 

Although we have shown a deadlock in the context of a critical section, it is impor-
tant to note that any synchronization primitive can yield a deadlock if not used properly.

Orphaned Critical Section Scenario 1—Exceptions
Writing well-behaved code in the presence of exceptions can be a daunting task, espe-
cially when coupled with multithreading. Although most of the Win32 API(s) are
exception free, there are some exceptions, and care must be taken when using them.
In this section, we take a look at a scenario involving an application that makes use of
C++ exceptions. The application code is shown in Listing 10.8.

Listing 10.8

#include <windows.h>

#include <stdio.h>

#include <conio.h>

CRITICAL_SECTION g_cs;

class InvalidParameterException{};

VOID Call3rdPartyCode(LPVOID lpParam)

{

if(lpParam==NULL)

{
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throw InvalidParameterException();

}

//

// Do some work

//

}

DWORD WINAPI ThreadProc(LPVOID lpParam) 

{ 

DWORD dwRet=1;

try

{

EnterCriticalSection(&g_cs);

Call3rdPartyCode(lpParam);

LeaveCriticalSection(&g_cs);

}

catch(...)

{

// Error occured

dwRet=0;

}

return dwRet;

}

void __cdecl main ( )

{

DWORD dwId=0;

HANDLE hThread=NULL;

InitializeCriticalSection(&g_cs);

hThread = CreateThread(NULL, 0, ThreadProc, NULL, 0, &dwId);

if(hThread)

{

Sleep(500);

printf(“Acquiring critical section\n”);

EnterCriticalSection(&g_cs);

//

// Do some work
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// 

printf(“Leaving critical section\n”);

LeaveCriticalSection(&g_cs);

WaitForSingleObject(hThread, INFINITE);

CloseHandle(hThread);

}

DeleteCriticalSection(&g_cs);

}

The source code and binary for Listing 10.8 can be found in the following folders:

Source code: C:\AWD\Chapter10\Exceptions
Binary: C:\AWDBIN\WinXP.x86.chk\10Exception.exe

As you can see, the code in Listing 10.8 is pretty straightforward. The main thread
starts by initializing a global critical section followed by the creation of a new thread.
After the thread has been successfully created, it then tries to enter the global criti-
cal section to perform some work. When done, it leaves the critical section and waits
for the worker thread to finish.

The worker thread’s job is to call into some third-party code (perhaps a dynami-
cally loaded DLL) under the protection of the global critical section. The code also
makes an attempt at being exception safe by wrapping the call with a try/catch
statement, attempting to catch all exceptions thrown, and then it returns a failure
code if an exception is thrown. 

Although the application is a very poorly designed application, it nevertheless
illustrates a very common problem. Before we get into all the different problems with
the application, let’s run it and see what the final outcome is:

C:\AWDBIN\WinXP.x86.chk\10Exception.exe 

Acquiring critical section

All that appears to be happening is that the application hangs when trying to acquire a
critical section. Let’s take a look at the state of the threads in the process by attaching
the debugger to the process and dumping out all the threads, illustrated in Listing 10.9.

Listing 10.8 (continued)
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Listing 10.9

0:001> ~*kb

0  Id: 424.ba8 Suspend: 1 Teb: 7ffdf000 Unfrozen

ChildEBP RetAddr  Args to Child

0007fe9c 7c90e9c0 7c91901b 000007e8 00000000 ntdll!KiFastSystemCallRet

0007fea0 7c91901b 000007e8 00000000 7c97c140 ntdll!NtWaitForSingleObject+0xc

0007ff28 7c90104b 00002038 010012e5 01002038 ntdll!RtlpWaitForCriticalSection+0x132

0007ff30 010012e5 01002038 000007f4 0000020c ntdll!RtlEnterCriticalSection+0x46

0007ff44 01001459 00000001 00034e50 00033338 10Exception!main+0x65

0007ffc0 7c816fd7 00090000 0007fa0c 7ffd8000 10Exception!mainCRTStartup+0x12f

0007fff0 00000000 0100132a 00000000 78746341 kernel32!BaseProcessStart+0x23

#  1  Id: 424.dfc Suspend: 1 Teb: 7ffde000 Unfrozen

ChildEBP RetAddr  Args to Child

002bffb4 7c80b683 00000000 00000000 00000000 kernel32!CtrlRoutine+0xbd

002bffec 00000000 7c875280 00000000 00000000 kernel32!BaseThreadStart+0x37

Listing 10.9 indicates that the main thread is waiting to acquire a critical section but
is not capable of doing so. To find out why, we have to dump out the critical section
in question and see what information it might provide us:

0:001> !cs 01002038

---------------------

Critical section   = 0x01002038 (10Exception!g_cs+0x0)

DebugInfo          = 0x7c97c8c0

LOCKED

LockCount          = 0x1

OwningThread       = 0x0000020c

RecursionCount     = 0x1

LockSemaphore      = 0x7E8

SpinCount          = 0x00000000

The critical section is in a locked state, and the owning thread is 0x20c. Because none
of the threads in our process has an ID of 0x20c, it stands to reason that at one point,
this mysterious thread acquired the critical section but never released it. The only
other thread is our worker thread, so could it be the culprit? Possibly, as it definitely
tries to acquire a critical section:

EnterCriticalSection(&g_cs);

Call3rdPartyCode(lpParam);

LeaveCriticalSection(&g_cs);
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The only problem is that it also leaves the critical section properly after the call to the
third-party code; hence, the critical section should be in a good state. Although that
might be our first impression, looking closer at the code reveals the seemingly inno-
cent try/catch block that surrounds the critical section code. Essentially, because
the thread is calling into some third-party code, it wants to do everything it can to pro-
tect itself from the code throwing any type of exception; therefore, it tries to catch all
exceptions that might come out of it. Although one could argue that this isn’t the best
way of protecting yourself, there is an even bigger problem looming on the horizon.
What actually happens if the third-party code throws an exception? Well, the catch all
filter is executed, where it sets the return to indicate an error, and then the thread
simply exits. Did we leave the critical section that was acquired prior to calling the
third-party code? Absolutely not! The only code that gets executed in this scenario is
the catch filter, and we end up with an orphaned critical section. I leave it as an exer-
cise to the reader to verify in the debugger that this is what is actually happening.
Hint: Remember the seemingly invalid thread ID that the critical section is owned by
from the main thread. 

Now we know why the application hung: a worker thread orphaned a critical sec-
tion while going about its business. In addition to the poor attempt of trying to pro-
tect itself by catching all exceptions, the question of holding a lock while calling into
some third-party code is brought up. Is that a safe thing to do? Generally speaking,
the answer is no. Because you have no idea of what this third-party code might do,
holding a critical section while calling it can lead to other devastating problems.
Imagine that the third-party code tried to call back on some API that required the
same critical section to be acquired. If the API isn’t designed to handle a reentry, a
deadlock occurs. As a general rule of thumb, developers must exercise extreme cau-
tion when dealing with third-party code and trying to protect their code from all the
different mishaps that can result.

Say that the developer who wrote the code in Listing 10.9 was set against making
any substantial changes to it. Can anything be done to make it at least behave slight-
ly better? Absolutely! The developer can make sure that the critical section is released
properly, even in the presence of exceptions, by making sure that it is released in the
exception-handling code. If the application becomes more and more complex, scat-
tering calls to LeaveCriticalSection all over the place becomes a nightmare. One
possible way of more efficiently eliminating the need to scatter these calls is to let the
language itself lend you a helping hand. Remember that when an exception is thrown
(and not caught), the compiler generates stack unwinding code that enables the
exception to percolate down the stack trace. If we can somehow inject the process of
releasing the critical section into this stack unwinding process, we could be guaran-
teed that it will be released. As part of the stack unwinding, the compiler generates
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code that cleans up any variables defined within the scope. Because a critical section
is just a structure with no associated code, the compiler doesn’t do anything with it.
We can, however, make it do something by wrapping the critical section functionali-
ty in a class whose lifetime is tightly coupled to the lifetime of the critical section.
Listing 10.10 shows a basic example of a critical section class.

Listing 10.10

class CCriticalSection

{

public:

CCriticalSection(CRITICAL_SECTION* pCs) 

{ 

m_pCs = pCs; 

if(m_pCs)

{

EnterCriticalSection(m_pCs); 

}

}

~CCriticalSection() 

{ 

if(m_pCs)

{

LeaveCriticalSection(m_pCs); 

}

}

private:

CRITICAL_SECTION* m_pCs;

}; 

The CCriticalSection class in Listing 10.10 is a pretty minimalist version of an
auto-critical section class and can easily be extended to provide more advanced func-
tionality, but it serves to illustrate the power of wrapping the act of entering and leav-
ing critical sections in a more automated way. To illustrate how this class can be used,
the ThreadProc function can now be rewritten as follows:

DWORD WINAPI ThreadProc(LPVOID lpParam) 

{ 

DWORD dwRet=1;

CCriticalSection cs(&g_cs);
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try

{

//EnterCriticalSection(&g_cs);

Call3rdPartyCode(lpParam);

//LeaveCriticalSection(&g_cs);

}

catch(...)

{

// Error occured

dwRet=0;

}

return dwRet;

}

As you can see, the explicit calls to the enter and leave critical sections have now been
replaced by an instance of the CCriticalSection class initialized with the critical
section of interest. At construction time, the critical section is entered, and at destruc-
tion time, it is left. In the presence of exceptions, this works beautifully, as the com-
piler ensures that any local variables are destroyed as part of the stack unwinding.

In addition to using the language itself, Application Verifier provides a whole set
of critical section tests that can be used by enabling the Basics test setting. Run
Application Verifier and enable the Basics test setting for the preceding sample appli-
cation (prior to using the CCriticalSection auto class). When enabled, run the
application under the debugger and watch the results:

0:000> g

ModLoad: 5cb70000 5cb96000   C:\WINDOWS\system32\ShimEng.dll

(8fc.4bc): C++ EH exception - code e06d7363 (first chance)

=======================================

VERIFIER STOP 00000200 : pid 0x8FC: Thread cannot own a critical section.

000004BC : Thread ID.

01002038 : Critical section address.

7C97CC00 : Critical section debug information address.

00000000 : Critical section initialization stack trace.

=======================================

This verifier stop is continuable.

After debugging it use `go’ to continue.

=======================================
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(8fc.4bc): Break instruction exception - code 80000003 (first chance)

eax=00000000 ebx=003c5638 ecx=7c91eb05 edx=00e6fa9f esi=00000000 edi=000004bc

eip=7c901230 esp=00e6fb58 ebp=00e6fd24 iopl=0         nv up ei pl nz na pe nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000202

ntdll!DbgBreakPoint:

7c901230 cc               int     3

As the thread is about to terminate, Application Verifier tracks down any locked crit-
ical sections owned by that thread and breaks execution if any are found. This enables
the developer to take a closer look at why a thread that owns a critical section is ter-
minating without releasing it. The good part about enabling Application Verifier is
that it catches a lot of synchronization problems when they occur and not afterward,
making debugging much, much easier. 

Orphaned Critical Section Scenario 2—Thread Termination
One of the most typical requirements of a multithreaded application is for any given
worker thread to be capable of shutting down in a very efficient manner. This might
be due to the user cancelling the specific request that the worker thread was servic-
ing or an application shut down, which should quickly stop all the worker threads in
the process. One very easy and compelling way of accomplishing this is to call the
TerminateThread API, which stops a thread dead in its track. If all the threads are
independent of each other (that is, share no data and perform very simple work),
there should be no harm in doing so, right? The answer is maybe. It all depends on
what type of work is being done in the worker thread. Terminating even the simplest
of threads can lead to devastating results. To illustrate the point, the application
shown in Listing 10.11 creates one worker thread that sits in a tight loop allocating
memory, using that memory and deallocating the memory. The main thread then ter-
minates the worker thread (using the TerminateThread API) and does some final
work before shutting down.

Listing 10.11

#include <windows.h>

#include <stdio.h>

#include <conio.h>

DWORD WINAPI ThreadProc( LPVOID lpParam ) 

{ 

BYTE* pData=NULL;
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for(;;)

{

pData=(BYTE*) HeapAlloc(GetProcessHeap(), 0, 10000);

//

// Use memory

//

HeapFree(GetProcessHeap(), 0, pData);

}

printf(“Exiting thread\n”);

return 1;

}

void __cdecl main ( )

{

DWORD dwId=0;

HANDLE hThread=NULL;

hThread = CreateThread(NULL, 0, ThreadProc, NULL, 0, &dwId);

if(hThread)

{

BYTE* pData=NULL;

Sleep(500);

printf(“Terminating worker thread...\n”);

TerminateThread(hThread, 0);

pData = (BYTE*) HeapAlloc(GetProcessHeap(), 0, 10000);

if(pData)

{

//

// Use memory

//

HeapFree(GetProcessHeap(), 0, pData);

}

WaitForSingleObject(hThread, INFINITE);

CloseHandle(hThread);

}

}

Listing 10.11 (continued)
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The source code and binary for Listing 10.11 can be found in the following folders:

Source code: C:\AWD\Chapter10\TerminateThread
Binary: C:\AWDBIN\WinXP.x86.chk\10TermThread.exe

Execute this application using the following command line:

C:\AWDBIN\WinXP.x86.chk\10TermThread.exe 

Please note that the application is timing dependent. When you run the application, you
might find that it finished execution successfully. If it does, rerun the application a few
times, and you will eventually see that the application gets into a state in which it never
finishes and simply appears hung. Let’s take a closer look by attaching a debugger to the
process and dumping out all the threads and associated stacks, as shown in Listing 10.12.

Listing 10.12

…

…

…

0:001> ~*kb

0  Id: 404.9dc Suspend: 1 Teb: 7ffdd000 Unfrozen

ChildEBP RetAddr  Args to Child

0006fc64 7c90e9c0 7c91901b 000007f4 00000000 ntdll!KiFastSystemCallRet

0006fc68 7c91901b 000007f4 00000000 00000000 ntdll!NtWaitForSingleObject+0xc

0006fcf0 7c90104b 00080608 7c911320 00080608 ntdll!RtlpWaitForCriticalSection+0x132

0006fcf8 7c911320 00080608 00090000 0007fa0c ntdll!RtlEnterCriticalSection+0x46

0006ff24 01001236 00080000 00000000 00002710 ntdll!RtlAllocateHeap+0x2f0

0006ff44 010013a2 00000001 00263b50 00262bb0 10TermThread!main+0x76

0006ffc0 7c816fd7 00090000 0007fa0c 7ffde000 10TermThread!mainCRTStartup+0x12f

0006fff0 00000000 01001273 00000000 78746341 kernel32!BaseProcessStart+0x23

#  1  Id: 404.870 Suspend: 1 Teb: 7ffdc000 Unfrozen

ChildEBP RetAddr  Args to Child

002fffb4 7c80b683 00000000 77d4882a 00000000 kernel32!CtrlRoutine+0xbd

002fffec 00000000 7c875280 00000000 00000000 kernel32!BaseThreadStart+0x37

The first thread in Listing 10.12 definitely looks interesting, as it seems to be waiting
for a critical section. Because we don’t use any critical sections in our application, you
might be inclined to ask why the thread is waiting for one to begin with. To answer
this very reasonable question, we need to get some basic information about the
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thread. Is it one of our threads? If so, what is the thread doing? Looking at the bot-
tommost frames of the thread, we can see that it is indeed our main thread and that
it is trying to allocate some memory from the heap. This matches up nicely with our
source listing (in bold) in Listing 10.11. Moving up the stack, we see that the
RtlAllocateHeap function attempts to enter a critical section that ultimately
results in a WaitForSingleObject call. At this point, a safe assumption is that the
critical section is already owned by a different thread, but, as always, we need to make
sure that we verify our theories. To find out more detailed information about the crit-
ical section in question, we first need to find the address to it. Let’s use the !cs exten-
sion command with that address and see if it resembles a good critical section:

0:001> !cs 00080608

---------------------

Critical section   = 0x00080608 (+0x80608)

DebugInfo          = 0x7c97c500

LOCKED

LockCount          = 0x1

OwningThread       = 0x00000224

RecursionCount     = 0x1

LockSemaphore      = 0x7F4

SpinCount          = 0x00000000

The LOCKED line indicates that the critical section is held. The OwningThread field
value of 0x224 indicates that a thread with the thread ID of 0x224 is holding the crit-
ical section. The LockSemaphore field has the value of 0x7F4. Because we know
that LockSemaphore corresponds to an event handle, we can use the !handle
extension command to make sure that it is an event:

0:001> !handle 0x7F4

Handle 7f4

Type          Event

At this point, we can safely say that we are working with what looks to be an intact
critical section, but the biggest question remains: Which thread is holding this criti-
cal section? We only have two threads running in our process, and neither thread has
a thread ID of 0x224. From Listing 10.1, we know that the main thread terminated
a worker thread, so it is quite reasonable to assume that our worker thread had a
thread ID of 0x224. To verify this assumption, we can restart the application under
the debugger, set a breakpoint at the start of our worker thread procedure
(ThreadProc), and resume execution. After the breakpoint hits, we check to see
what the thread ID is and continue execution until the hang appears again. We then
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dump the critical section and make sure that the owning thread ID matches the
thread ID of the worker thread (see Listing 10.13).

Listing 10.13

0:000> bp 10TermThread!ThreadProc

0:000> g

Breakpoint 0 hit

eax=00000000 ebx=00000000 ecx=002bffb0 edx=7c90eb94 esi=000822c8 edi=00680066

eip=01001180 esp=002bffb8 ebp=002bffec iopl=0         nv up ei pl zr na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000246

10TermThread!ThreadProc:

01001180 8bff             mov     edi,edi

0:001> ~

0  Id: ea8.ea0 Suspend: 1 Teb: 7ffdf000 Unfrozen

.  1  Id: ea8.e68 Suspend: 1 Teb: 7ffde000 Unfrozen

0:001> g

Terminating worker thread...

(ea8.fa4): Control-C exception - code 40010005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=002fff38 ebx=00000000 ecx=002fff04 edx=7c90eb94 esi=00000000 edi=00000002

eip=7c87533d esp=002fff2c ebp=002fffb4 iopl=0         nv up ei pl zr na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000246

kernel32!CtrlRoutine+0xbd:

7c87533d 834dfcff or dword ptr [ebp-0x4],0xffffffff ss:0023:002fffb0=00000000

0:001> ~*kb

0  Id: ea8.ea0 Suspend: 1 Teb: 7ffdf000 Unfrozen

ChildEBP RetAddr  Args to Child

0006fc64 7c90e9c0 7c91901b 000007f4 00000000 ntdll!KiFastSystemCallRet

0006fc68 7c91901b 000007f4 00000000 00000000 ntdll!NtWaitForSingleObject+0xc

0006fcf0 7c90104b 00080608 7c911320 00080608 ntdll!RtlpWaitForCriticalSection+0x132

0006fcf8 7c911320 00080608 00090000 0007fa0c ntdll!RtlEnterCriticalSection+0x46

0006ff24 01001236 00080000 00000000 00002710 ntdll!RtlAllocateHeap+0x2f0

0006ff44 010013a2 00000001 00263b78 00262bb0 10TermThread!main+0x76

0006ffc0 7c816fd7 00090000 0007fa0c 7ffd9000 10TermThread!mainCRTStartup+0x12f

0006fff0 00000000 01001273 00000000 78746341 kernel32!BaseProcessStart+0x23

#  1  Id: ea8.fa4 Suspend: 1 Teb: 7ffde000 Unfrozen

ChildEBP RetAddr  Args to Child

002fffb4 7c80b683 00000000 0000000d 0199fe64 kernel32!CtrlRoutine+0xbd

002fffec 00000000 7c875280 00000000 00000000 kernel32!BaseThreadStart+0x37

0:001> !cs 00080608
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---------------------

Critical section   = 0x00080608 (+0x80608)

DebugInfo          = 0x7c97c500

LOCKED

LockCount          = 0x1

OwningThread       = 0x00000e68

RecursionCount     = 0x1

LockSemaphore      = 0x7F4

SpinCount          = 0x00000000

As you can see from the debug output in Listing 10.13, the worker thread ID has an
ID of e68. The critical section being held indefinitely also indicates that the thread
that owns the critical section is e68. Because the worker thread was terminated
before having a chance to release the critical section, we end up with what is known
as an orphaned critical section. 

This scenario serves to illustrate that developers have to be extremely cautious
when using Win32 API(s). The sample code we just debugged did not have a single
critical section in it, yet we managed to stop it dead in its tracks, blocking on a criti-
cal section. It turns out that the critical section is owned by the heap manager, and
when the main thread terminated the worker thread, the worker thread was in the
middle of allocating or deallocating memory. That typically causes the heap manager
to acquire the critical section. When the worker thread terminated, the heap manag-
er never had the chance to leave the critical section. Although the tight loop of allo-
cating/deallocating memory in the worker thread is an exaggerated piece of code, it
serves to illustrate the importance of understanding your API(s), as well as clearly
showing a debugging session for a very common problem. As a general rule of thumb,
you should never call TerminateThread unless you know exactly what the thread is
doing.

To make sure that we remember the dangers of calling TerminateThread,
Application Verifier can be used. By enabling the DangerousAPIs test setting under
the Miscellaneous branch on our application, we can rest assured that Application
Verifier will trap all calls to the TerminateThread API. Enabling this test setting for
our sample application and running it under the debugger yields the following:

0:000> g

Terminating worker thread...

=======================================

Listing 10.13 (continued)
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VERIFIER STOP 00000100 : pid 0x9F8: Dangerous call to TerminateThread.

00000B28 : Thread ID for the caller of Terminatethread.

00000000 : Not used.

00000000 : Not used.

00000000 : Not used.

=======================================

This verifier stop is continuable.

After debugging it use `go’ to continue.

=======================================

(9f8.b28): Break instruction exception - code 80000003 (first chance)

eax=00000000 ebx=003b5470 ecx=7c91eb05 edx=0006fc15 esi=00000000 edi=00000b28

eip=7c901230 esp=0006fd04 ebp=0006fed0 iopl=0         nv up ei pl nz na pe nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000202

ntdll!DbgBreakPoint:

7c901230 cc               int     3

As you can see from the output, the debugger breaks execution immediately after
detecting the call to TerminateThread and also displays a warning message.
Additionally, the thread ID of the offending thread is displayed.

DllMain Awareness
Dynamic Link Libraries (DLLs) are fundamental constructs in the Windows operat-
ing system. At a high level, a DLL is a file that contains executable code and/or data
that applications can use. This, in essence, is very similar to a static link library, but
rather than forcing the application into linking with a static link library, the applica-
tion is free to use a DLL dynamically. DLL(s) can be loaded at load time or runtime
so that the application can choose what code/data to use, depending on what is being
executed in the application. An application can use a DLL in two ways:

■ Implicit linking: With implicit linking, the application using the DLL links
against an import library provided by the author of the DLL. The DLL is then
automatically loaded when the application is loaded. The functions exported by
the DLL can be called in the application as if they were part of the application.

■ Explicit linking: With explicit linking, the application must make explicit calls
to load (LoadLibrary), unload (FreeLibrary), and use the DLL’s functions
(GetProcAddress). The functions are then called using function pointers. 

10.
SYN

CHRO
N

IZATIO
N



530 Chapter 10 Synchronization

For a DLL to initialize and uninitialize itself, a special function named DllMain can be
exported from the DLL. The function prototype of DllMain resembles the following:

BOOL WINAPI DllMain(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID lpvReserved);

Each of the arguments is discussed here:

■ hinstDLL
Handle to the DLL module.

■ fdwReason
The DllMain function can be invoked for a number of reasons. It gets invoked
when the DLL is loaded into the address space of an application
(DLL_PROCESS_ATTACH), when a thread is created in the application
(DLL_THREAD_ATTACH), and conversely when a DLL is detached from a
process (DLL_PROCESS_DETACH) or a thread is exiting cleanly
(DLL_THREAD_DETACH).

■ lpvReserved
Not used.

If the DLL is a relatively simple one that exports a set of functions that do not depend
on state, the implementation of DllMain can be omitted. Most of the time, howev-
er, an implementation is provided, as the DLL will need to initialize itself (initializing
state such as thread local storage). Developers implementing DllMain need to be
aware of several limitations of the implementation. Rather than just listing them all,
let’s take a look at the most common problem encountered when implementing the
function. 

The DLL we use to illustrate this problem (Listing 10.14) is a simple DLL that
performs some DLL initialization. Rather than doing it on the main thread, the code
in DllMain creates a new thread that is responsible for the initialization. The main
thread simply waits for the worker thread to finish executing and returns from the
DllMain function.

Listing 10.14

#include <windows.h>

#include <stdio.h>

DWORD WINAPI InitDllProc( LPVOID lpParam ) 

{ 
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LoadLibrary(“xmlprov.dll”);                

return 1;

}

BOOL WINAPI DllMain(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID lpvReserved)

{

BOOL bRet=FALSE;

switch(fdwReason)

{

case DLL_PROCESS_ATTACH:

{

DWORD dwId=0;

HANDLE hThread=NULL;

hThread = CreateThread(NULL, 0, InitDllProc, NULL, 0, &dwId);        

if(hThread)

{

WaitForSingleObject(hThread, INFINITE);

CloseHandle(hThread);

bRet=TRUE;

}

}

break;

}

return bRet;

}

The source code and binary for Listing 10.14 can be found in the following folders:

Source code: C:\AWD\Chapter10\DllMain\App and
C:\AWD\Chapter10\DllMain\ModDll

Binary: C:\AWDBIN\WinXP.x86.chk\10dllmain.exe and
C:\AWDBIN\WinXP.x86.chk\10moddll.dll

The application that uses this DLL simply loads the DLL using LoadLibrary. To run
the application, use the following command line: 

C:\AWDBIN\WinXP.x86.chk\10dllmain.exe 

Considering the code behind this application, it should finish relatively quickly, but
you will notice that the application simply hangs. To get a better idea of what is hap-
pening, find the process ID of 10dllmain.exe and attach a debugger to it. The result
of attaching the debugger is shown in Listing 10.15.
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Listing 10.15

…

…

ModLoad: 01000000 01003000   C:\AWDBIN\WinXP.x86.chk\10dllmain.exe

ModLoad: 7c900000 7c9b0000   C:\WINDOWS\system32\ntdll.dll

ModLoad: 7c800000 7c8f4000   C:\WINDOWS\system32\kernel32.dll

ModLoad: 77c10000 77c68000   C:\WINDOWS\system32\msvcrt.dll

ModLoad: 00400000 00404000   C:\AWDBIN\WinXP.x86.chk\10moddll.dll

Break-in sent, waiting 30 seconds... 

You will immediately notice that the debugger simply sits there and does not break
into the process. The last line in Listing 10.15 seems to imply that the debugger tried
to send a break-in command but is unable to get a response from the process being
debugged. If you wait for the recommended 30 seconds, the debugger eventually
breaks in with the following notice:

WARNING: Break-in timed out, suspending.

This is usually caused by another thread holding the loader lock

(498.27c): Wake debugger - code 80000007 (first chance)

eax=0006f8b0 ebx=00400000 ecx=ffffffff edx=000000d8 esi=000007f4 edi=00000000

eip=7c90eb94 esp=0006f770 ebp=0006f7d4 iopl=0         nv up ei pl zr na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000246

*** ERROR: Symbol file could not be found.  Defaulted to export symbols for C:\WIN-

DOWS\system32\ntdll.dll -

ntdll!KiFastSystemCallRet:

7c90eb94 c3               ret

The warning is telling us that a loader lock might be held. What is really going on
here? The debugger’s behavior seems very erratic (does not break in and complains
about a loader lock that we never touched in our code). If we turn to our trustworthy
troubleshooting process, the next step is to dump out all the threads to see if we can
make sense out of the hang. Listing 10.16 shows the threads of our process.

Listing 10.16

0:000> ~*kb

.  0  Id: 498.27c Suspend: 1 Teb: 7ffdd000 Unfrozen

ChildEBP RetAddr  Args to Child

0006f76c 7c90e9c0 7c8025cb 000007f4 00000000 ntdll!KiFastSystemCallRet

0006f770 7c8025cb 000007f4 00000000 00000000 ntdll!NtWaitForSingleObject+0xc

0006f7d4 7c802532 000007f4 ffffffff 00000000 kernel32!WaitForSingleObjectEx+0xa8
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0006f7e8 0040113a 000007f4 ffffffff 00000001 kernel32!WaitForSingleObject+0x12

0006f804 00401251 00400000 00000001 00000000 10modDll!DllMain+0x4a

0006f824 7c9011a7 00400000 00000001 00000000 10modDll!_DllMainCRTStartup+0x52

0006f844 7c91cbab 004011ff 00400000 00000001 ntdll!LdrpCallInitRoutine+0x14

0006f94c 7c916178 00000000 c0150008 00000000 ntdll!LdrpRunInitializeRoutines+0x344

0006fbf8 7c9162da 00000000 00083338 0006feec ntdll!LdrpLoadDll+0x3e5

0006fea0 7c801bb9 00083338 0006feec 0006fecc ntdll!LdrLoadDll+0x230

0006ff08 7c801d6e 7ffddc00 00000000 00000000 kernel32!LoadLibraryExW+0x18e

0006ff1c 7c801da4 0100107c 00000000 00000000 kernel32!LoadLibraryExA+0x1f

0006ff38 01001160 0100107c 0006ffc0 01001298 kernel32!LoadLibraryA+0x94

0006ff44 01001298 00000001 00263b08 00262b78 10dllmain!main+0x10

0006ffc0 7c816fd7 5a99c54d 01c6d533 7ffde000 10dllmain!mainCRTStartup+0x12f

0006fff0 00000000 01001169 00000000 78746341 kernel32!BaseProcessStart+0x23

1  Id: 498.fd4 Suspend: 1 Teb: 7ffdc000 Unfrozen

ChildEBP RetAddr  Args to Child

002bfc10 7c90e9c0 7c91901b 000007e8 00000000 ntdll!KiFastSystemCallRet

002bfc14 7c91901b 000007e8 00000000 00000000 ntdll!NtWaitForSingleObject+0xc

002bfc9c 7c90104b 0197c0d8 7c927357 7c97c0d8 ntdll!RtlpWaitForCriticalSection+0x132

002bfca4 7c927357 7c97c0d8 002bfd30 020a0018 ntdll!RtlEnterCriticalSection+0x46

002bfd1c 7c90eac7 002bfd30 7c900000 00000000 ntdll!_LdrpInitialize+0xf0

00000000 00000000 00000000 00000000 00000000 ntdll!KiUserApcDispatcher+0x7

2  Id: 498.f90 Suspend: 1 Teb: 7ffdb000 Unfrozen

ChildEBP RetAddr  Args to Child

002cfc0c 7c90e9c0 7c91901b 000007e8 00000000 ntdll!KiFastSystemCallRet

002cfc10 7c91901b 000007e8 00000000 00000000 ntdll!NtWaitForSingleObject+0xc

002cfc98 7c90104b 0197c0d8 7c927357 7c97c0d8 ntdll!RtlpWaitForCriticalSection+0x132

002cfca0 7c927357 7c97c0d8 002cfd2c 00000004 ntdll!RtlEnterCriticalSection+0x46

002cfd18 7c90eac7 002cfd2c 7c900000 00000000 ntdll!_LdrpInitialize+0xf0

00000000 00000000 00000000 00000000 00000000 ntdll!KiUserApcDispatcher+0x7

The first thread in Listing 10.16 makes perfect sense. It is our main application
thread, where we call LoadLibrary on our sample DLL. The call goes through a
myriad of system calls before ending up in our DllMain implementation, as per
expectations. The DllMain function finally calls WaitForSingleObject to wait for
our worker thread to finish. This wait, however, never seems to be satisfied, implying
that our worker thread either did not execute or is hung. Judging from the other
threads in the process, we can’t see a trace of our worker thread; hence, we draw the
conclusion that it never started. So far, the debug session does not seem to make any
sense. The last two threads look very strange as well. What we have are two threads
that are trying to enter a critical section. Additionally, the bottommost frames of those
threads look a bit strange:
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002cfca0 7c927357 7c97c0d8 002cfd2c 00000004 ntdll!RtlEnterCriticalSection+0x46

002cfd18 7c90eac7 002cfd2c 7c900000 00000000 ntdll!_LdrpInitialize+0xf0

00000000 00000000 00000000 00000000 00000000 ntdll!KiUserApcDispatcher+0x7

If we dump the critical section that is being acquired, we can see that it is referred to
as a loader lock:

0:000> !cs 7c97c0d8

---------------------

Critical section   = 0x7c97c0d8 (ntdll!LdrpLoaderLock+0x0)

DebugInfo          = 0x7c97c100

LOCKED

LockCount          = 0x3

OwningThread       = 0x0000027c

RecursionCount     = 0x2

LockSemaphore      = 0x7E8

SpinCount          = 0x00000000

The critical section is in a locked state, and the thread owning the critical section has
a thread ID of 0x27c. The thread corresponding to that thread ID happens to be our
main thread that is in the process of initializing the DLL we loaded. 

Why do we have two threads waiting for the loader lock to be released?
Furthermore, why do the thread stacks look so strange? Typically, a user mode thread
begins with a frame that resembles the following:

kernel32!BaseThreadStart

In our case, the thread’s starting point seems to be in a frame that resembles

ntdll!KiUserApcDispatcher

What we are seeing is an example of how a user mode thread actually comes to life in
Windows. Figure 10.3 illustrates the high-level process of creating a new thread. Note
that many of the details surrounding thread creations are largely undocumented, and,
as such, Figure 10.3 should serve as a close high-level approximation.

When a thread is created in Windows, it does not “auto-magically” start execut-
ing from the kernel32!BaseThreadStart function, but rather it always begins its
life as a user mode APC (Asynchronous Procedure Call). At a high level, when
Windows is notified to create a new thread, a user mode APC is queued to the APC
queue of the new thread. The APC dispatcher dispatches an APC to the new thread,
which in return performs a bunch of initialization work prior to transitioning into a
state that we typically associate with being a user mode thread (that is, we see the
kernel32!BaseThreadStart in the stack trace). This is exactly what we are seeing
with our two threads. They are still in an APC state, performing initialization work. 
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Figure 10.3

This now explains why at least one of our threads is in the APC state. It seems to
be performing initialization work and is getting stuck on trying to acquire the loader
lock. Before we go down the route of investigating why it is unable to acquire that
lock, we should do due diligence (remember—the more knowledge you have of all
the threads in the process, the better the chances of getting to the root cause of what-
ever might be going wrong); we should also figure out why there is a final third thread
stuck in the APC state. After all, our application should have two threads: (1) main
thread and (2) worker thread. Remember our earlier discussion of the high-level
process and how we will always have a “debugger” thread in our process when we
break into the debugger, the thread responsible for issuing the debug break com-
mand? Well, the final thread in our process is just that debugger thread. Although,
interestingly enough, it also does not seem to look right. The stack trace we expect to
see should have a debug break frame in it. Rather than dismissing this thread as “not
being ours,” let’s try to understand where it is coming from. A debugger that is trying
to break into the target process can do so in one of two ways:
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■ Injecting a remote thread into the target process. This thread is then responsi-
ble for issuing the debug break, ultimately causing the target process to stop
executing. After the remote thread has been injected by the debugger, the
debugger simply waits for the thread to finish. The wait time that the debugger
specifies is not infinite though, as certain situations might prevent the remote
thread from being created. More specifically, the wait time is 30 seconds.

■ If the remote thread has not finished creation after 30 seconds, the debugger
takes a different approach and simply suspends all the threads in the process
and breaks execution.

Now it should start making sense why we are seeing a third thread. The third thread
is actually the remote thread injected by the debugger to try to halt execution. Because
the thread is stuck in APC mode initializing itself (very similar to our worker thread),
the output the debugger displayed (Break-in send, waiting for 30 seconds…,
and WARNING: Break-in timed out, suspending) also makes sense. So, it seems
that every thread besides our main thread is getting stuck early on in APC mode
because of this mysterious “loader lock” that is wreaking havoc in our process, causing
everything to come to a halt. The only remaining question is what this loader lock is
and why our main thread appears to be holding it. Earlier, we discussed the overall
concept of a DLL and how DllMain can be used to initialize the DLL. For Windows
to keep the process of loading and unloading DLL(s) structurally intact, it uses a
loader lock to serialize all access to DllMain functions. It does so to prevent a myriad
of issues that would be involved with concurrently executing DllMain functions.
Windows acquires the lock prior to calling any DllMain function and subsequently
releases the lock when DllMain finishes execution. 

Now we have all the pieces to explain what is actually going on. The main thread
is executing code in DllMain, which indirectly implies that the loader lock is being
held. Meanwhile, the worker thread tries to start executing, but it gets stuck while try-
ing to call into DllMain (with DLL_THREAD_ATTACH), and we end up with a deadlock. 

As you have seen, implementing DllMain can be quite tricky. In addition to dead-
locks, other problems, such as access violations, can surface if the load order isn’t
respected. As a general rule of thumb, DllMain should perform as little work as possi-
ble (lazy initialization) and return quickly. What does little work mean? That’s a good
question. Our implementation can be considered little because it does nothing more
than spawn a thread that tries to load another DLL. Microsoft has written a whitepa-
per on the issue of DLL implementations, and it can be found at the following location:

https://www.microsoft.com/whdc/driver/kernel/DLL_bestprac.mspx

https://www.microsoft.com/whdc/driver/kernel/DLL_bestprac.mspx
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You can take other precautions to ensure that you won’t get into a problematic situa-
tion while implementing DllMain. First and foremost, be aware of the API(s) that
you are calling from DllMain. Even though some API(s) might look innocent
enough, they might eventually call an API that will cause problems. Unfortunately,
there is no set list of dangerous API(s) to avoid; however, there is hope. The hope
comes in the form of Application Verifier. Application Verifier has the capability to
detect many of the most common problems encountered during DllMain imple-
mentations. The Application Verifier test setting to use is the Basics test setting. If
you enable that test setting for our sample application and rerun the application
under the debugger, you will see that the output resembles the following:

0:000> g

ModLoad: 00e30000 00e34000   C:\AWDBIN\WinXp.x86.chk\10moddll.dll

=======================================

VERIFIER STOP 00000304 : pid 0x5F4: Waiting on a thread handle in DllMain.

00000780 : Thread handle.

00000000 : Not used.

00000000 : Not used.

00000000 : Not used.

=======================================

This verifier stop is continuable.

After debugging it use `go’ to continue.

=======================================

(5f4.5fc): Break instruction exception - code 80000003 (first chance)

eax=00000000 ebx=003b5c78 ecx=7c91eb05 edx=0006f263 esi=00000000 edi=00000780

eip=7c901230 esp=0006f36c ebp=0006f538 iopl=0         nv up ei pl nz na pe nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000202

ntdll!DbgBreakPoint:

7c901230 cc               int     3

The debugger broke in as soon as it detected a call to WaitForSingleObject in the
DllMain function. It also provides some auxiliary information, such as the thread
handle that is being waited on.

Application Verifier has a ton of truly amazing test settings and should be used
extensively during development. Trust me—allowing Application Verifier to catch
these issues early on will save you a ton of debugging time.
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Lock Contention
Lock contention is an interesting scenario that can dramatically affect the perform-
ance and scalability of your application. Lock contention refers to a situation in which
a large number of threads compete for a single lock. Depending on how much work
is being done in the protected code region, the number of threads waiting to acquire
the lock might become larger and larger. Prior to Windows 2003 Server SP1, critical
sections employed fair semantics—fair meaning that it observed First-In-First-Out
semantics, essentially guaranteeing that the locking order of the critical section would
be preserved. The thread that had waited the longest would also be the one that was
next in line to acquire the critical section. For a fair locking scheme to work, the act
of leaving a critical section must include the transfer of ownership from the owning
thread to the thread next in line to acquire it. Transferring ownership increases the
time that the owning thread spends in the critical section by an order of magnitude.
For example, imagine that a piece of code protected by a critical section did nothing
more than increase a reference count:

EnterCriticalSection(&cs);

refCount++;

LeaveCriticalSection(&cs);

The amount of time spent in the critical section is relatively small because increasing
a DWORD by one is a pretty cheap operation. Furthermore, imagine that a ton of
threads were waiting on that critical section. Now, as the owning thread leaves the
critical section, it must observe the fair semantics of the lock and transfer ownership
to the next thread in line. The amount of work required to transfer ownership is pret-
ty large in comparison to the amount of work actually done inside the critical section
(incrementing a variable). It potentially has to wake up another thread, resulting in a
context switch before the next thread acquires the critical section. The added time
required to honor the fair locking semantics results in quite a large overhead, during
which even more threads will have an opportunity to get queued up. Figure 10.4 illus-
trates the work required for a thread to enter, execute the protected region of code,
and leave a critical section. 

Figure 10.4 shows how a very small region of code is protected by a critical sec-
tion and what happens when the first thread (T1) enters the critical section, executes
the simple increment statement, and leaves the critical section. As can be seen, the
amount of time spent executing the relevant increment of the reference count vari-
able is much smaller than the amount of time spent transferring ownership of the crit-
ical section.
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Figure 10.4

The problem being illustrated—the incoming rate of threads trying to acquire the
critical section is larger than the amount of time required to enter, process, and leave
the critical section (including the work required to transfer ownership)—is known as
a lock convoy. Lock convoys can dramatically reduce the performance of an applica-
tion due to the excessive amount of work required to manage a fair critical section. 

How does one recognize if a lock convoy problem is indeed occurring? At a high
level, there are a couple of symptoms that are worth looking out for:

■ Excessive context switching. Remember that for a critical section to fairly
transfer ownership to another critical section, it must wake up that new thread.
The act of waking up a thread might result in a context switch.  

■ Performance degradation on the code path that includes the locking scheme. 

If you suspect that a lock convoy might be an issue in your application, the next step
is to take a close look at the application using the debuggers and convince yourself
that’s what’s going on. Listing 10.17 shows a sample application that suffers from the
lock convoy problem.
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Listing 10.17

#include <windows.h>

#include <stdio.h>

CRITICAL_SECTION g_cs;

DWORD g_refCount;

DWORD WINAPI ThreadProc( LPVOID lpParam ) 

{ 

while(true)

{

EnterCriticalSection(&g_cs);

g_refCount++;

LeaveCriticalSection(&g_cs);

}

return 1;

}

void __cdecl main ( )

{

DWORD dwId=0;

HANDLE hThread[MAXIMUM_WAIT_OBJECTS];

DWORD dwRet=0;

g_refCount=0;

InitializeCriticalSection(&g_cs);

for(int i=0; i<MAXIMUM_WAIT_OBJECTS; i++)

{

hThread[i] = CreateThread(NULL, 0, ThreadProc, NULL, 0, &dwId);

if(!hThread[i])

{

for(int j=0;j<i;j++)

{   

CloseHandle(hThread[j]);

}

return;

}

}

WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, hThread, TRUE, INFINITE);

for(int i=0; i<MAXIMUM_WAIT_OBJECTS; i++)

{

CloseHandle(hThread[i]);

}

}
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The source code and binary for Listing 10.17 can be found in the following folders:

Source code: C:\AWD\Chapter10\LockConvoy
Binary: C:\AWDBIN\WinXP.x86.chk\10lockconv.exe 

The code in Listing 10.17 is fairly trivial. It creates a number of threads, where each
thread sits in a tight loop increasing a reference count variable. The reference count
variable increment is protected by a critical section. If we run this application under
the debugger, we see that it contains a large number of threads—most of which are
waiting to acquire the critical section protecting the reference counter. Note that you
have to run this application on a Windows version prior to Windows 2003 Server SP1.

61  Id: a48.a28 Suspend: 1 Teb: 7ff79000 Unfrozen

ChildEBP RetAddr  Args to Child

0128ff14 7c90e9c0 7c91901b 0000073c 00000000 ntdll!KiFastSystemCallRet

0128ff18 7c91901b 0000073c 00000000 7c97c140 ntdll!NtWaitForSingleObject+0xc

0128ffa0 7c90104b 00002008 01001169 01002008 ntdll!RtlpWaitForCriticalSection+0x132

0128ffa8 01001169 01002008 0128ffec 7c80b683 ntdll!RtlEnterCriticalSection+0x46

0128ffb4 7c80b683 00000000 7c910833 00000000 10LockConv!ThreadProc+0x19

0128ffec 00000000 01001150 00000000 00000000 kernel32!BaseThreadStart+0x37

So far, so good. We certainly do expect a large number of threads to be waiting on this
very contentious lock. Now, let’s try to find out which thread owns the critical section.
Remember, the first parameter to RtlEnterCriticalSection is the address to the
critical section in question.

0:065> !cs 01002008

---------------------

Critical section   = 0x01002008 (10LockConv!g_cs+0x0)

DebugInfo          = 0x7c97c8c0

LOCKED

LockCount          = 0x1C

OwningThread       = 0x00000000

RecursionCount     = 0x0

LockSemaphore      = 0x73C

SpinCount          = 0x00000000

The LockCount field seems correct (0x1C) and indicates that the critical section is
locked and has a large number of threads waiting to acquire it. The OwningThread field,
on the other hand, seems wrong. It implies that a thread with a thread ID of 0 is hold-
ing the critical section. A thread with a thread ID of 0 will never exist in a process. What
is going on? What you are seeing is, in essence, a telltale sign that a lock convoy is occur-
ring. Remember that in a lock convoy situation, the owning thread passes ownership of
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the critical section as it is leaving it. During this time, the critical section is still consid-
ered locked, but the releasing code clears the OwningThread field until the new thread
enters the critical section—at which point, it gets properly reset. 

Because lock convoys can cause serious issues in your code, what are some of the
mitigation techniques? Unfortunately, mitigation techniques are not easy to come by
for this problem. The best answer is to simply redesign the application and remove
the highly contentious lock. Unfortunately, this is not always possible. Another possi-
ble mitigation is to rely on spin counts when trying to acquire the critical section.
Using this technique can dramatically reduce the amount of time it takes to pass own-
ership (because a context switch is not required), and the convoy might be broken.
Unfortunately, this approach only works on multiprocessor machines. 

The problem of lock convoys was deemed important enough that the Windows
team decided to make a dramatic change to how critical sections worked in Windows
2003 Server SP1. Because the fundamental problem of lock convoys is that the owning
thread has to pass ownership to the next thread in line (to honor the basic design goal
of a fair lock), Microsoft decided to make a design change to the critical section and
remove the fairness requirement. If a thread does not have to pass ownership, a mini-
mal amount of post-critical section release time would be spent, thereby eliminating the
lock convoy problem. A side effect stemming from removing fairness is that a thread
that is woken up to enter the critical section would have to compete with brand new
incoming threads also trying to compete for it, potentially resulting in thread starvation.
Nevertheless, the lock convoy problem was deemed important enough and trumped
the potential of thread starvation. To accommodate this change, a change had to be
made for how the critical section is structured, and the approach agreed upon was to
use the LockCount field to add the additional information required for an unfair lock.
More specifically, the LockCount has changed as shown in Figure 10.5.

High 30 bits indicate the count of waiting threads

Lock bit

Waiter Woken bit

Figure 10.5

All bits in the new LockCount field are now also stored in an inverted state, so when
looking at the LockCount field in the debugger, it is important to flip the bits prior to
making assumptions about its state. As Figure 10.5 indicates, the high 30 bits of the
LockCount field are pretty straightforward and contain the number of waiting threads.



543Synchronization Scenarios

Bit 1 is the Waiter Woken bit and indicates whether a thread that released the critical sec-
tion has signaled the event to wake up another thread. If the bit is set, it serves as an indi-
cation that another thread leaving the critical section should not set it as well. The least
significant bit is the Lock bit, and it indicates whether the critical section is in a locked
state.

Let’s take a look at a few examples (see Listings 10.18, 10.19, and 10.20) of what
the LockCount field resembles with critical sections in various states. (Remember—
you must be running on Windows 2003 Server SP1 at a minimum.)

Listing 10.18

Old Critical Section

+0x000 DebugInfo        : 0x7c97c8c0

+0x004 LockCount        : -1

+0x008 RecursionCount   : 0

+0x00c OwningThread     : (null)

+0x010 LockSemaphore    : (null)

+0x014 SpinCount        : 0

New Critical Section

+0x000 DebugInfo        : 0x77ca5be0 

+0x004 LockCount        : -1

+0x008 RecursionCount   : 0

+0x00c OwningThread     : (null)

+0x010 LockSemaphore    : (null)

+0x014 SpinCount        : 0

Listing 10.19

Old Critical Section

+0x000 DebugInfo        : 0x7c97c8c0

+0x004 LockCount        : 0

+0x008 RecursionCount   : 1

+0x00c OwningThread     : 0x00000b04

+0x010 LockSemaphore    : (null)

+0x014 SpinCount        : 0

New Critical Section

+0x000 DebugInfo        : 0x77ca5be0 

+0x004 LockCount        : -2

+0x008 RecursionCount   : 1

+0x00c OwningThread     : 0x00000134

+0x010 LockSemaphore    : (null)

+0x014 SpinCount        : 0
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Listing 10.20

Old Critical Section

+0x000 DebugInfo        : 0x7c97c8c0

+0x004 LockCount        : 1

+0x008 RecursionCount   : 1

+0x00c OwningThread     : 0x00000b04

+0x010 LockSemaphore    : 0x000007f4

+0x014 SpinCount        : 0

New Critical Section

+0x000 DebugInfo        : 0x77ca5be0

+0x004 LockCount        : -6

+0x008 RecursionCount   : 1

+0x00c OwningThread     : 0x00000134

+0x010 LockSemaphore    : 0x00000010

+0x014 SpinCount        : 0

To make it easier to understand the LockCount field of the new critical sections,
let’s look at a binary breakdown of the LockCount field of the critical section in
Listing 10.20. To get a binary representation of the LockCount field, we use the dyd
command:

0:003> dyd 01002008+0x4

3       2        1        0

10987654 32109876 54321098 76543210

———— ———— ———— ————

0100200c  11111111 11111111 11111111 11111010 fffffffa

01002010  00000000 00000000 00000000 00000001  00000001

01002014  00000000 00000000 00000001 11111000  000001f8

01002018  00000000 00000000 00000000 00010000  00000010

0100201c  00000000 00000000 00000000 00000000  00000000

01002020  00000000 00000000 00000000 00000000  00000000

01002024  00000000 00000000 00000000 00000000  00000000

01002028  00000000 00000000 00000000 00000000  00000000

The first thing to remember is that the bits are all inverted, so prior to trying to fig-
ure out the lock state, we need to flip the bits again:

00000000 00000000 00000000 00000101

The Lock Bit (bit 0) is 1, which means that the critical section is locked. The Waiter
Woken bit (bit 1) is 0, which means that no waiters have yet been woken. The remain-
ing 30 bits is the number of waiters, which in our case is 1. Fortunately, the !cs
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extension command has been updated to recognize this change on the affected plat-
forms and can display the information in a friendlier way. For example, if we used the
same critical section as preceding as a parameter to the !cs extension command, we
would see the following:

0:003> !cs 01002008

---------------------

Critical section   = 0x01002008 (10LockConv!g_cs+0x0)

DebugInfo          = 0x77965be0

LOCKED

LockCount          = 0x1

WaiterWoken        = No

OwningThread       = 0x000001f8

RecursionCount     = 0x1

LockSemaphore      = 0x10

SpinCount          = 0x00000000

The critical section is in a LOCKED state, has one waiter, and no waiters have been
woken.

Direct Usage of Critical Section Fields 

Because the critical section structure is directly available to the developers, there have been
cases in which developers make assumptions about the meaning of the fields. One such
example is the LockCount field, where application code uses the LockCount field
directly to see if the critical section is free or being held. It should go without saying that
looking at the critical section fields directly rather than going through the critical section
API(s) is a big no-no. Although the structure itself is documented, Microsoft reserves the right
to change that structure in any shape it deems necessary. If you have code that directly
manipulates the critical section fields, you run the risk of your application not working
between Windows versions. 

Managing Critical Sections
Properly managing critical sections is just as important as managing any other form of
resource. Mismanagement can lead to devastating situations that are extremely diffi-
cult and time-consuming to debug. In this part of the chapter, we take a look at some
of the most common problems when managing critical sections.
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The four most common types of problems seen when managing critical sections are

■ Use of a critical section before initialization
■ Use of a critical section after deletion
■ Overreleasing the critical section
■ Underreleasing the critical section

To understand the first problem, usage of a critical section before initialization, we
must first be able to identify what a properly initialized critical section resembles.
Listing 10.21 shows the contents of an initialized critical section.

Listing 10.21

+0x000 DebugInfo        : 0x7c97c8c0

+0x000 Type             : 0

+0x002 CreatorBackTraceIndex : 0

+0x004 CriticalSection  : 0x0007ff2c

+0x008 ProcessLocksList : _LIST_ENTRY [ 0x7c97c0c8 - 0x7c97c8a8 ]

+0x010 EntryCount       : 0

+0x014 ContentionCount  : 0

+0x018 Spare            : [2] 0

+0x004 LockCount        : -1

+0x008 RecursionCount   : 0

+0x00c OwningThread     : (null)

+0x010 LockSemaphore    : (null)

+0x014 SpinCount        : 0

All fields of the critical section in Listing 10.21 have proper default values, and the
CriticalSection field of the DebugInfo structure points back to the actual criti-
cal section structure. 

Now, imagine that a thread had managed to call EnterCriticalSection
before it had been initialized. The net result is most likely an access violation with a
stack trace, as follows:

ChildEBP RetAddr  Args to Child

0007fe98 7c94243c c0000008 00090000 0007fa0c ntdll!RtlRaiseStatus+0x26

0007ff18 7c90104b 0007ff2c 01001152 0007ff2c ntdll!RtlpWaitForCriticalSection+0x204

0007ff20 01001152 0007ff2c 0007ff50 77c3ac60 ntdll!RtlEnterCriticalSection+0x46

0007ff44 010012a0 00000001 00034e50 00033338 simple!main+0x12

0007ffc0 7c816fd7 00090000 0007fa0c 7ffde000 simple!mainCRTStartup+0x12f

0007fff0 00000000 01001171 00000000 78746341 kernel32!BaseProcessStart+0x23
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If you encounter a stack trace similar to this, you should first check the structural integri-
ty of the critical section and try to understand if the critical section is in good shape.

0:000> dt CRITICAL_SECTION 0007ff2c

+0x000 DebugInfo        : 0x0007ff50

+0x004 LockCount        : 2009312352

+0x008 RecursionCount   : 216660

+0x00c OwningThread     : 0x0007ff4c

+0x010 LockSemaphore    : 0x00090000

+0x014 SpinCount        : 0x7fa0c

This seems to be an invalid critical section. All the fields of the critical section have
values that do not seem to make sense. Typically, when you are dealing with a critical
section that has not yet been initialized, the values you will see are seemingly random
and pretty much every field is incorrect.

The second form of mismanaged critical sections is the usage of a critical section
after it has been deleted. Once again, it is important to be able to know what a criti-
cal section that has been deleted actually resembles:

+0x000 DebugInfo        : (null)

+0x004 LockCount        : 0

+0x008 RecursionCount   : 0

+0x00c OwningThread     : (null)

+0x010 LockSemaphore    : (null)

+0x014 SpinCount        : 0

Not surprisingly, the fields of the critical section have all been initialized to 0 (or
null). Now, if a thread tries to acquire the critical section, you will see an access vio-
lation much as you saw in the use before initialization scenario:

ChildEBP RetAddr  Args to Child

0007ff18 7c90104b 0007ff2c 01001170 0007ff2c ntdll!RtlpWaitForCriticalSection+0x8c

0007ff20 01001170 0007ff2c 00000000 00000001 ntdll!RtlEnterCriticalSection+0x46

0007ff44 010012aa 00000001 00034e50 00033338 simple!main+0x30

0007ffc0 7c816fd7 00090000 0007fa0c 7ffdd000 simple!mainCRTStartup+0x12f

0007fff0 00000000 0100117b 00000000 78746341 kernel32!BaseProcessStart+0x23

The final two problems we will look at fall under the categories of under-and-over
releasing critical sections. Both of these problems typically surface as hangs in the
application. Let’s take a look at the first problem—underreleasing critical sections.
This problem is typically easy to spot because you will have a number of threads wait-
ing to acquire a critical section with the following stack trace:
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1  Id: 748.d14 Suspend: 1 Teb: 7ffdd000 Unfrozen

ChildEBP RetAddr  Args to Child

002bff14 7c90e9c0 7c91901b 000007e8 00000000 ntdll!KiFastSystemCallRet

002bff18 7c91901b 000007e8 00000000 7c97c140 ntdll!NtWaitForSingleObject+0xc

002bffa0 7c90104b 00002008 010011e0 01002008 ntdll!RtlpWaitForCriticalSection+0x132

002bffa8 010011e0 01002008 002bffec 7c80b683 ntdll!RtlEnterCriticalSection+0x46

…

…

From there on, we have all the necessary information in the critical section (such as
the owning thread) to backtrack and find out why the critical section was never
released.

Similarly, overreleasing a critical section also results in a hang. Imagine that an
application executes the following simple piece of code:

InitializeCriticalSection(&g_cs);

EnterCriticalSection(&g_cs);

LeaveCriticalSection(&g_cs);

LeaveCriticalSection(&g_cs);

EnterCriticalSection(&g_cs);

After the first call to EnterCriticalSection, we would expect the state of critical
section to be similar to the following:

+0x000 DebugInfo        : 0x7c97c8c0

+0x004 LockCount        : 0

+0x008 RecursionCount   : 1

+0x00c OwningThread     : 0x00000afc

+0x010 LockSemaphore    : (null)

+0x014 SpinCount        : 0

Next, the application leaves the critical section, and we expect that the critical section
state resembles the following:

+0x000 DebugInfo        : 0x7c97c8c0

+0x004 LockCount        : -1

+0x008 RecursionCount   : 0

+0x00c OwningThread     : (null)

+0x010 LockSemaphore    : (null)

+0x014 SpinCount        : 0

The next call to leave the critical section causes the overrelease, and the critical sec-
tion resembles the following:
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+0x000 DebugInfo        : 0x7c97c8c0

+0x004 LockCount        : -2

+0x008 RecursionCount   : -1

+0x00c OwningThread     : (null)

+0x010 LockSemaphore    : (null)

+0x014 SpinCount        : 0

Because the LockCount field is not -1 (meaning an unlocked critical section) but
rather -2, the next call to EnterCriticalSection results in a hang because
Windows believes that the critical section is, in fact, locked:

0  Id: 4bc.afc Suspend: 1 Teb: 7ffdf000 Unfrozen

ChildEBP RetAddr  Args to Child

0007fe98 7c90e9c0 7c91901b 000007f4 00000000 ntdll!KiFastSystemCallRet

0007fe9c 7c91901b 000007f4 00000000 7c97c140 ntdll!NtWaitForSingleObject+0xc

0007ff24 7c90104b 00002008 0100118d 01002008 ntdll!RtlpWaitForCriticalSection+0x132

0007ff2c 0100118d 01002008 0007ff4c 00000000 ntdll!RtlEnterCriticalSection+0x46

0007ff44 010012c7 00000001 00034e50 00033338 simple!main+0x4d

0007ffc0 7c816fd7 00090000 0007fa0c 7ffd7000 simple!mainCRTStartup+0x12f

0007fff0 00000000 01001198 00000000 78746341 kernel32!BaseProcessStart+0x23

As a last step, we can dump out the critical section to see what happened to it while
we attempted to enter it:

+0x000 DebugInfo        : 0x7c97c8c0

+0x004 LockCount        : -1

+0x008 RecursionCount   : -1

+0x00c OwningThread     : (null)

+0x010 LockSemaphore    : 0x000007f4

+0x014 SpinCount        : 0

The LockCount field has now been increased by 1 (-1), which makes sense because
we just tried to enter the critical section.

As a general rule of thumb, if you see a hang on a critical section with a negative
lock count and the owning thread being null, you should consider the source of the
problem being an overreleased critical section.

Many more ways exist in which a critical section can get into a nonrecoverable
state because of mismanagement. Other such ways include corrupting the critical sec-
tion, freeing memory containing active critical sections, unloading a DLL with an
active critical section, and many more. Rather than having to do a lot of backtracking
after the problem surfaces, it would be nice to be able to catch some of these prob-
lems when the culprit thread misbehaves rather then when the victim threads either
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crash or hang. Fortunately, our good old friend Application Verifier comes to our res-
cue once again. Under the Basics test setting is a setting called Locks, which performs
a whole slew of tests while the application runs. It will catch anything from using an
uninitialized critical section to freeing a piece of memory that contains an active and
not-yet-released critical section. We strongly recommended that you turn on this test
setting anytime your application has synchronization code in it, as it catches the cul-
prit code in action rather than as a victim.

Summary

Multithreading might seem to be a trivial programming exercise. After all, it’s pretty
simple. You spin up a number of threads and have them work in parallel to accom-
plish some task. As you’ve seen throughout the chapter, the area of concurrency and
synchronization is far from trivial. One could even argue that it’s one of the top areas
prone to bugs. Extreme care must be taken to ensure that all threads live and work
together in harmony. Small mistakes in this logic can have substantial and devastating
consequences.

In this chapter, we took a look at some very common mistakes made when deal-
ing with multithreaded applications and synchronization. We started with a brief
overview of the different synchronization primitives available in Windows and the
high-level process of troubleshooting a synchronization problem. A number of sce-
narios, such as deadlocks, orphaned critical sections, API awareness, and managing
critical sections were shown, as well as how to find the root cause using the debug-
gers and tools available. Preventative measures, such as using Application Verifier,
show how to find the root cause earlier in the development process, thereby reduc-
ing the amount of time spent on debugging complex synchronization problems.
Additionally, techniques using the C++ language were shown to decrease the risk of
running into synchronization problems.
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C H A P T E R  1 1

WRITING CUSTOM DEBUGGER
EXTENSIONS

As you have seen throughout detailed examples shown so far, the system-level debug-
gers and tools available to Windows developers provide a range of advanced and pow-
erful techniques to deal with a wide spectrum of problems. Still, there are times when
certain aspects of debug sessions become very repetitive and error prone. Examples
of this include dumping out custom data structures or finding security settings on ker-
nel objects. Fortunately, the team responsible for the debuggers at Microsoft recog-
nized the pain associated with these tasks and introduced the notion of debugger
extensions. At a 50,000 foot level, a debugger extension is a component that enables
automation of repetitive and complex tasks for more efficient debugging. This chap-
ter explains the fundamentals behind debugger extensions, discussing the anatomy of
a debugger extension. Then it provides a complete walk-through of how to implement
a debugger extension that automates the process of dumping the contents of a bina-
ry tree data type.

Introduction to Debugger Extensions

Prior chapters show a variety of useful debugging sessions and associated extension
commands. Examples of such include !sid, !token, and !sd. Where do these
extension commands come from? Are they implemented in the debugger itself? Most
of the debug commands that you have seen so far are implemented as custom debug-
ger extensions. Debugging Tools for Windows includes a core set of debugger exten-
sions that include the most commonly used commands during debug sessions. Table
11.1 lists the core debugger extensions available. 
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Table 11.1

Extension Extension Name Description

General Ext.dll General extension commands, such as
Extensions error

cxr
std_map

User Mode Ntsdexts.dll Extension commands used frequently in 
Extensions user mode debugging, such as

runaway
critsec
threadtoken

RPC extensions rpcexts.dll Extension commands for debugging RPC, such as
authinfo
getcallinfo
rpcheap

In its most basic form, a debugger extension is nothing more than a DLL that exports
a set of entry points. Each entry point is invoked by the debug engine when the user
types the command (same name as the entry point) in a debug session. As an exam-
ple, consider the following command:

0:000> !ext.error 0

Error code: (Win32) 0 (0) - The operation completed successfully. 

The command states that the error command is part of the ext.DLL extension and
that the command should be executed. In this case, the ext.DLL exports a matching
‘error’ function invoked as a result of the preceding command execution. The com-
mand itself simply prints the textual representation of a Windows error code 0 to the
debugger console window. 

Examining Debugger Extensions

Using an SDK tool named dumpbin.exe, you can very easily get a list of all exported func-
tions from any extension DLL (including the ones listed in Table 11.1). For example, running
dumpbin.exe against the exts.dll yields the following:
C:\>dumpbin /EXPORTS exts.dll
Microsoft (R) COFF/PE Dumper Version 8.00.50727.42

Copyright (C) Microsoft Corporation.  All rights reserved.
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Dump of file exts.dll

File Type: DLL

Section contains the following exports for exts.dll

00000000 characteristics

44B0109E time date stamp Sat Jul 08 13:07:58 2006

0.00 version

1 ordinal base

32 number of functions

32 number of names

ordinal hint RVA      name

2    0 0002D8F0 DebugExtensionInitialize

3    1 0002D9B0 DebugExtensionNotify

4    2 0002DB80 DebugExtensionUninitialize

1    3 000446E0 _EFN_GetEnvironmentVariable

5    4 0003FE50 acl

6    5 0002EC90 atom

7    6 00024750 avrf

8    7 00021D50 bitcount

9    8 000235A0 cs

10    9 0002ED70 decodeptr

11    A 0002B250 dlls

12    B 0002C5E0 dlltree

13    C 0002ED70 encodeptr

14    D 00044890 envvar

15    E 0002E000 gflag

16    F 0001C850 heap

17   10 0002DE80 help

18   11 0002E530 kuser

19   12 000399E0 mui

20   13 00045960 peb

21   14 0003C3D0 psr

22   15 0003D920 rebase

23   16 0003F4B0 sd

24   17 00047260 shipassert

25   18 0003FD70 sid

26   19 00040700 slist

27   1A 00043EC0 stl

28   1B 00045F70 teb

29   1C 00047090 tls

30   1D 00049240 token
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31   1E 00050100 tp

32   1F 00019A40 udeadlock

Summary

5000 .data

6000 .reloc

1000 .rsrc

54000 .text

Example Debugger Extension

So far, you’ve seen examples of some small, but very useful, extensions. To illustrate
the real power of debugger extensions, let’s assume that you have developed a simple
version of a binary tree component that allows developers to add items to a binary
tree, as well as traverse the tree. (For brevity’s sake, other common binary tree oper-
ations are omitted.) The binary tree is also limited to storing integers. The code for
the binary tree is shown in Listing 11.1 and is fairly self-explanatory. 

Listing 11.1

// bstree.h

#ifndef __BSTREE_H

#define __BSTREE_H

#include <windows.h>

#include <strsafe.h>

class CBinaryTree

{

public:

CBinaryTree(CHAR* pszDescription);

BOOL Add(int num);

VOID Traverse();

private:

class _TreeNode

{

public:

_TreeNode(int num)

{

pLeftChild = NULL; pRightChild = NULL; data=num; 
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}

int data;

_TreeNode* pLeftChild;

_TreeNode* pRightChild;

};

BOOL AddNode(_TreeNode* item, 

_TreeNode* current, 

DWORD dwRecursiveCount);

VOID TraverseTree(_TreeNode* current);

_TreeNode*    m_pHead;

DWORD     m_dwDepth;

DWORD        m_dwNumNodes;

};

#endif

// bstree.cpp

#include “bstree.h”

#include <stdio.h>

CBinaryTree::CBinaryTree () : m_pHead(NULL), m_dwDepth(0), m_dwNumNodes(0)

{

}

BOOL CBinaryTree::Add(int num)

{

BOOL bRet=FALSE;

_TreeNode* item=new _TreeNode(num);

if(item!=NULL)

{

bRet=AddNode(item, m_pHead, 1);

if(bRet==TRUE)

{

m_dwNumNodes++;

}

}

return bRet;

}

VOID CBinaryTree::Traverse()

{

TraverseTree(m_pHead);

}
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VOID CBinaryTree::TraverseTree(_TreeNode* current)

{

if(current==NULL)

{

return;

}

//

// Simple left->right subtree traversal

//

TraverseTree(current->pLeftChild);

printf(“Item: %d\n”, current->data);

return;

}

BOOL CBinaryTree::AddNode(_TreeNode* item, 

_TreeNode* current, 

DWORD dwRecursiveCount)

{

BOOL bRet=FALSE;

//

// Empty tree, initialize the head pointer

//

if(current==NULL)

{

m_pHead=item;

m_dwDepth=dwRecursiveCount;

return TRUE;

}

else

{

if(item->data>current->data)

{

if(current->pRightChild==NULL)

{

current->pRightChild=item;

m_dwDepth=(m_dwDepth<dwRecursiveCount+1) ? 

dwRecursiveCount+1 : m_dwDepth;

bRet=TRUE;

}

else

Listing 11.1 (continued)
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{

return AddNode(item, 

current->pRightChild, 

dwRecursiveCount+1);

}

}

}

else if(item->data<current->data)

{

if(current->pLeftChild==NULL)

{

current->pLeftChild=item;

m_dwDepth=(m_dwDepth<dwRecursiveCount+1) ? 

dwRecursiveCount+1 : m_dwDepth;                

bRet=TRUE;

}

else

{

return AddNode(item, 

current->pLeftChild, 

dwRecursiveCount+1);

}

}

return bRet ;

}

The source code and binary for the binary tree can be found in the following folders:

Source code: C:\AWD\Chapter11\bstree
Binary: C:\AWDBIN\WinXP.x86.chk\bstree.exe

Furthermore, a simple test application has been written (bstree.exe) that makes use of
the binary tree. The source code for the bstree.exe application is shown in Listing 11.2.

Listing 11.2

#include “bstree.h”

void __cdecl main ( )

{

CBinaryTree* tree = new CBinaryTree();

if ( tree != NULL )

{
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tree->Add (10);

tree->Add (5);

tree->Add (15);

tree->Add (7);

tree->Add (13); 

tree->Traverse ();

}

}

The output from one application run is as follows:

Item: 5

Item: 10

Judging from the output, something is going wrong in the application. The code
added five nodes to the binary tree, but only two are displayed when traversing the
tree. How exactly would you proceed with this debug session? Really only two major
portions of this code could have gone wrong:

■ The adding of new nodes to the tree
■ The traversal code 

Since the problem appears to be happening while traversing and displaying the con-
tents of the tree, a good starting point is to set a breakpoint in the Traverse func-
tion and verify the integrity of the tree by using the dt command. 

0:000> dt this

Local var @ 0x6ff1c Type CBinaryTree*

0x00262c30

+0x000 m_pHead          : 0x00262c50

As you can see, there is not much to the CBinaryTree data members. It merely con-
tains a pointer (m_pHead) to the first node of the tree, and the pointer appears, at first
sight, to be quite reasonable (that is, non-null and within decent range). Because we
only have a pointer to the root node of the tree, how can we go about dumping out the
contents in the debugger? The good news is that it is possible; the bad news is that it is
tedious. As with most binary tree implementations, the head pointer points to a data type
that typically contains the data item in the node, as well as a left child/right child item
that are yet other pointers to the same data type. Looking at the source code, we can see
that the m_pHead pointer is of type _TreeNode, which is shown below:

Listing 11.2 (continued)
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class _TreeNode

{

public:

_TreeNode (int num) { pLeftChild=NULL; pRightChild=NULL; data=num; }

int data;

_TreeNode* pLeftChild;

_TreeNode* pRightChild;

};

To see the contents of the m_pHead pointer, we again use the dt command on the
m_pHead pointer:

0:000> dt bstree!CBinaryTree::_TreeNode 0x00262c50

+0x000 data             : 10

+0x004 pLeftChild       : 0x00262c78

+0x008 pRightChild      : 0x00262ca0

The data field is set to 10 (which matches the client code’s first insertion), and the
pointers all seem reasonable. Before we proceed with traversing the entire tree by
hand in the debugger, we should take a look at what we expect the tree to look like.
Here are the insertions made in the client code:

tree->Add(10);

tree->Add(5);

tree->Add(15);

tree->Add(7);

tree->Add(13);

The insertions yield a tree shown in Figure 11.1.
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What we would reasonably expect if we were to dump out the left child pointer is a
_TreeNode with the data item set to 5, the left child set to null, and the right child
containing yet another valid pointer:

0:000> dt bstree!CBinaryTree::_TreeNode 0x00262c78

+0x000 data             : 5

+0x004 pLeftChild       : (null)

+0x008 pRightChild      : 0x00262cc8

Continuing this process for the entire tree, we end up with the following debug session:

0:000> dt bstree!CBinaryTree::_TreeNode 0x00262cc8

+0x000 data             : 7

+0x004 pLeftChild       : (null)

+0x008 pRightChild      : (null)

0:000> dt bstree!CBinaryTree::_TreeNode 0x00262ca0

+0x000 data             : 15

+0x004 pLeftChild       : 0x00262cf0

+0x008 pRightChild      : (null)

0:000> dt bstree!CBinaryTree::_TreeNode 0x00262cf0

+0x000 data             : 13

+0x004 pLeftChild       : (null)

+0x008 pRightChild      : (null)

At this point, we have verified the integrity of the tree (data items were valid, as well
as all pointers being dereferenced successfully), which means that the Add function
of the tree appears to be working properly and something has to be wrong with the
Traverse function. I’ll leave it as an exercise to the reader to code review the
Traverse function and spot the mistake.

Quite a lot of debugging work, isn’t it? And this is only for a tree of size 5. Imagine
that this component was used in a system under heavy stress; we could end up with
thousands of entries. A much better approach would be if we could tell the debugger
how to interpret this data structure by simply issuing a tree command with the head
pointer and let the debugger automatically traverse the binary tree instance. 

This is a prime scenario in which we can leverage the power of debugger exten-
sions to automate the tedious process of dumping the contents of our tree data type.
By creating our own debugger extension, we can implement a command that takes a
pointer to the root of the tree and displays the contents. This could save us hours of
manual debugging steps. Before we proceed with the technical details of how to
implement our debugger extension, we need to look at and understand the two dif-
ferent debugger extension models that the debuggers expose and then decide which
would work best for our scenario.
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Debugger Extension Models
The basic idea behind a custom debugger extension is to allow users to automate their
debug sessions by typing in specific commands implemented in the debugger exten-
sion. How does this actually work? At a high level, it is a four-step process, as illus-
trated in Figure 11.2.
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Extension interacts with
debug engine to produce and

print the results:
“Error code: (Win32) 0x5 (5) -

Access is denied.”

User enters command:
!error 0x5

Debug engine walks the list
of currently loaded debugger

extensions looking for an
extension that implements

the command:
ext. dll

Debug engine calls the
extension that exports the

command:
ext.dll (error)

Figure 11.2

The most critical part of a debugger extension is how it interacts with the main debug
engine (step 4). Three different models exist that define this interaction. The first
model, named the WDbgExt model, is the original model, and it has been around for
quite some time. Interaction between the debugger extension and main debug
engine is done via regular C API(s). Because it is based on C, it provides for a fairly
painless programming model, but it is also somewhat limited in what interactions are
supported. Table 11.2 shows the currently supported API(s) in the WDbgExts model.
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Table 11.2

WDbgExts Function Description

GetContext Returns context of process being debugged.
SetContext Sets the context of the process being debugged.
CheckControlC Checks if the user has pressed CTRL+C. Useful when

implementing interruptible commands.
GetDebuggerData Retrieves debugger data.
Disasm Disassembles.
Dprintf Prints a string to the debugger command window.
GetExpression Returns the value of an expression.
IoCtl Entry point for kernel debugger extension routines.
GetKdContext Returns total number of processors and number of cur-

rent processor.
ReadMemory Reads from memory.
WriteMemory Writes to memory.
ReadMsr Reads contents of model-specific register on Pentiums.
WriteMsr Writes to a model-specific register on Pentiums.
ReadPhysical Reads from physical memory.
WritePhysical Writes to physical memory.
StackTrace Returns a stack trace from the process being debugged.
GetSymbol Locates a symbol.
GetSetSympath Gets or sets the symbol path.
ReadControlSpace Reads processor specific control space.
ReadControlSpace64 Reads the processor-specific control space (64 bit).
ReadIoSpace Reads from system I/O locations.
ReadIoSpace64 Reads from system I/O locations (64 bit).
ReadIoSpaceEx In addition to I/O location reads, reads bus I/O.
ReadIoSpaceEx64 In addition to I/O location reads, reads bus I/O (64 bit).
WriteIoSpace Writes to system I/O locations.
WriteIoSpace64 Writes to system I/O locations (64 bit).
WriteIoSpaceEx In addition to I/O location reads, reads bus I/O.
WriteIoSpaceEx64 In addition to I/O location reads, reads bus I/O (64 bit).
SetThreadForOperation Sets thread to use for next stack trace.
SetThreadForOperation64 Sets thread to use for next stack trace (64 bit).
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A few callbacks functions also enable the debug engine to query the debugger exten-
sion for some basic information (such as version), as well as initialization routines
called by the debug engine. 

■ ExtensionApiVersion: Returns the version of the extension
■ CheckVersion: Ensures matching versions between debug engine and 

extension
■ WinDbgExtensionDllInit: Initialization routine for WinDbg extensions

The newer and more powerful model is named DbgEng and is based on COM
(Component Object Model). Debugger extensions receive COM interface pointers in
their implementations that can be used to interact with the main debug engine. The
interface pointers are passed to each function exported in the extension DLL. The
COM interface model exposes a large API set and enables very fine-grained control
over the interaction between the extension and the debug engine. For more detailed
information on the available functions for each interface and detailed descriptions,
see the SDK documentation (debugext.chm).

The plethora of interfaces and associated functions available for the DbgEng
model is substantially larger and more powerful than that of its older sibling
(WDbgExts) but also slightly more complex to program against. To bridge the gap
between the WDbgExt and DbgEng models, a third model was introduced, called
the EngExtCpp model. The EngExtCpp model is a C++ based extension library that
is built on top of DbgEng. It provides an abstraction of the DbgEng model that
makes programming against it much easier. 

It is important to note that the models are not mutually exclusive. A hybrid
approach is possible and oftentimes beneficial. In one and the same debugger exten-
sion, one can imagine using the C-style API(s) of the WdbgExts model to do simpler
tasks while leveraging the power of the DbgEng model for more advanced com-
mands. To make life interesting and educational, we illustrate a hybrid model in the
custom debugger extension we are about to implement.

Requirements for Our Sample Extension
As with any component that we develop, it is important to define the exact require-
ments. Let’s begin our implementation journey by dutifully spending the time to
specify exactly what we expect the debugger extension to do. 

Our extension DLL is named sysexts.dll, and it exports the following com-
mands. (Don’t worry about the specific API(s) at the moment; they will be explained
later on.)
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■ Help
Description
The help command displays the syntax of all available commands in the
debugger extension as well as a brief description and example of how the com-
mand is used.
Example
0:000> !sysexts.help
SYSYEXTS.DLL commands:
Help    = Shows this help
DumpTree <address> = Dumps out the contents of a CBinaryTree.
Address must point to the root node of the tree.
Debug Engine API(s)
The only debug engine API required in this command is the dprintf API,
which allows us to print information to the debug console window (part of the
Wdbgexts model).

■ DumpTree
Description
The DumpTree command traverses the CBinaryTree root pointer passed in
and dumps out its contents. The traversal will be done using the standard in-
order tree traversal algorithm.
Example
0:000> !sysexts.dumptree 0x00262c40
** Node **

Data: 5
Left child pointer: 0x0
Right child pointer: 0x262cb8

** Node **
Data: 7
Left child pointer: 0x0
Right child pointer: 0x0

0:000>
Debug Engine API(s)
The primary debug engine API required is IDataSpaces::ReadVirtual, which
enables an extension to read from virtual memory.

■ Support for custom formatting of our objects when the user types dt <our-
object> <address>
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Description
Dumps out an augmented representation of the CBinaryTree contents. The
additional information includes the root node of the tree.
Example
0:000> dt CBinaryTree 0x00262c20

Root Node [Ptr]: 0x262D48
Root Node data: 10
Root Node Left Child [Ptr]: 0x262D70
Root Node Right Child [Ptr]: 0x262D98

+0x000 m_pHead          : 0x00262d48
+0x004 m_dwDepth        : 3
+0x008 m_dwNumNodes     : 5
+0x00c m_szDescription  : [256]  “Sample binary tree”

Debug Engine API(s)
Implement the KnownStructOutput function.

■ Cancellation support
Description
Support for canceling a currently executing command. All debugger extensions
that can potentially execute a command for long periods of time should include
cancellation logic. Cancellations are normally carried out when the user press-
es CTRL+C during command execution. Although it is not required to include
such support, nothing is more frustrating than having to wait several minutes for
a command, which has mistakenly been entered, to finish executing. Since our
DumpTree command can potentially take quite some time to finish (if the tree
depth is large), we include support for cancellations in our implementation.
Debug Engine API(s)
CheckControlC API  (part of the Wdbgexts model)

Now that you have a clear understanding of the requirements for our debugger exten-
sion, we can begin the implementation journey.

Required Header Files and Code Organization
To write custom debugger extensions, you must do a custom installation of the
Debugging Tools for Windows and select the SDK option. Figure 11.3 shows the
directory structure of the SDK folder once installed.
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Figure 11.3

As is the case with any new SDK you encounter, the first thing you must figure out is
what header files are required in order to code against it. The choices for which head-
er files can be used are shown in Table 11.3.

Table 11.3

Header File Description

dbgeng.h Included by all debugger extensions that use the DbgEng model
wdbgexts.h Included by all debugger extensions that use the WDbgExts model
engextcpp.hpp Included by all debugger extensions that use the EngExtCpp model

If your debugger extension only uses one particular model, including one of the pre-
ceding files is sufficient. Because our implementation is a hybrid model, we include
both files. 

Next, the question of code organization must be addressed. The debugger exten-
sion we will be building is laid out as described in Table 11.4.

C:\Program Files\Debugging Tools For Windows

SDK

Help

Inc

Lib

amd64

i386

ia64

Samples

srcsrv
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Table 11.4

Source File Description

Sources File required by the WDK build environment. This file details how the
debugger extension is built (see Compiling and Linking).

sysexts.cpp This file contains the implementation of all the debugger extension
commands (including initialization and uninitialization code).

sysexts.h This is the header file that accompanies the main sysexts.cpp file.
sysexts.def This is the file that is referenced from sources and details what 

functions in the extension DLL are exported.

Most of the time, the code layout defined in Table 11.4 is perfectly sufficient. If your
debugger extension grows in size and the number of implemented commands gets
larger and larger, you might consider breaking up the debugger extension source code
into separate files to make maintenance easier. 

The source code and binary for the sample extension can be found in the follow-
ing folders:

Source code: C:\AWD\Chapter11\sysexts
Binary: C:\AWDBIN\WinXP.x86.chk\sysexts.dll

Let’s begin by looking at the sysexts.h file:

#pragma once 

#include <windows.h>

#define KDEXT_64BIT

#define DBG_COMMAND_EXCEPTION            ((DWORD   )0x40010009L)

#include <wdbgexts.h>

#include <dbgeng.h>

WINDBG_EXTENSION_APIS64 ExtensionApis;

In addition to including the debug SDK header files as discussed previously, we
include windows.h to get access to most of the Windows API declarations. The only
odd parts of this header file are the following cryptic definitions: 
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#define KDEXT_64BIT

#define DBG_COMMAND_EXCEPTION ((DWORD)0x40010009L)

WINDBG_EXTENSION_APIS64 ExtensionApis;

For the first two definitions (KDEXT_64BIT and DBG_COMMAND_EXCEPTION), if a
hybrid model is being implemented (as in our case), the inclusion of both debug
header files requires the previous definitions prior to including the wdbgexts.h head-
er file. Without the definitions, you will encounter build errors. If you are imple-
menting a nonhybrid model, the definition is not required.

The third definition also deals with making sure that the wdbgexts model is ini-
tialized properly. For an extension to use the WDbgExts API(s), it needs to define a
global variable to make sure that it can use the WDbgExts API(s). The global variable
needs to be initialized prior to using the debugger extension, and it is typically done
in the initialization routine of the extension. (You will see an example of this in the
next section “Extension Initialization.”)

The last file of importance before we dig into the command implementations is
sysexts.def:

EXPORTS

help

dumptree

DebugExtensionInitialize

DebugExtensionUninitialize

KnownStructOutput

This file merely tells the build environment which functions in our debugger exten-
sion DLL should be considered publicly exported. If we were to add more com-
mands, the name of the function should also be added to this file. We begin our
implementation with the extension initialization and uninitialization code.

Extension Initialization
When a user enters the .load command in the debugger, the debug engine responds
by loading the extension DLL and executing a sequence of function calls on the
debugger extension, enabling the extension to perform some preparatory work before
accepting commands. Similarly, when the debugger extension is unloaded, the debug
engine calls an exported function on the extension DLL to allow for cleanup. During
the debug session, any number of function calls are made by the debug engine to the
extension DLL, depending on the action being performed in the debugger. The
process of loading and unloading the extension DLL and the corresponding function
calls is shown in Figure 11.4. 
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Figure 11.4

When the debugger engine loads an extension in response to the.load command,
the debug engine first maps the DLL into the address space of the debugger and sub-
sequently calls the DebugExtensionInitialize function, which must be exported
from the custom extension DLL. The exact signature of the function is shown below.

HRESULT CALLBACK 

DebugExtensionInitialize(OUT PULONG Version, OUT PULONG Flags);
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It is critical that the debugger extension exports this same function, or the extension
will fail to load. The main purpose of this function is to enable the debugger extension
to do initialization work that might be required for future commands (such as initial-
izing other debug interfaces, allocating resources, and so on). In the case of our exten-
sion, the primary work required in our initialization function is the following.

■ Initialize version information. 
■ Initialize required COM interfaces. 
■ Initialize type information. 
■ Initialize WinDbg extension data.

The first thing our extension must do is to initialize the version information. 

Initializing Version Information
It is important for a debugger extension to relay its version information to the debugger
engine. The DebugExtensionInitialize function called by the debugger engine
when the extension is loaded provides the mechanism to report this information. The
function signature passes two parameters—one of which can be used for this purpose.

■ Version
The version structure should be filled in by the extension DLL during initial-
ization to indicate which version of the debugger extension is being loaded.
The high 16 bits of this ULONG parameter represent the major version, and
the low 16 bits represent the minor version. The easiest way to build the ver-
sion is to use the helper macro DEBUG_EXTENSION_VERSION:

*Version = DEBUG_EXTENSION_VERSION(Major,Minor)

■ Flags
The flags parameter is reserved and should always be set to 0.

One important issue to note is that when this function is called, it is not guaranteed
that there is an active debug session, and the function should not assume that session
information is available. 

Initializing COM Interfaces
The next task our initialization code must tackle is to initialize COM debug engine
interfaces so that we can effectively interact with the debugger engine to acquire the
necessary data structures for the execution of our commands. We will be using the
following COM interfaces to dump out our binary tree:
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■ IDebugClient
■ IDebugControl
■ IDebugDataSpaces
■ IDebugSymbols
■ IDebugSymbols3

The very first COM interface that we need access to is the IDebugClient interface.
We need this interface so that we can get access to a structure required by the
WDbgExts model to function properly, as well as being able to query for all the other
interfaces. The way to get an interface pointer to the IDebugClient COM interface
is to call the DebugCreate API:

HRESULT DebugCreate(IN REFIID InterfaceId,OUT PVOID* Interface);

The interface ID can be easily retrieved using the __uuidof compiler extension that
expects the COM interface declaration as part of it. Next, we can use the IDebugClient
interface to query for the other COM interfaces that we will be using later on. 

The code that initializes the COM interfaces is shown in Listing 11.3.

Listing 11.3

//

// Initialize required COM interface pointers

//

if(FAILED(hRes=DebugCreate(__uuidof(IDebugClient), 

(void**) &pDebugClient)))

{

dprintf( “Failed to get required COM interface\n”);

return hRes;

}

if(FAILED(hRes=pDebugClient->QueryInterface(__uuidof(IDebugControl), 

(void**) &pDebugControl)))

{

dprintf( “Failed to get required COM interface\n”);

ReleaseComPointers();

return hRes;

}

if(FAILED((hRes=pDebugClient->QueryInterface(__uuidof(IDebugDataSpaces),  

(void**) &pDataSpaces))))

{

dprintf( “Failed to get required COM interface\n”);
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ReleaseComPointers();

return hRes;

}

if(FAILED(hRes=pDebugClient->QueryInterface(__uuidof(IDebugSymbols), 

(void**) &pSymbols)))

{

dprintf( “Failed to get required COM interface\n”);

ReleaseComPointers();

return hRes;

}

if(FAILED(hRes=pDebugClient->QueryInterface(__uuidof(IDebugSymbols3),  

(void**) &pSymbols3)))

{

dprintf( “Failed to get required COM interface\n”);

ReleaseComPointers();        

return hRes;

}

Initializing Type Information
The next part of the initialization code retrieves type information about the binary
tree. To understand why this step is necessary, you must understand how the debug-
ger extension gets the data associated with the binary tree. When the user enters the
dumptree command, he specifies an address corresponding to the address of the root
node of the tree. The debugger extension’s job is to read X number of bytes from that
address and interpret the read bytes as if they represented a binary tree. One possi-
ble solution is for the debugger extension to include the header for the binary tree
and use it as a first class type; however, using this approach has a big drawback. The
debugger extension is strongly typed to a particular version of the binary tree, and if
the binary tree implementation changes in a future version (such as added data mem-
bers), you will need to recompile the extension to work against the new binary tree
type and keep different versions of the extension. To circumvent this deficiency, the
debug engine includes a set of API(s) that enable an extension to query for type infor-
mation at runtime, thereby minimizing the compile time type dependency. The
API(s) is extremely powerful and allows for in-depth type analysis. In our extension,
we need to know about the binary tree node type. More specifically, we need to find
the offset of each of the data members (right child pointer, left child pointer, and data
member) so that we know from where to start reading data relative to the address
specified by the user. The in-memory layout of the binary tree node is

Listing 11.3 (continued)
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+0x000 data             : Int4B

+0x004 pLeftChild       : Ptr32 CBinaryTree::_TreeNode

+0x008 pRightChild      : Ptr32 CBinaryTree::_TreeNode

Each of the numbers prefixed by a + represents the offset of each of the members in the
type. The steps required to programmatically find out about the offsets are as follows:

1. Get the module by using the IDebugSymbols::GetModuleByModuleName
to be used in subsequent steps. The module of interest is the module where
the type is defined. In our case, the module of interest is the bstree module,
which contains the CBinaryTree::_TreeNode type.

2. Get the type identifier of the type we’re interested in (CBinaryTree::_
TreeNode) using the IDebugSymbols3::GetTypeId API. The result of the
API call is a type identifier that can be used in subsequent steps.

3. Get the offset for each member using the IDebugSymbols::GetField
Offset API. The offsets retrieved will be subsequently used by the extension
to read the type information.

The code that initializes the type information is shown in Listing 11.4.

Listing 11.4

//

// Initialize type information

//

if(FAILED(hRes=pSymbols->GetModuleByModuleName(“bstree”, 

0, 

NULL, 

&pBase)))

{

dprintf(“Failed to get module information for bstree.exe\n”);

ReleaseComPointers();        

return hRes;

}

if(FAILED(hRes=pSymbols3->GetTypeId(pBase, 

“CBinaryTree::_TreeNode”,    

&pNodeIndex)))

{

dprintf(“Failed to get type id\n”);

ReleaseComPointers();        

return hRes;

}

if(FAILED(hRes=pSymbols->GetTypeSize(pBase, 
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pNodeIndex, 

&pSize)))

{

dprintf(“Failed to get type size\n”);

ReleaseComPointers();        

return hRes;

}

if(FAILED(hRes=pSymbols->GetFieldOffset(pBase, 

pNodeIndex, 

“pLeftChild”, 

&ulLeftOffset)))

{

dprintf(“Failed to get left child offset\n”);            

ReleaseComPointers();        

return hRes;

}

if(FAILED(hRes=pSymbols->GetFieldOffset(pBase, 

pNodeIndex, 

“pRightChild”, 

&ulRightOffset)))

{

dprintf(“Failed to get right child offset\n”);            

ReleaseComPointers();        

return hRes;

}

if(FAILED(hRes=pSymbols->GetFieldOffset(pBase, 

pNodeIndex, 

“data”, 

&ulDataOffset)))

{

dprintf(“Failed to get data offset\n”);            

ReleaseComPointers();        

return hRes;

}

Initializing WinDbg Extension Data
The final task that the extension must do is to initialize WinDbg extension data that
is required when working with the WinDbg extension model. IDebugControl::

Listing 11.4 (continued)
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GetWinDbgExtensionApis64 can be used for this purpose and simply accepts a point-
er to an instance of WINDBG_EXTENION_APIS64. 

The code that initializes the type information is shown in Listing 11.5.

Listing 11.5

//

// Initialize WinDbg extension data

//

ExtensionApis.nSize=sizeof(ExtensionApis);

hRes=pDebugControl->GetWindbgExtensionApis64(&ExtensionApis);

Session State Changes
After the initialization function has been successfully executed, the debug engine
calls the DebugExtensionNotify function exported by the extension DLL. This
function enables the debug engine to notify the debugger extension of any changes in
the session status. If a session ever becomes active or inactive, the debugger exten-
sion should make note of this if it needs to suspend certain parts of its code. Similarly,
if the debug session ever becomes accessible/nonaccessible, it also should be record-
ed. The function signature is shown below.

void CALLBACK

DebugExtensionNotify ( IN ULONG Notify, IN ULONG64 Argument )

The debug engine calls this function (on the extension DLL) and specifies the reason
for the notification (see the SDK) in the Notify parameter and 0 for the Argument
(reserved). The different notifications are listed in Table 11.5.

Table 11.5

State Description

DEBUG_NOTIFY_SESSION_ACTIVE A debugging session is active. The ses-
sion might not necessarily be halted.

DEBUG_NOTIFY_SESSION_INACTIVE No debugging session is active.
DEBUG_NOTIFY_SESSION_ACESSIBLE The debugging session has halted and

is now accessible.
DEBUG_NOTIFY_SESSION_INACCESSIBLE The debugging session has started run-

ning and is now inaccessible.
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KnownStructOutput 
The next function call made by the debug engine during load time is to
KnownStructOutput. The Windows debuggers have a nice feature that enables debug-
ger extensions to support custom displaying of a data type in one single line (such as
when the user executes the dt command). Rather than calling every extension for every
dt command issued, the debug engine calls the KnownStructOutput function when
the DLL first is loaded and asks the extension for the names of data types for which it
supports custom formatting. In the load case, it is the responsibility of the debugger
extension to return a list of custom data types, if supported. If a call to dt is ever issued
to the debugger, the debug engine knows to call the correct extension version of the
KnownStructOutput based on the accumulation of all lists returned during load time.
We show an example of a KnownStructOutput implementation later in the chapter.

Uninitializing the Extension 
The final function call made by the debug engine is when a user unloads an extension
DLL (using the .unload command); at this time, the debug engine calls Debug
ExtensionUninitialize on the debugger extension. The function signature is
shown below.

void CALLBACK DebugExtensionUninitialize(void);

A debugger extension should expose this function if it needs to do any cleanup work
when the debugger extension is unloaded. An example of cleanup work includes
releasing any global resources acquired during initialization (such as releasing any
global COM instances or memory). 

Because our debugger extension initialization code acquired COM interfaces, it
is important that we release the reference count for all the interface pointers to avoid
a leak: 

extern “C” void CALLBACK DebugExtensionUninitialize(void)

{

ReleaseComPointers();

return;

}

VOID ReleaseComPointers()

{

if(pDebugClient) pDebugClient->Release();

if(pDebugControl) pDebugControl->Release();

if(pSymbols) pSymbols->Release();
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if(pSymbols3) pSymbols3->Release();

if(pDataSpaces) pDataSpaces->Release();

}

Implementing the Help Command
Now that we have the initialization and uninitialization code out of the way, we can
move on to the more interesting code of the actual commands we want to implement. 

All custom debug commands must adhere to the following signature and must
consist of all lowercase letters:

HRESULT CALLBACK

(* PDEBUG_EXTENSION_CALL) 

(

IN IDebugClient* Client,

IN OPTIONAL PCSTR Args

) ;

The PDEBUG_EXTENSION_CALL is the function itself and must be named according
to the debugger extension command to be implemented. The implementation of our
extensions help command is shown in the following:  

// This function displays help for the debugger extension

HRESULT CALLBACK help ( PDEBUG_CLIENT Client, PCSTR Args )

{

dprintf (“SYSYEXTS.DLL commands:\n”

“help = Shows this help\n”

“\tdumptree <address>=Dumps out the contents of a CBinaryTree.  Address

must point to the root node of the tree”

);

return S_OK ;

}

As you can see, the function is as simple as using the dprintf function to print out
the help for the debugger extension. The dprintf function is essentially the equiva-
lent of printf for debugger extensions.

To test the extension, we run an arbitrary application under the debugger. (I typ-
ically use notepad.exe.) When you have hit a breakpoint in the debugger, type the fol-
lowing command:

.load C:\AWDBIN\WinXP.x86.chk\sysexts.dll 
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At this point, the extension DLL is loaded into the address space of the debugger, and
the initialize function is called. If no errors occur, you are presented with the debug sym-
bol. Type !sysexts.help to invoke the help command, and you will see the following:

0:000> !sysexts.help

SYSYEXTS.DLL commands:

Help = Shows this help

dumptree <address> = Dumps out the contents of a CBinaryTree. Address must

point to the root node of the tree

If there is an error loading the debugger extension or running the command, such as
an exception being thrown, the error will be surfaced as a generic exception in the
debug output but will not crash the debug process. The debug engine wraps all calls
into the custom debugger extension with an exception handler to avoid any malfunc-
tioning extension from bringing down the entire debug session. Having said that, if
the problem is severe enough (such as writing over memory not owned by the exten-
sion), chances are that the debug session will fail somewhere down the road. If you
suspect that an extension is misbehaving, you need to debug it and find out what is
wrong before deploying the extension. The interesting question is how do you go
about debugging the extension? Although the answer can seem somewhat odd, it
makes perfect sense; simply debug the debugger. Attach the debugger to the debug-
ger, and when the failure occurs, it will break in just like any other debug session. 

Now we can move on to implementing the slightly more difficult command,
which is that of dumping the contents of our binary tree.

Implementing the dumptree Command
The fundamental idea behind the dumptree command is to enable easy dumping of
the contents of a binary tree of type CBinaryTree. The command syntax itself is
shown below.

!sysexts.dumptree <address to root pointer of the binary tree>

The function signature and dummy body resemble the following:

// This function dumps the CBinaryTree received in the Args

HRESULT CALLBACK dumptree(PDEBUG_CLIENT Client, PCSTR Args)

{
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HRESULT hRes=S_OK;

return hRes;

}

Before we get too concerned with the implementation details, we will lay out the
overall strategy for the dumptree command. The algorithm used for this command
will be

1. Extract and validate the address passed in by the user.
2. Read the root tree node from memory based on the address specified.
3. Call a recursive in-order Traverse function that displays node items until the

tree is exhausted.

We need an address to the root node of the tree. This is specified by the user when
he enters the command in the debug session, such as

!sysexts.dumptree 00181eb4

Several questions should arise when looking at the preceding statement. How do we
get access to the address specified? How can we be sure that the user has entered a
valid address? These questions bring us to the first important part of implementing
complex commands: extracting and validating user input.

The parameters that the user enters as part of the command are passed into your
function via the Args parameter. The Args parameter is basically a string that con-
tains the entire command line just entered minus the command name itself. If the
user entered the following command 

!sysexts.dumptree 00181eb4

the Args parameter would contain

00181eb4

Because our goal is to be able to read memory at the specified address, we cannot
accept this parameter to be of type PCSTR (string pointer); rather, we would ideally
want this value to be converted into a pointer that we can pass to the memory access
API(s). The API that allows us to achieve this is the GetExpression API, which is
declared as

ULONG_PTR GetExpression ( PCSTR expression )
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When called, the GetExpression API takes the parameter passed in and tries to
evaluate the parameter into a ULONG_PTR. If the evaluation succeeds, the API returns
a ULONG_PTR. The pointer can then be used when calling memory access API(s). If
the API fails, null is returned.

The dumptree implementations usage of GetExpression is shown below.

HRESULT CALLBACK dumptree(PDEBUG_CLIENT pClient, PCSTR szArgs)

{

HRESULT hRes=S_OK;

ULONG_PTR pAddress=(ULONG_PTR) GetExpression(szArgs);

if(!pAddress)

{

dprintf(“Invalid head pointer address specified: %s\n”, szArgs);

return E_FAIL;

}

InOrderTraversal(pAddress);

return hRes;

}

The preceding code is pretty straightforward. We simply pass the szArgs parameter
to the GetExpression API. If the return value is non-null, we continue; other-
wise, we print out a message to the debug console window stating that an invalid
address was specified and returned an error.

Now that we have extracted and verified the address specified as part of our
dumptree command, we can proceed by calling the helper function
InOrderTraversal, which performs the bulk of the work when traversing and dis-
playing the tree node information.

The InOrderTraversal function recursively traverses the tree and prints out tree
node information by using a helper function called GetNodeValues. GetNodeValues
performs the interesting work of actually reading the memory contents associated with
a tree node. The implementation of GetNodeValues is shown here.

HRESULT GetNodeValues(ULONG64 pNode, 

ULONG* pulData, 

ULONG* pulLeft, 

ULONG* pulRight)

{

if(FAILED(hRes=pDataSpaces->ReadVirtual((ULONG_PTR) pNode+ulDataOffset,   

pulData, 
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sizeof(ULONG), 

NULL)))

{

dprintf(“Failed to read memory at address: 0x%X\n”,  

pNode+ulDataOffset);

return E_FAIL;

}    

if(FAILED(hRes=pDataSpaces->ReadVirtual((ULONG_PTR) pNode+ulLeftOffset, 

pulLeft, 

sizeof(ULONG),  

NULL)))

{

dprintf(“Failed to read memory at address: 0x%X\n”, 

pNode+ulLeftOffset);

return E_FAIL;

}    

if(FAILED(hRes=pDataSpaces->ReadVirtual((ULONG_PTR) pNode+ulRightOffset, 

pulRight, 

sizeof(ULONG), 

NULL)))

{

dprintf(“Failed to read memory at address: 0x%X\n”, 

pNode+ulRightOffset);

return E_FAIL;

}    

return S_OK;

} 

At a high level, the function reads in the memory associated with each of the data
members by using the IDataSpaces::ReadVirtual API. Please note that we are
using the offsets previously initialized to get the correct data members. The
ReadVirtual API is defined as follows. It enables reading memory from the debug-
ger targets virtual address space:

HRESULT IDataSpaces::ReadVirtual ( 

IN ULONG64 Offset,

OUT PVOID Buffer,

IN ULONG BufferSize,

OUT OPTIONAL PULONG BytesRead

) ;

11.
W

RITIN
G

CUSTO
M

D
EBUGGER

EXTEN
SIO

N
S



584 Chapter 11 Writing Custom Debugger Extensions

The Offset parameter is the address we want to read from, the Buffer parameter
contains the read data upon a successful read, the BufferSize parameter indicates
the size of the data buffer we passed in, and BytesRead, upon completion, contains
the actual number of bytes read by the API. If the function is successful, S_OK is
returned.

The final helper function in our extension is PrintNode, which simply prints out
the data—the left child pointer and right child pointer members of the tree node.

You can now use the extension to dump trees of arbitrary size in a very simple and
convenient fashion. Let’s try it out. Run the bstree.exe application under the
debugger and set the breakpoint at the Traverse function. Get the head pointer (as
shown previously) and invoke the dumptree command:

…

…

…

0:000> .load C:\AWDBIN\WinXP.x86.chk\sysexts.dll

0:000> dv

this = 0x00262c20

0:000> dt this

Local var @ 0x6ff1c Type CBinaryTree*

0x00262c20

+0x000 m_pHead          : 0x00262c40

+0x004 m_dwDepth        : 3

+0x008 m_dwNumNodes     : 5

0:000> !sysexts.dumptree 0x00262c40

** Node **

Data: 5

Left child pointer: 0x0

Right child pointer: 0x262cb8

** Node **

Data: 7

Left child pointer: 0x0

Right child pointer: 0x0

** Node **

Data: 10

Left child pointer: 0x262c68

Right child pointer: 0x262c90

** Node **

Data: 13

Left child pointer: 0x0

Right child pointer: 0x0

** Node **

Data: 15

Left child pointer: 0x262ce0
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Right child pointer: 0x0

Please note that the example usage of the dumptree command does not include the
output from the KnownStructOutput function, which we discuss in the next section.

Here are a couple of notes regarding the dumptree command. If you ever
encounter a corrupt tree (that is, one of the pointers in the nodes points to a nonva-
lid address), the dumptree command records that with an error as per our code. This
is usually a perfect indication of a corrupt tree. Further debugging should commence
from there (see Chapter 6, “Memory Corruption Part II—Heaps”).

Implementing the KnownStructOutput Function
The KnownStructOutput function is a convenient way of extending the functional-
ity of the regular dt command. By default, the dt command displays the contents of
the specified data type (if enough symbolic information is available). If we were to
dump an instance of the CBinaryTree::_TreeNode data using the dt command,
we would get the following:

0:000> dt CBinaryTree::_TreeNode

+0x000 data             : Int4B

+0x004 pLeftChild       : Ptr32 CBinaryTree::_TreeNode

+0x008 pRightChild      : Ptr32 CBinaryTree::_TreeNode

It would be nice if we were able to customize the output of the dt command when
applied to the CBinaryTree::_TreeNode data type. Providing an implementation
of the KnownStructOutput function allows us to add this additional information
without much work.

The function prototype for KnownStructOutput is shown below.

HRESULT CALLBACK KnownStructOutput ( 

IN ULONG Flag,

IN ULONG64 Address,

IN PSTR StructName,

OUT PSTR Buffer,

IN OUT PULONG BufferSize 

) ;

The function is a dual behavioral function in the sense that, depending on the flag
passed, it either returns the names of the types it supports or the result of evaluating
a given address for a particular type. The flag possibilities are shown in Table 11.6.
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Table 11.6

Flag Description

DEBUG_KNOWN_STRUCT_GET_NAMES Passed to the function when the debug engine
first loads the debugger extensions. The exten-
sions implementation should return a list of
the structure names it supports custom out-
putting of information into.

DEBUG_KNOWN_STRUCT_GET_ Passed to the function when an actual evaluation
SINGLE_LINE_OUTPUT is to be performed by the debugger extension.
DEBUG_KNOWN_STRUCT_ Passed to the function to query whether it wants
SUPPRESS_TYPE_NAME to have the type name automatically printed.

In our case, the name of the data type we want to provide additional information on
is the CBinaryTree::_TreeNode structure. The skeleton code for the
KnownStructOutput function is shown below.

HRESULT CALLBACK KnownStructOutput (

IN ULONG  Flag,

IN ULONG64  Address,

IN PSTR  StructName,

OUT PSTR  Buffer,

IN OUT PULONG  BufferSize

)

{

HRESULT hRes=E_FAIL;

if(Flag==DEBUG_KNOWN_STRUCT_GET_NAMES)

{

//

// Return the list of names of supported data types

//

}

else if(Flag==DEBUG_KNOWN_STRUCT_GET_SINGLE_LINE_OUTPUT)

{

//

// Return the result of evaluating a data type

//

}

else if(Flag==DEBUG_KNOWN_STRUCT_SUPPRESS_TYPE_NAME)

{

//



587Example Debugger Extension

// Return S_OK to indicate that we want the type name automatically

// printed.

//

return S_OK;

}

else 

{

dprintf(“KnownStructOutput called with invalid flags\n”);

}

return hRes;

}

Let’s start with explaining how to go about returning the list of data structure names
that we support. The list of names is returned via the OUT Buffer parameter, which
is of type PSTR. It is critical to ensure that we have enough room in the Buffer to
successfully enter all the data type names. The size of the buffer is passed in via the
BufferSize parameter. Here is our implementation of getting the data type names:

if(Flag==DEBUG_KNOWN_STRUCT_GET_NAMES)

{

if ((*BufferSize)<strlen(SYSEXTS_KNOWNSTRUCT_1)+2)

{

// Not enough buffer available, return S_FALSE

(*BufferSize)=strlen(SYSEXTS_KNOWNSTRUCT_1)+2;

hRes=S_FALSE;

}

else

{

hRes=StringCchPrintfA(Buffer,

(*BufferSize)-2,

“%s\0”,

SYSEXTS_KNOWNSTRUCT_1); 

if (FAILED(hRes))

{

dprintf (“Failed to copy the data type name into buffer\n”);

}

}

}

SYSEXTS_KNOWNSTRUCT_1 is defined in the sysexts.cpp file as

#define SYSEXTS_KNOWNSTRUCT_1  “CBinaryTree::_TreeNode”

Note that we first check to see if the length of the data type name is less than the
buffer size passed in. (+2 accounts for both null terminators.) If the size is less, we
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proceed with filling in the name and returning. If we do not have enough room, we
put the required length into the BufferSize parameter and return S_FALSE, which
indicates that the debug engine should allocate a bigger buffer of the size specified
and try calling again. 

If we supported custom formatting of multiple data types, we would put each
name into the buffer separated by NULL terminators and ending the entire string with
another null terminator.

Now we move on to implementing the evaluator. The debug engine in this case
passes us a flag that contains the DEBUG_KNOWN_STRUCT_GET_SINGLE_LINE_
OUTPUT value and an address to the data structure. The address can be passed to our
helper function GetNodeValues defined earlier, which reads the node contents at
the specified address and returns the node values. After we have successfully read the
node values, we can format the output and return to the debug engine. Note that we
take extra care not to exceed the buffer size by explicitly checking to make sure that
the data will fit:

else if(Flag==DEBUG_KNOWN_STRUCT_GET_SINGLE_LINE_OUTPUT)

{

ULONG ulData=0;

ULONG ulLeft=0;

ULONG ulRight=0;

if(FAILED(hRes=GetNodeValues(Address, &ulData, &ulLeft, &ulRight)))

{

return hRes;

}    

DWORD dwLen=_scprintf(SYSEXTS_KNOWNSTRUCT_OUT, 

ulData, 

ulLeft, 

ulRight)+1; 

if(dwLen>(*BufferSize))

{

dprintf(“KnownStructOutput unable to fit return data into buffer\n”);

hRes=E_FAIL;

return hRes;

}

hRes=StringCchPrintfA(Buffer, 

dwLen, 

SYSEXTS_KNOWNSTRUCT_OUT, 

ulData, 
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ulLeft, 

ulRight);

if(FAILED(hRes))

{

dprintf (“KnownStructOutput unable to write data into buffer\n”);    

}

}

We have now implemented an augmentation to the standard dt command that allows
us to see the root node contents in addition to the data output by the dt command.
Let’s try it out. Run bstree.exe under the debugger, set a breakpoint in the traverse
method, and issue the dt command against the CBinaryTree root node instance:

0:000> dt CBinaryTree::_TreeNode 0x000369c8

Binary tree node contents

Data: 10

Left Child Pointer: 0x36fb0

Right Child Pointer: 0x36fd8

+0x000 data             : 10

+0x004 pLeftChild       : 0x00036fb0 

Binary tree node contents

Data: 5

Left Child Pointer: 0x0

Right Child Pointer: 0x37000

+0x008 pRightChild      : 0x00036fd8 

Binary tree node contents

Data: 15

Left Child Pointer: 0x37028

Right Child Pointer: 0x0

Implementing Command Cancellations
As with any potentially long-running task, the capability to cancel a command comes
into play. Imagine that we tried to dump a CBinaryTtree instance with thousands
and thousands of nodes and wanted to cancel the command partway through. As it
stands now, our dumptree command is not cancelable, which can cause frustration
to users of this debugger extension. How can you add cancellation support? The
answer is actually quite simple. An API (as part of the WDbgExts model) allows
debugger extensions to query for a CTRL+C by the user:

ULONG     CheckControlC (VOID);
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By calling this API at regular intervals in long-running commands, we can make sure
to respect the user’s wish to cancel. In addition to dutifully respecting the CTRL+C
requests by the user, this has the value add of allowing a user to cancel a dumptree
command that would potentially never finish (with the exception of a blown stack
because of the recursive nature of the implementation). If, for some reason, a bug
were to surface in the CBinaryTree implementation that causes the tree to point
back to itself, we could potentially recurse endlessly.

In our case, the dumptree command calls a recursive function that keeps print-
ing nodes until the tree is fully exhausted. If we put this check in prior to starting each
recursive call, we can simply end the recursion and return to the user:

VOID InOrderTraversal(CBinaryTree::_TreeNode* pNode,IDebugDataSpaces* pDataSpaces)

{

HRESULT hRes;

if(CheckControlC()==TRUE)

{

dprintf(“Control C hit, canceling command\n”);

return;

}

//

// Rest of the InOrderTraversal function code

//

}

If we were to modify the client code of the CBinaryTree slightly to add 1,000 nodes
to the tree instance and run it under the debugger, followed by a dumptree com-
mand, we could press CTRL+C to cancel the command:

0:000> !sysexts.dumptree 0x262D48

** Node **

Data: 0

Left child pointer: 0x0

Right child pointer: 0x262d70

** Node **

Data: 1

Left child pointer: 0x0

Right child pointer: 0x262d98

** Node **

Data: 2

Left child pointer: 0x0
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Right child pointer: 0x262dc0

…

…

…

…

** Node **

Data: 156

Left child pointer: 0x0

Right child pointer: 0x265f38

** Node **

Data: 157

Left child pointer: 0x0

Right child pointer: 0x265f60

Control C hit, canceling command

0:000> 

A NOTE ON SYMBOLISM As described in Chapter 4, “Managing Symbol and Source
Files,” there are essentially two different types of symbol files used during debugging: public
symbols (also known as stripped symbols) and private symbols. The main difference
between the two different symbol files is the amount of information available to the develop-
er debugging the application. Public symbols provide very limited symbolic information
(makes debugging rather hard), and private symbols contain full symbolic information.
Every developer would use private symbols any day to debug an application. The problem
arises when a product is shipped. Typically, companies allow access (via a symbol server)
to limited public symbols to enable at least a rudimentary form of debugging, but it
becomes very difficult to do in-depth debugging because of missing symbolic information,
such as type information. Custom debugger extensions can be of help in situations in which
you do not want to burn a CD with private symbols every time you need to debug an offsite
problem. Consider the following scenario in which you have to debug a CBinaryTree
with only public symbols. Trying to dump out the contents of the CBinaryTree instance
being debugged will fail because public symbols do not offer the data type members as
part of its symbolic information. Without private symbols and without knowing the exact lay-
out of the CBinaryTree structure, what do you do? Well, you can deploy the sysexts.dll
extension onto that machine and use the augmented information available when typing dt. 

The mechanism of supporting extended type information in your debugger extension is
a very useful trick to avoid situations when only limited symbolic information is available. 
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Versioning
As with any other component, versioning is important in debugger extensions as well.
Over the lifetime of an application, the data structures change formats, and debugger
extensions will have to be retrofitted to work with the new data structures and ver-
sions of applications. To accommodate future changes, a new version of the debugger
extension would have to be created (with a new name, such as sysexts20.dll) and used
during debugging. Keeping a complete list of these debugger extensions is well worth
your time. One could even imagine writing a debugger extension command that
queries a global variable for the version of the application and loads the correct ver-
sion of the debugger extension.

After installing the Windows debuggers, you will notice that the way versioning is
handled in the public Windows debuggers is by putting the extension DLL(s) into
directories corresponding to each component release. For example, looking at the
userexts.dll debugger extension, we can see that it exists in the following subdirecto-
ries under the default installation path of the Windows debuggers: 

C:\Program Files\Debugging Tools for Windows>dir usere* /s

Volume in drive C has no label.

Volume Serial Number is 688E-2C02

Directory of C:\Program Files\Debugging Tools for Windows\nt4chk

04/16/2004  08:59 AM            98,845 userexts.dll

1 File(s)         98,845 bytes

Directory of C:\Program Files\Debugging Tools for Windows\nt4fre

04/16/2004  08:59 AM            99,357 userexts.dll

1 File(s)         99,357 bytes

Directory of C:\Program Files\Debugging Tools for Windows\w2kchk

04/16/2004  08:59 AM           171,037 userexts.dll

1 File(s)        171,037 bytes

Directory of C:\Program Files\Debugging Tools for Windows\w2kfre

04/16/2004  08:59 AM           170,013 userexts.dll

1 File(s)        170,013 bytes

Depending on which operating system version you are debugging, you will need to
load the correct version of the userexts.dll debugger extension. You can find out the
version of the operating system by running the !version debug command.
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Building the Debugger Extension
To compile the extension DLL, we must first ensure that we have added the correct
environment variables to the DDK build console. I typically add the following envi-
ronment variable directly into my systemwide environment settings so that I do not
have to worry about setting them on different consoles:

DBGSDK_INC_PATH=C:\PROGRA~1\debugg~1\sdk\inc

DBGSDK_LIB_PATH=C:\PROGRA~1\debugg~1\sdk\lib\*

Make sure that the paths for the environment variables match the directory structure
you have on your machine (as well as platform-specific subdirectories). We have to
make a slight adjustment to the sources file and specify the additional paths, as well
as make sure that we link to dbgeng.lib:

TARGETLIBS= \

$(CRT_LIB_PATH)\MSVCRT.lib \

$(SDK_LIB_PATH)\kernel32.lib \

$(DBGSDK_LIB_PATH)\dbgeng.lib \

INCLUDES= $(DDK_INC_PATH); \

$(DBGSDK_INC_PATH); \

Both of these sections might contain more libraries or include paths depending on the
exact nature of the debugger extension, but for the purpose of our custom debugger
extension, what is shown in this listing is sufficient. After you have downloaded and
installed the source code from the book’s Web page, navigate to the C:\AWD\
Chapter11\sysexts folder and type   

build /ZCc

Upon success, the resulting sysexts.dll is placed in the output directory. The name of
the output directory depends on which type of build environment you opened
(checked or free), as well as the operating system. On a WinXP checked build con-
sole window (x86), the binary is placed in

objchk_wxp_x86\i386\sysexts.dll

We can now fire up the debugger, load the extension, and issue any of the commands
we just implemented. 
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Summary

As you have seen in this chapter, the notion of custom debugger extensions allows the
developer to automate the debugging process by developing custom commands to
enhance the debugging sessions. This is truly a great tool that every system develop-
er should have in his arsenal. Although we have just scratched the surface of debug-
ger extensions, it is well worth your time to dig into the SDK documentation and
familiarize yourself with the large number of API(s) available for developing exten-
sions. The Microsoft debugger team has made a great effort to make the debug API
in-depth and enable virtually unlimited possibilities with regard to extending the
default debug experience.
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C H A P T E R  1 2

64-BIT DEBUGGING

With the advent of 64-bit processors, the need to understand how these processors
work and how to debug 64-bit applications is critical. This chapter outlines the funda-
mentals of 64-bit debugging. The chapter is organized as a complement to all previous
chapters in which the debugger listings were captured from systems running a 32-bit
version of the operating system. In this chapter, we highlight the difference in behav-
ior when the host systems have a 64-bit architecture. This chapter follows the order in
which the concepts are introduced in the book. The chapter focuses on the 64-bit
architecture introduced by AMD in 2004. Virtually all computer systems sold today are
capable of running 64-bit operating systems. Windows Vista is the first consumer oper-
ating system available simultaneously in 64-bit and 32-bit architectures. It is not a
question of whether independent software vendors will release native 64-bit applica-
tions. It is just a matter of time until they release 64-bit versions of their applications.  

This chapter reuses several samples introduced in the previous chapters. The
binary files targeted to Windows Vista x64 are available in the C:\AWDBIN\WinLH.
AMD64.chk and C:\AWDBIN\WinLH.AMD64.fre folders. If a Windows Vista x64
system is not available, we provide few memory dumps in the C:\AWDBIN\Dumps
folder. 

Microsoft 64-Bit Systems

Microsoft officially entered the 64-bit operating system arena with Microsoft Windows
XP 64-Bit Edition that could run on systems powered by Intel Itanium processors. As
the name indicates, it was based on Windows XP code base, and it was released to the
public in 2002, shortly after the 2001 Windows XP (32-Bit Edition) release. 

One year later, Microsoft released Windows Server 2003 Enterprise Edition for
Itanium-based systems, capable of supporting workloads required by the highest lev-
els of reliability, availability, and scalability provided by Intel Itanium–based systems. 

In the same year, Advanced Micro Devices revealed a new 64-bit processor archi-
tecture, designed as an extension to the current x86 processor architecture. The new
processor’s architecture has also been adopted by Intel, marketed under the Intel
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Extended Memory 64 Technology name and later under the Intel 64 Architecture
name. Because the difference between the implementations is minimal, this archi-
tecture is also known as x86–64. Microsoft uses the name x64 to denote the operat-
ing system supporting such architectures. 

In 2005, Microsoft released the first version of a client and server operating sys-
tem supporting x64 systems, named Windows XP Professional x64 Edition and
Windows Server 2003 SP1 x64 Edition, respectively. Both versions have the same
build number, indicating that they were built from the same code base, and they have
identical features with the 32-bit version of Windows 2003 SP1.

In the last quarter of 2006, Microsoft released Windows Vista, the next version of
the Windows client operating systems with support for both x86 and x64 processors.
Starting with the Windows Vista release, the client operating system no longer sup-
ports Intel Itanium processors.  

Because the Intel Itanium–based system’s availability is relatively limited when
compared with that of x64-based systems, this chapter focuses on x64 architecture
only. The difference between the client and server operating system is relatively small
from a debugging perspective; therefore, we will use the Windows x64 term to denote
such systems. In this chapter, we also use the term Windows x86 to generically denote
the operating system built for 32-bit architecture. 

Operating System Overview
So what exactly is the difference between the Windows x64 operating systems and
Windows x86 operating systems? Without a complete analysis of both implementa-
tions, it is hard to understand all differences between them. It is highly recommend-
ed that you study the book Microsoft Windows Internals, 4th Edition (2004, Mark E.
Russinovich and David A. Solomon, Redmond, WA: Microsoft Press), which does an
excellent job at analyzing in detail each component of the operating system. This chap-
ter provides a very short analysis of the differences and how they impact debugging.

The biggest gain of moving to Windows x64 comes from the processor’s capabili-
ty to access a 64-bit flat virtual address space. Even if a 64-bit pointer can address 16
exabytes, the current Windows x64 implementation limits itself to 16 terabytes of vir-
tual address space shared equally between user mode and kernel mode addresses.
This is still a huge improvement compared with the 4-gigabyte limitation imposed by
x86 architecture. 

To effectively support that virtual address space, Windows x64 is capable of
addressing up to one terabyte of physical memory and an additional 512 terabytes in
the page file. The physical memory limitation has been chosen based on hardware
capabilities available today and in the near future. This limitation can be removed in
the future to keep up with the hardware evolution. 
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As a company, Microsoft has an enormous responsibility to preserve the backward
compatibility with existing software running in the enterprises, with each new oper-
ating system version. But how compatible is Windows x64 with current applications?
Windows x64 can run software applications compiled natively, a process known as tar-
geting, for x64 architecture, as well as software applications targeted at the tradition-
al Windows x86. However, the operating system imposes some restrictions that
should be clearly understood and are described next. 

The Windows x64 kernel runs strictly 64-bit code and cannot load modules, in
general device drivers, designed for the Windows x86 operating systems. Practically,
this limitation does not affect mainstream users, as most hardware vendors either pro-
vide or are in the process of providing 64-bit drivers for their devices. 

All self-contained applications, which depend on nothing but the operating system
components, work the same after converting them from a 32-bit target to a 64-bit tar-
get. All registry keys and all system file locations are unchanged in Windows x64 as com-
pared with Windows x86. Some might be surprised to find out that most system binaries
are still stored in the %SystemRoot%\system32 folder, even if they are pure 64-bit
binaries. All applications are still installed in the %SystemDrive%\Program Files
folder, as in the Windows x86. 

If a native 64-bit application depends on and consumes a component not supplied
in the operating system, the application installer must ensure that components com-
piled for 64-bit are available on the system. In the current Windows x64, it is not pos-
sible to load a 32-bit binary into a process running a 64-bit application. For example,
a media playback application targeted to Windows x64 that loads various DirectShow
filters must find all such filters compiled as 64-bit binaries. 

Even if most companies will rerelease their applications as 64-bit versions, most of
the existing applications are still targeted to 32-bit only. For enterprises with thousands
of 32-bit applications, it is not practical to consider Windows x64 if they have to change
or repurchase all those applications. Fortunately, they are supported using the Windows-
On-Windows emulation subsystem, known as WOW64. A process running in WOW64
emulation mode is, for all practical purposes, a 32-bit process, as its 64-bit counterpart,
and is not capable of loading components targeted to the 64-bit architecture.

Because binaries from different architectures cannot be mixed in the same
process, software vendors must understand the market for their applications and
choose the target architecture accordingly. Depending on the application, there are
several situations that must be treated differently. 

Developers supplying components for Windows x64 must also understand who
their target audience is and make sure that the component’s architecture matches the
architecture of the application consuming them. It is not unusual to see the same
component available in both architectures on the same system. Windows perform-
ance counters libraries are a good example of applying this model. 

12.
64-B

IT
D

EBUGGIN
G



598 Chapter 12 64-Bit Debugging

On the other side of this are the stand-alone applications extensible through a
pluggable architecture, such as Internet browsers supporting various add-ons. In this
situation, developers must understand the plug-in’s availability and perhaps choose to
ship their application in both architectures, until the transition to Windows x64 is
complete. This approach was taken by the Internet Explorer developers by providing
a 32-bit and a 64-bit application. As an alternative, the application can remain in a 32-
bit architecture until the whole market makes the transition to 64-bit computing. This
solution has been chosen for the Windows Media Player shipped with Windows XP
Professional x64. 

Native x64 processes run side-by-side with other applications running inside
WOW64 processes, and all processes share the same global resources. When the 
application is a service, it can exist in a single form—either as 64-bit or as 32-bit 
application. For example, a server cannot run a 64-bit and a 32-bit Web service
instance sharing the same port and returning the same Web pages. When this service
has a pluggable architecture, the service developers will define what plug-ins can be
loaded in their systems, as well as create the mechanism to support the selected mode.
It is possible to have a service that can be extended with plug-ins targeted to both 32-
bit and 64-bit architecture by loading them in architecture-specific host processes. 

Although all this might sound complicated, in reality it isn’t that bad. Most prob-
lems are encountered when backward compatibility is a must and the applications
have multiple dependent components. 

In the next section, we briefly analyze how the WOW64 system works to under-
stand what the implications for debugging legacy applications are. 

32-Bit Application Running in WOW64
Each 32-bit application starts in Windows x64 as a normal 64-bit process. Because all
the pointers used in the application, as well as the structures declared by the operat-
ing system and used in the application, are restricted to 32-bit, the application cannot
run directly. The operating system first loads a few support dynamic link libraries that
implement the WOW64 system, as follows:

■ ntdll.dll: 64-bit version library that interfaces any user mode process to kernel
entry-point functions. The library is the same as the one used natively by any
application in Windows x64.

■ WOW64.dll: 64-bit library that performs the necessary conversion or thunking
of the input parameters, the return values between the 32-bit modules, and the
kernel APIs exposed by the 64-bit version ntdll.dll. 
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■ WOW64Win.dll: 64-bit library that performs the thunking of the 32-bit mod-
ules calling into win2k.sys functions as part of the Windows messaging APIs.

■ WOW64Cpu.dll: 64-bit library capable of emulating x86 instruction set. In
Windows x64, this library does nothing because the processor is capable of
natively executing the x86 instruction stream. 

At this point, the process is considered to be created from the operating system point
of view; the process initial breakpoint event is sent to the debugger, even if the appli-
cation is not yet prepared for execution. As a next step, the WOW64 subsystem loads
ntdll32.dll, as well as the rest of the 32-bit dynamic link libraries the application
depends on. ntdll32.dll is a 32-bit library providing functionality similar to the
ntdll.dll. Unlike ntdll.dll, which switches the processor execution from user mode to
kernel mode, ntdll32.dll only makes the transition between 32-bit code and the
WOW64 system, while remaining in user mode. 

Inside a WOW64 process, each thread can execute code in 64-bit mode, called
long execution mode, or it can execute code in 32-bit mode, called compatibility
mode. The execution mode is determined by the L (long) flag stored in the segment
descriptor associated with the current code selector, referred by the cs register. To
switch the execution mode, the thread must make a far call through a call gate tar-
geted to a code segment having an opposite execution mode. Applications targeted to
64-bit are referred to as native applications, whereas the applications targeted to 32-
bit are referred to as WOW64 applications.

In Listing 12.1, we have a stack for a thread owned by a 32-bit process that exe-
cutes code in compatibility mode inside the CPU emulator library, WOW64cpu.dll.
The stack is taken from a native debugger running, in WOW64 emulation mode, the
32-bit application version of 02sample.exe used in Chapter 2, “Introduction to the
Debuggers.” 

Listing 12.1 The native stack on a WOW64 process

0:000> k8

Child-SP          RetAddr           Call Site

00000000`0006e508 00000000`78be6866 ntdll!NtTerminateProcess+0xa

00000000`0006e510 00000000`78b83c7d wow64!Wow64SystemServiceEx+0xd6

00000000`0006edd0 00000000`78be6a5a wow64cpu!ServiceNoTurbo+0x28

00000000`0006ee60 00000000`78be5e0d wow64!RunCpuSimulation+0xa

00000000`0006ee90 00000000`78ed8501 wow64!Wow64LdrpInitialize+0x2ed

00000000`0006f6c0 00000000`78ed6416 ntdll!LdrpInitializeProcess+0x17d9

00000000`0006f9d0 00000000`78ef3925 ntdll!LdrpInitialize+0x18f

00000000`0006fab0 00000000`77d59640 ntdll!KiUserApcDispatch+0x15
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But how can WOW64 applications run side-by-side with the native applications when
both are dependent on the same libraries? The separation is achieved by creating a
WOW64 virtual environment similar to the environment used by the native applica-
tions. Most system resources are shared between the native and WOW64 environ-
ment, and Windows APIs retrieve the same value regardless of whether the calling
application is a native or a WOW64 application. When a WOW64 application access-
es resources that are not common to both environments, the application gets redi-
rected to the WOW64 virtual environment—a mechanism called virtualization. 

One component of this virtual environment consists of all registry keys that are
part of software configuration and are usually changed when a new application is
installed on the system. The virtualized registry keys includes COM registrations,
available both systemwide or for specific users. Figure 12.1 uses the regedit.exe, a
native application, to show a few registry keys affected by registry redirection. 

Figure 12.1 Registries affected by registry redirection 
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A WOW64 application subject to virtualization observes the content of the HKLM\
Software key from Figure 12.1 replaced by the HKLM\Software\Wow6432Node key,
similar to all other keys subject to virtualization. Each registry operation can control the
redirection by using the KEY_WOW64_64KEY or KEY_WOW64_32KEY flags. 

Similarly, most files under the %SystemRoot%\system32 folder are virtualized for
WOW64 applications. When the application tries to read a file from the
%SystemRoot%\system32 folder, it gets the file from the %SystemRoot%\sysWOW64
folder instead. The application can disable the file redirection, as needed, using the
Wow64DisableWow64FsRedirection API. 

FILE REDIRECTION SIDE EFFECT As a side effect of file redirection, WOW64 applications
cannot access any file from the real %SystemRoot%\system32 folder and its subfolders. If
a WOW64 application launches an executable provided by the operating system, it will
search for the file in %SystemRoot%\SysWOW64 and its subfolders. This is the reason why
most .exe files are duplicated in the %SystemRoot%\SysWOW64 folder, even if it does not
make sense. If necessary, the 32-bit executable is just a launcher for the 64-bit counterpart. 

Because applications can also use several environment variables to learn about their
execution context, several variables are changed to reflect the virtual environment.
Few variable environments are added only to the native environment, whereas some
are present only in the WOW64 environment. Table 12.1 lists all variables specific to
Windows x64 or dependent on the execution mode. 

Table 12.1 Environment Variables in Windows x64

Variable Name Expanded in WOW64 Expanded in Native 

Environment To Environment To

CommonProgramFile(x86) New in Windows x64, pointing to %ProgramFiles(x86)%\Common Files

CommonProgramFile % CommonProgramFile(x86)% %ProgramFiles%\Common Files

CommonProgramW6432 Native % CommonProgramFile% N/A

PROCESSOR_ARCHITECTURE X86 AMD64 or IA64

PROCESSOR_ARCHITEW6432 Native %PROCESSOR_ N/A
ARCHITECTURE%

ProgramFiles(x86) New in Windows x64, pointing to %SystemDrive%\Program Files (x86)

ProgramFiles %ProgramFiles(x86)% %SystemDrive%\Program Files

ProgramW6432 Native %Program Files% N/A
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One very common question we have to answer when investigating problems on the
Windows x64 platform is whether the process is a native process or a WOW64 process.
The answer determines how to debug the process and how to inspect the environment
hosting it. When it is possible to access the GUI console, WOW64 applications can be
easily recognized in Task Manager by their *32 suffix after the process name. For
example, cmd.exe process, shown in Figure 12.2, is running as a WOW64 process. 

Figure 12.2 32-bit application running in Windows x64 

An alternative detection mechanism, more appropriate for debugger users, is identi-
fying the modules loaded in the process. A WOW64 application loads most modules
from the %systemroot%\SysWOW64 folder. Because all such modules are targeted
to the 32-bit architecture, applications having any of those modules loaded must be
a WOW64 process. Furthermore the environment variables used by the respective
process can be checked for values specific to the WOW64 environment.

After this short overview of a few new mechanisms employed on Windows x64, we
must understand the impact those mechanisms have when debugging applications. The
rest of this chapter focuses on the changes imposed by the Windows x64 architecture.  

Windows x64 Changes

In this section, we review all previous chapters, watching for major differences in
debugging those scenarios. This is not an exhaustive coverage, rather an introduction
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to the most important changes to look out for when debugging Windows x64 appli-
cations. We recommend that you consult the debugger documentation when a debug-
ging situation requires additional information.

Each subsection has the same title as the previous corresponding chapter and
tries to follow the same organization as the chapter itself. The chapters covering top-
ics that do not have differences between Windows x86 and Windows x64 are skipped. 

Chapter 1—Introduction to the Tools
Not all the tools from our toolbox are usable in every situation, especially in an envi-
ronment that hadn’t been envisioned during the tool’s creation. Some tools work with
limitations, while others do not work at all. This section analyzes the impact Windows
x64 has on the tools presented in Chapter 1, “Introduction to the Tools.”

Leak Diagnostic Tool 
The Leak Diagnostic tool can be used with some limitations on Windows x64. It
installs properly but is not capable of working with processes running in native mode.
The good news is that it works just fine when targeted to processes running applica-
tions in WOW64 emulation mode. We hope that this limitation will go away in the
future as the new Microsoft Detours libraries, that the tool is based on, can intercept
APIs on 64-bit platforms. 

Debugging Tools for Windows 
Debugging Tools for Windows is available as a native version targeted to Windows
x64. Although it is possible to debug native 64-bit processes using a WOW64 debug-
ger tool, for the best result, it is recommended that you use a 64-bit debugger. All
tools installed with Debugging Tools for Windows work on Windows x64. 

The debugger team recommends using the 32-bit debugger running in WOW64
emulation mode when performing live debugging—in both user and kernel mode—
and the debugger target is Windows NT or Windows 2000. The same recommenda-
tion is valid for debugging the crash dumps generated on those platforms. A 64-bit
user mode process must always be debugged using native 64-bit debuggers. WOW64
processes can be debugged using either native or WOW64 debuggers, but the latter
provides an easier experience for those familiar with 32-bit debugging.  

All debuggers can be used interchangeable for other situations not mentioned
previously. Please look in the debugger help (help topic Choosing a 32-bit or
64-bit Debugger Package) for the complete recommendation.
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Ideally, you should have both debuggers—a 64-bit version and a 32-bit version—
installed side-by-side on the system used for debugging. The right version is then
selected based on the debugger target architecture. In this chapter, we assume that
you have the 64-bit version of the Debugging Tools for Windows installed in the
c:\debug.x64 folder and the 32-bit version installed in the c:\debug.x86 folder. 

Microsoft Application Verifier 
Microsoft Application Verifier is available as a native application targeted to Windows
x64. Because you can also install the 32-bit version on Windows x64, you must choose
at times between the native version of the tool and the WOW64 version. To under-
stand what version should be used, we must first understand how Microsoft
Application Verifier works. 

Each application monitored with Microsoft Application Verifier has an associated
registry key identified by the executable name that contains the verifier setting for it.
This key is created when the application is configured through the Microsoft
Application Verifier tool. The key storing all the verifier settings has the following
form:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution

Options\<Image File Name> 

But that registry key is subject to the registry redirection as described in the section
“32-Bit Application Running in WOW64.” As a result, the 64-bit version of Microsoft
Application Verifier changes the native registry but does nothing to the virtualized
WOW64 registry node, even when the configured application is a 32-bit application.
The verifier infrastructure loads two additional libraries in the verified process whose
architecture must match the targeted process architecture. 

In practice, this means that both versions of the verifier must be installed to test
64-bit and 32-bit applications. The Application Verifier matching the architecture of
the process we are interested in must be started from the command line using one of
the following commands:

■ %systemroot%\system32\appverif.exe for 64-bit applications
■ %systemroot%\syswow64\appverif.exe for 32-bit applications

For example, the first command line can be used to enable Application Verifier for
the 64-bit version of notepad.exe, whereas the second will enable it for the 32-bit ver-
sion of notepad.exe. 
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Ethereal
To capture network traffic, Ethereal uses a kernel driver that is currently available
only on 32-bit architecture. Because Windows x64 cannot load 32-bit drivers, the tool
cannot capture the network traffic. However, the software installs on Windows x64. 

Although Ethereal cannot capture any packets passing through the system inter-
faces, it can be used to visualize and interpret saved capture files. Because Ethereal
can capture the network traffic using promiscuous capture mode, it is easy to use
another Windows x32 system to perform the capture and move the file for further
investigation onto the Windows x64 system for which the capture has been performed. 

Other Tools
All other tools work without problems on the Windows x64 platform. 

Chapter 2—Introduction to the Debuggers
As explained in the previous section, both the 32-bit and 64-bit versions of debuggers
can be used to debug dump files or to perform kernel mode debugging. The decision
to use one or the other debugger is influenced mainly by the architecture of custom
extensions available for the processes subject to debugging. Live debugging should be
performed using a debugger that matches the debugger target architecture—the 64-
bit debugger for Windows x64 native process and the 32-bit debugger for WOW64
processes. At this time, the 32-bit debugger works better for the WOW64 process
because it completely hides the 64-bit aspect of the WOW64 process. Because the
experience gained while debugging Windows x86 is fully applicable when debugging
a WOW64 process, this section focuses on using a native debugger for both native and
WOW64 processes. This configuration is similar to using a kernel mode debugger to
debug the processes running on a Windows x64 system. 

Basic Task in Debuggers
The 64-bit pointers and the register values used by Windows x64 architecture repre-
sent a major change in interaction mode with the debugger. In the debugger, 64-bit
values are represented as two 32-bit numbers, sometimes separated by the grave
accent (`) symbol. For example, 0x80000000`00000000 represents the same number
as 0x8000000000000000 that is the smallest 64-bit signed integer. This value is equiv-
alent to 0x80000000 on x86 processors. 
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What Are the Current Register Values?
Because the pointers have been extended to 64-bit values, all other registers have also
been extended to 64 bits. The 64-bit register’s names have been changed, and they
start with the letter r instead of the letter e. Therefore, the 32-bit eax processor reg-
ister has been replaced by the 64-bit register rax. The eax mnemonic is still valid and
denotes the least significant 32 bits of the native register rax. 

The number of general-purpose registers increased with eight more general-
purpose registers, identified by r8 through r15. Listing 12.2 shows the result of exe-
cuting the r command with the default settings.

Listing 12.2 x86 64-bit general-purposes register 

0:000> r

rax=0000000000000000 rbx=0000000000000000 rcx=0000734f67090000

rdx=0000000078ba0002 rsi=0000000000000000 rdi=0000000000000003

rip=0000000078ef3320 rsp=000000000006f6b8 rbp=0000000000080000

r8=0000000000000002  r9=0000000000000000 r10=0000000000000018

r11=0000000078c108a0 r12=0000000000000000 r13=000000007efdf000

r14=0000000000020000 r15=0000000078ec0000

iopl=0         nv up ei pl nz na pe nc

cs=0033  ss=002b  ds=002b  es=002b  fs=0053  gs=002b             efl=00000202

As you saw in the previous chapters, the interoperability between modules or
between modules and the operating system is possible because there is a well-defined
calling convention of passing the arguments to the calling function and getting back
the operation results. The calling convention dictates what registers are preserved
across the function calls, how the registers are used to pass the arguments to the
called function, and how to return the function results. 

The 32-bit compilers use multiple calling conventions, each with its own
strengths and weaknesses. In Windows x64, there is a single calling convention hav-
ing a similar pattern to the __fastcall calling convention used by 32-bit compilers. In
the Windows x64 calling convention, the register assignments are the following:

■ rcx: Contains the first parameter passed to the function. For example, an
object method member invocation in C++ passes the object address or the this
pointer into the rcx register, similar to the __fastcall calling convention. 

■ rdx: Contains the second parameter passed to the function. 
■ r8: Contains the third parameter passed to the function.
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■ r9: Contains the fourth parameter passed to the function.
■ rax: Contains the result of the function call. 

Using 64-bit calling convention, most functions receive their argument through reg-
isters, and because the number of registers is greater on 64-bit architecture, the stack
pointer register is not so volatile. As a result, the rsp register is often used for local
variable addressing, decreasing the usage of the stack-frame based address register,
rbp, which becomes a general-purpose register in most functions. The functions with
more than four parameters use the stack for all parameters beyond the fourth one.
Those parameters are stored in the stack from right to left, with the rightmost param-
eter being stored at the highest address in the stack.  

The calling convention does not require to preserve the argument passing regis-
ters rcx, rdc, r8 and r9, which can be used as scratch registers. Two more registers,
r10 and r11, can also be used by the called function as scratch registers. All other reg-
isters maintain the value across the function call. The calling convention is explored
in the later section “What Is the Current Call Stack?” 

WOW64 Specific Commands
When debugging a process running an application in a WOW64 system, there are
several unique situations not encountered when debugging processes running in long
mode. For example, how must you interpret the stack displayed by the debugger in
Listing 12.1? 

Let’s take a WOW64 application that’s about to exit, started under native 64-
debugger using the following command line:

c:\debug.x64\ntsd.exe -g c:\AWDBIN\WinXP.x86.chk\02sample.exe

The stack is shown in Listing 12.1, but it has no traces of the debugged process with-
in and does not look right. The process execution is hidden under the
WOW64cpu!ServiceNoTurbo function call. The stack information behind this func-
tion can be accessed after using the new .effmach command. The .effmach
<x86|AMD64|IA64|.> command changes the mode used by the debugger to inter-
pret the debugger target. The command can be used to change the debugger view
back and forth between the 32-bit architecture and the native architecture. The dot
(.) argument changes the current architecture to the native one. 

Listing 12.3 shows the true stack of the same process after the architecture view
is changed to 32 bit. The debugger prompt changes into 0:000:x86> to illustrate the
alteration from native mode. 
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Listing 12.3 True 32-bit stack in WOW64 process (hidden in Listing 12.1)

0:000>.effmach x86

0:000:x86> k

ChildEBP          RetAddr

0014fed0 7d4e80c7 ntdll32!NtTerminateProcess+0x12

0014ff0c 7d4e8072 kernel32!_ExitProcess+0x4b

0014ff20 77bcade4 kernel32!ExitProcess+0x14

0014ff2c 77bcaefb msvcrt!__crtExitProcess+0x32

0014ff5c 77bcaf52 msvcrt!_cinit+0xd2

0014ff70 00401a4f msvcrt!exit+0x11

0014ffc0 7d4e992a 02sample!mainCRTStartup+0x144

0014fff0 00000000 kernel32!BaseProcessStart+0x28

In WOW64 emulation mode, each thread has two different contexts: the native context
that executes in long mode (used by the WOW64 emulator code) and the 32-bit con-
text visible when the thread execution context switches to compatible mode. Because
the code executing in those contexts accesses the thread environment block that con-
tains pointers to other structures, a WOW64 process contains two TEBs for each thread
executing 32-bit code. This duplication is also happening with the process environment
block; there is one instance for the native code and another one for the code running in
compatibility mode inside the WOW64 process. By the same reasoning, the stack used
by each thread is duplicated for long and compatibility execution mode. 

All that information is returned by the !straddr extension command, imple-
mented in wow64exts.dll, which is installed with the 64-bit Debugging Tools for
Windows. The !straddr extension command returns the address of the current
thread environment block, the address of the process environment block, and the
thread stack used when the processor runs in long and compatibility mode, as shown
in Listing 12.4. 

Listing 12.4 Obtaining WOW64 structures

0:000:x86> !wow64exts.straddr

Address of important WOW64 structures:

TEB64: 0x7efdb000

TEB32: 0x7efdd000

PEB64: 0x7efdf000

PEB32: 0x7efde000

STACK64: BASE: 0x70000 LIMIT: 0x6b000 DEALLOC: 0x30000

STACK32: BASE: 0x150000 LIMIT: 0x14e000 DEALLOC: 0x110000
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These structure addresses can be used as input parameters to other extension com-
mands, as you will see later in this chapter. Most commands or extension commands
are aware of the current execution mode and work predictably when the input param-
eter type matches the execution mode.   

What Code Does the Processor Execute Now?
In Windows x86, the answer is very clear after inspecting the instruction stream from
the memory location addressed by the instruction pointer pseudo-register $ip. In
Windows x64, the processor execution mode has to be considered as well before
answering this question. Listing 12.5 shows the instruction stream interpreted as 64-
bit code and later as 32-bit code. Although most instructions share the opcodes
between the 32-bit world and the 64-bit world, the interpretation is different,
depending on the processor execution mode.  

Listing 12.5 Unassembly code is dependent on the processor execution mode

0:000> .effmach AMD64

Effective machine: x64 (AMD64)

0:000> u ntdll!NtTerminateProcess l4

ntdll!NtTerminateProcess:

00000000`78ef1520 4c8bd1          mov     r10,rcx

00000000`78ef1523 b829000000      mov     eax,29h

00000000`78ef1528 0f05            syscall

00000000`78ef152a c3              ret

0:000> .effmach x86

Effective machine: x86 compatible (x86)

0:000:x86> u ntdll!NtTerminateProcess l4

ntdll!NtTerminateProcess:

00000000`78ef1520 4c              dec     esp

00000000`78ef1521 8bd1            mov     edx,ecx

00000000`78ef1523 b829000000      mov     eax,29h

00000000`78ef1528 0f05            syscall

What Is the Current Call Stack?
In general, the current stack can be easily obtained using any form of the k command.
Because there are situations in which the stack pointer is not correct or the local vari-
ables cannot be obtained using the standard commands, knowing how the stack is
used by x86-64 processors is a requirement for understanding the real problem. 

The stack grows toward the lower address, and it must be aligned to 16 bytes
before calling into another function. In the “What Are the Current Register Values?”
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section, you learned that the first four parameters are always passed through registers
(rcx, rdc, r8, and r9), while the rest of them are passed on the stack. To under-
stand the stack management, we use the Function5 function, shown in Listing 12.6,
that accepts five 64-bit parameters and calls another function with the same number
of parameters. The called function is declared as external to prevent the compiler
from inlining it.

Listing 12.6 Function with five parameters, calling another function with five parameters

extern int CalledFunction5(int a,int b,int c,int d,int e);

int Function5(int a, int b, int c, int d, int e)

{

CalledFunction5(a,b,c,d,e);

return 5;

}

Listing 12.7 shows the assembly code generated from the source code shown in
Listing 12.6 within the Windows Vista Free x64 Build Environment option installed
by the WDK. This is generated using the nmake param64.cod command. 

Listing 12.7 Assembly code representing the Function5 function

;    COMDAT ?Function5@@YAHHHHHH@Z

_TEXT    SEGMENT

a$ = 64

b$ = 72

c$ = 80

d$ = 88

e$ = 96

?Function5@@YAHHHHHH@Z PROC NEAR            ; Function5, COMDAT

; 64   : {

$LN3:

00000    48 83 ec 38     sub     rsp, 56            ; 00000038H

; 65   :     CalledFunction5(a,b,c,d,e);

00004    8b 44 24 60     mov     eax, DWORD PTR e$[rsp]

00008    89 44 24 20     mov     DWORD PTR [rsp+32], eax

0000c    e8 00 00 00 00     call     ?CalledFunction5@@YAHHHHHH@Z ; CalledFunction5

; 66   :     return 5;

00011    b8 05 00 00 00     mov     eax, 5

; 67   : }

00016    48 83 c4 38     add     rsp, 56            ; 00000038H

0001a    c3        ret     0

?Function5@@YAHHHHHH@Z ENDP                ; Function5

_TEXT    ENDS
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This assembly-generated code starts with the offsets corresponding to all input
parameters that can be added to the rsp stack register inside the function to find the
parameter address on the stack. These offsets are calculated under the assumption
that all parameters are passed through the stack with the rightmost parameter locat-
ed at the highest address. 

The offsets already reflect the first statement in the function that decreases the value
of the stack pointer, sub rsp, 56. For example, the offset used to access the last
parameter identified by the name e is 0n96—that is, with 0n40 higher than the stack
decrement value used in the first instruction. At the beginning of the function call, the
offset for the parameter e was 0n40—that is, the offset that would have been used if all
parameters were to be passed through the stack.

The calling convention requires that the caller allocates the stack for all parame-
ters passed by registers as they were passed through the stack. The stack space allo-
cated for the parameter passed by registers is neither used nor initialized by the caller
but can be used by the called function as temporary storage. Those temporary stor-
age locations are normally used to save the input parameters if any of the registers are
needed for other purposes, such as calling another function. 

In the case in which the function uses temporary variables, the stack is adjusted
to give room to such variables that will be located at the top of the stack area used by
the function. The storage allocated before calling another function is similar to the
space used for temporary variables. In this specific case, the value used to adjust the
stack at the entrance is larger than the space required for those five parameters in
order to preserve the stack alignment to 16 bytes. The gap is visible in Figure 12.3.  
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The rightmost column contains the hexadecimal addresses relative to the rsp value
used in Function5. The next column on the left shows the hexadecimal address rel-
ative to the rsp value at the Function5 start, before the adjustment. 

So far, the conclusions were based on analyzing the generated code that must be
validated in the debugger. The sample can be started under the debugger, using the
following command line, which launches the 64-bit version of the sample introduced
in Chapter 2 under a 64-bit debugger:

C:\>C:\Debug.x64\windbg C:\awdbin\WinLH.AMD64.fre\02sample.exe 

In this process, we set a breakpoint on the 02sample.exe!CalledFunction5 func-
tion that is hit when we select option ‘5’ from the menu. At the breakpoint location, the
assumptions described previously can be validated by examining the stack. Listing 12.8
shows the function arguments for each function from the call stack. It might be a sur-
prise to see that most parameters are incorrect. The first four parameters from
Function5 or CalledFunction5 are random values, while the last one has the correct
value. 

Listing 12.8 Call-stack function parameter

0:000> kP

Child-SP          RetAddr           Call Site

00000000`000afe98 00000000`00401973 02sample!CalledFunction5(

int64 a = 4202800,

int64 b = 8793941677150,

int64 c = 0,

int64 d = 4202020,

int64 e = 5)

00000000`000afea0 00000000`0040171a 02sample!Function5(

int64 a = 3684256,

int64 b = 0,

int64 c = 128094338278281250,

int64 d = 3684318,

int64 e = 5)+0x13

00000000`000afee0 00000000`00401cf1 02sample!main(

unsigned long argc = 0,

char ** argv = 0x00000000`00000000)+0x12a

00000000`000aff20 00000000`77d5966c 02sample!mainCRTStartup(void)+0x171

00000000`000aff80 00000000`00000000 kernel32!BaseProcessStart+0x2c

Why are the values incorrect? This is the unfortunate downside of this calling con-
vention combined with symbol information available to the debugger. The debugger
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shows the values stored on a stack location corresponding to arguments passed
through the registers, and they have random values. Furthermore, if one input
parameter is used in a function for something else and it is not needed for the remain-
der of this function, the parameter value is not stored anywhere. This parameter can’t
be recovered by the debugger after this point. If it has been stored somewhere, we
need to manually find that location and read its value. 

For example, when Function5 in Listing 12.8 starts its execution, the fist param-
eter is passed into the register rcx. When this function calls CalledFunction5, the
same register, rcx, must be filled with the first parameter passed to that function. If
rcx has not been saved before, and it is not used after the return from
CalledFunction5, the compiler does not generate code to preserve it. Its value is
lost right before the call to CalledFunction5.

The situation is a little better for the code compiled using no optimizations, start-
ed using the checked build WDK shortcut. In checked builds, each function prefix
has special code to save all the input parameters, even if none are used. The checked
version of CalledFunction5 looks much, much better from a debugging perspec-
tive, as can be seen in Listing 12.9. 

Listing 12.9 Unassembled nonoptimized function

0:000> uf .

02sample!CalledFunction5:

00000000`00401340 4c894c2420      mov     qword ptr [rsp+20h],r9

00000000`00401345 4c89442418      mov     qword ptr [rsp+18h],r8

00000000`0040134a 4889542410      mov     qword ptr [rsp+10h],rdx

00000000`0040134f 48894c2408      mov     qword ptr [rsp+8],rcx

00000000`00401354 b805000000      mov     eax,5

00000000`00401359 c3              ret 

The support obtained in the generated checked build from the C/C++ compiler is
handy in the development process only. Each application’s customers expect that the
code released to them is highly optimized. All memory dumps obtained using the
Windows Error Reporting feedback loop described in Chapter 13, “Postmortem
Debugging,” will usually be optimized, without the compiler support. 

What Are the Local Variable’s Values?
The display variable command, dv, shows the storage holding the local variables. For
input parameters, the location is the stack parameter passing area, which is not pop-
ulated in free or optimized builds. Because dv usually shows random values for the
input variables, the manual discovery process uses our knowledge about the rules
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used to generate assembly code, the assembly code itself, and sometimes luck in
order to find the right value. Listing 12.10 shows the local variable displayed at the
debugger stop used before, at the entrance in CalledFunction5.

Listing 12.10 Local variable

0:000> dv /V

00000000`000afea0 @rsp+0x08               a = 4202800

00000000`000afea8 @rsp+0x10               b = 8793941677150

00000000`000afeb0 @rsp+0x18               c = 0

00000000`000afeb8 @rsp+0x20               d = 4202020

00000000`000afec0 @rsp+0x28               e = 5

What logic must be used to find the right values? Unless the debugger is stopped
exactly at the beginning of the function and the input variables have correct values
from the register used for parameter passing, the user must question himself whether
the values displayed by dv make sense. When a parameter does not look right, the
real value must be found by searching the assembly code for the location, if any,
where it has been previously stored. That value is then probed to see if it makes sense.
If not, the process repeats until the correct value is found. 

If necessary, the search for the original of the value must continue into the caller
of the current functions. In some cases, the original value is never found, but in most
of the cases, the search is successful. It is not acceptable to stop an investigation just
because the dv command is not capable of showing the correct information and con-
clude that the debugger session is corrupted.

There are several ways to search a register name occurrence in one of the assem-
bly instructions in the unassembled function. The debugger support assembly search-
es using the pound (#) command, which takes as parameters the string pattern to
search for, the start address, and the block length in which to search that pattern. The
sequential pound (#) command can be repeated without parameters, having as a
result the search continuation in the memory block following and adjacent to the last
memory block searched. The next listing shows usage of the command and its output
when searching for the ebp register, starting at the beginning of the
kernel32!CreateProcessW function, with the debugger in x86 mode: 

0:000> # ebp kernel32!CreateProcessW

kernel32!CreateProcessW+0x2:

771a1d29 55              push    ebp

0:000>
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How Do You Inspect the Process Memory?
The familiar commands used to dump memory content work without any change
when the processor runs in long mode. The commands, depending on the pointer size
to be 32 bits, must be replaced by the 64-bit equivalent or replaced by the commands
that take the pointer size into account. For example, instead of the command dds, the
newer command dqs must be used—or, even better, the dps command. The follow-
ing listing shows how to dump the command-line arguments using the dpa command,
which replaces the dda command used on the 32-bit architecture. 

0:000> dpa poi(argv) l2

00000000`003837a0  00000000`003837b8 “WinLH.AMD64.fre\02sample.exe”

Other Exploratory Commands
The process environment block is an important piece of information describing the
process currently debugged. Processes running applications in WOW64 emulation
mode have two process environment blocks—one associated with the native process
and the other provided by the emulator to the code executing 32-bit code. By default,
the !peb extension command shows the native process environment block stored at
the virtual address pointed to by the $peb pseudo-register. For processes running on
a WOW64 system, the !peb extension command tries to find the corresponding 32-
bit process environment block and requires the wow64!TEB32 structure symbol.
Currently, the symbol is not available in the public symbol file WOW64.pdb, and the
command stops its processing at the native process PEB, as shown in Listing 12.11. 

Listing 12.11 WOW64 applications PEB

0:000:x86> !peb

*************************************************************************

***                                                                   ***

***                                                                   ***

***    Your debugger is not using the correct symbols                 ***

***                                                                   ***

***    In order for this command to work properly, your symbol path   ***

***    must point to .pdb files that have full type information.      ***

***                                                                   ***

***    Certain .pdb files (such as the public OS symbols) do not      ***

***    contain the required information.  Contact the group that      ***

***    provided you with these symbols if you need this command to    ***

***    work.                                                          ***
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***                                                                   ***

***    Type referenced: wow64!TEB32                                   ***

***                                                                   ***

*************************************************************************

PEB at 000000007efdf000

InheritedAddressSpace:    No

ReadImageFileExecOptions: No

BeingDebugged:            Yes

ImageBaseAddress:         0000000000400000

Ldr                       0000000078fa7ea0

Ldr.Initialized:          Yes

Ldr.InInitializationOrderModuleList: 0000000000082e50 . 0000000000082f90

Ldr.InLoadOrderModuleList:           0000000000082d60 . 0000000000083210

Ldr.InMemoryOrderModuleList:         0000000000082d70 . 0000000000083220

Base TimeStamp                     Module

400000 453bf190 Oct 22 15:32:48 2006 C:\awdbin\WinLH.AMD64.fre\02sample.exe

78ec0000 42438b79 Mar 24 19:54:33 2005 D:\WINDOWS\system32\ntdll.dll

78be0000 42438b79 Mar 24 19:54:33 2005 D:\WINDOWS\system32\wow64.dll

78b90000 42438b79 Mar 24 19:54:33 2005 D:\WINDOWS\system32\wow64win.dll

78b80000 42438b7a Mar 24 19:54:34 2005 D:\WINDOWS\system32\wow64cpu.dll

SubSystemData:     0000000000000000

ProcessHeap:       0000000000080000

ProcessParameters: 0000000000020000

WindowTitle:  ‘C:\awdbin\WinLH.AMD64.fre\02sample.exe’

ImageFile:    ‘C:\awdbin\WinLH.AMD64.fre\02sample.exe’

CommandLine:  ‘C:\awdbin\WinLH.AMD64.fre\02sample.exe’

DllPath:      ‘C:\awdbin\WinLH.AMD64.fre\02sample.exe;D:\WINDOWS\system32;D:\WIN-

DOWS\system;D:\WINDOWS;.; D:\WINDOWS\system32;D:\WINDOWS;D:\WINDOWS\System32\Wbem’

Environment:  0000000000010000

=::=::\

=D:= C:\awdbin\WinLH.AMD64.fre

=ExitCode=00000000

ALLUSERSPROFILE=D:\Documents and Settings\All Users

APPDATA=D:\Documents and Settings\Administrator\Application Data

CLIENTNAME=Console

CommonProgramFiles=D:\Program Files (x86)\Common Files

CommonProgramFiles(x86)=D:\Program Files (x86)\Common Files

CommonProgramW6432=D:\Program Files\Common Files

...

USERNAME=Administrator

USERPROFILE=D:\Documents and Settings\Administrator

windir=D:\WINDOWS

Listing 12.11 WOW64 applications PEB (continued)
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This problem can be overcome by using the !wow64exts.straddr extension com-
mand to obtain the address of the 32-bit PEB and displaying it using the dt com-
mand. The address is interpreted as the 32-bit PEB using the structure defined in the
WOW64 version of ntdll.dll, named ntdll32.dll, as shown in Listing 12.12. 

Listing 12.12 WOW64 application’s PEB using the dt command

0:000:x86> !wow64exts.straddr

Address of important WOW64 structures:

TEB64: 0x7efdb000

TEB32: 0x7efdd000

PEB64: 0x7efdf000

PEB32: 0x7efde000

STACK64: BASE: 0x70000 LIMIT: 0x6b000 DEALLOC: 0x30000

STACK32: BASE: 0x150000 LIMIT: 0x14e000 DEALLOC: 0x110000

0:000:x86> dt ntdll32!_PEB 0x7efde000

+0x000 InheritedAddressSpace : 0 ‘’

+0x001 ReadImageFileExecOptions : 0 ‘’

+0x002 BeingDebugged    : 0x1 ‘’

+0x003 BitField         : 0 ‘’

+0x003 ImageUsesLargePages : 0y0

+0x003 SpareBits        : 0y0000000 (0)

+0x004 Mutant           : 0xffffffff`ffffffff

+0x008 ImageBaseAddress : 0x00000000`00400000

+0x00c Ldr              : 0x00000000`7d6a01e0 _PEB_LDR_DATA

+0x010 ProcessParameters : 0x00000000`00100000 _RTL_USER_PROCESS_PARAMETERS

...

+0x210 FlsListHead      : _LIST_ENTRY [ 0x152f28 - 0x152f28 ]

+0x218 FlsBitmap        : 0x00000000`7d6a2048

+0x21c FlsBitmapBits    : [4] 3

+0x22c FlsHighIndex     : 1

From the raw _PEB structure, it is possible to extract the same information that the
!peb extension command does by traversing the structures referred from _PEB. 

Thread environment blocks are yet other useful structures that can be obtained
using the !teb extension command. The !teb extension command suffers from the
same drawbacks as the !peb extension command when acting on a thread running
code through the WOW64 emulator. Listing 12.13 shows the typical result obtained
from the !teb extension command in this case, as well as what structure must be
used as a parameter to the dt command in order to visualize the _TEB structure. The
address of the thread environment block structure has been obtained from the
!WOW64exts.straddr extension command shown in Listing 12.12. 
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Listing 12.13 WOW64 threads’ TEB using !teb extension command and dt commands

0:000:x86> !teb

Wow64 TEB32 at 000000007efdd000

*************************************************************************

***                                                                   ***

***                                                                   ***

***    Your debugger is not using the correct symbols                 ***

***                                                                   ***

***    In order for this command to work properly, your symbol path   ***

***    must point to .pdb files that have full type information.      ***

***                                                                   ***

***    Certain .pdb files (such as the public OS symbols) do not      ***

***    contain the required information.  Contact the group that      ***

***    provided you with these symbols if you need this command to    ***

***    work.                                                          ***

***                                                                   ***

***    Type referenced: wow64!_TEB32                                  ***

***                                                                   ***

*************************************************************************

error InitTypeRead( wow64!_TEB32 )...

Wow64 TEB at 000000007efdb000

ExceptionList:        000000007efdd000

StackBase:            0000000000070000

StackLimit:           000000000006b000

SubSystemTib:         0000000000000000

FiberData:            0000000000001e00

ArbitraryUserPointer: 0000000000152c50

Self:                 000000007efdb000

EnvironmentPointer:   0000000000000000

ClientId:             0000000000000a4c . 0000000000000364

RpcHandle:            0000000000000000

Tls Storage:          0000000000000000

PEB Address:          000000007efdf000

LastErrorValue:       0

LastStatusValue:      0

Count Owned Locks:    0

HardErrorMode:        0

0:000:x86> dt ntdll32!_TEB 0x7efdd000

+0x000 NtTib            : _NT_TIB

+0x01c EnvironmentPointer : (null) 

+0x020 ClientId         : _CLIENT_ID

+0x028 ActiveRpcHandle  : (null) 

+0x02c ThreadLocalStoragePointer : (null) 

+0x030 ProcessEnvironmentBlock : 0x00000000`7efde000 _PEB
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...

+0xf9c IsImpersonating  : 0

+0xfa0 NlsCache         : (null) 

+0xfa4 pShimData        : (null) 

+0xfa8 HeapVirtualAffinity : 0

+0xfac CurrentTransactionHandle : (null) 

+0xfb0 ActiveFrame      : (null) 

+0xfb4 FlsData          : (null) 

+0xfb8 SafeThunkCall    : 0 ‘’

+0xfb9 BooleanSpare     : [3]  “”

Debugger Scenarios
Chapter 2 describes the mechanism used to start the applications under a debugger,
using the Image File Execution Option, known as IFEO. Because this key is in a node
subject to registry redirection, we must be careful to change the registry hive used by
the architecture of the process we are targeting. Instead of changing the registry
directly, we suggest that you use gflags, the tool installed as part of Debugging Tools
for Windows. 

The 64-bit version of gflags.exe that has been installed by the 64-bit version of
Debugging Tools for Windows enables IFEO for a 64-bit process. When the target
process runs in WOW64 emulation mode, the change must be done using the 32-bit
version of gflags.exe. The following command line enables the IFEO debugger for
notepad.exe, 32-bit version. 

C:\>debug.x86\gflags /p /enable notepad.exe /debug “c:\debug.x86\ntsd.exe -g –G”

The next line does the same for the 64-bit version of notepad.exe. Special care must
be given to the debugger used as parameter to the IFEO key. If the debugger is a 32-
bit debugger, it will be unable to debug the 64-bit application, or, when the applica-
tion lives in a redirected folder such as %SystemRoot%\system32, it will always load
the application from the %SystemRoot%\syswow64 folder instead. 

C:\>debug.x64\gflags /p /enable notepad.exe /debug “c:\debug.x64\ntsd.exe -g –G”

Chapter 3—Debuggers Uncovered
Chapter 3, “Debuggers Uncovered,” focuses on explaining how the debuggers work
under the belief that a better knowledge of the tools increases productivity and min-
imizes the risk of being surprised by their side effects. 
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Debugger Events Order
The 03sample.exe used in Chapter 3 worked without any problem in Windows x64
when the command-line parameter pointed to a 64-bit application, but it failed to
start any 32-bit applications in WOW64 emulation mode. Because the application
writes everything to the console, it isn’t hard to figure out the reasons. The operating
system raised an exception with a new exception code, 0x4000001C, at application
startup. A search in the headers installed with the WDK reveals that new exception
code represents the start-up exception for the WOW64 application, raised after the
process hosting it has been started. 

C:\WINDDK\6000\inc>findstr /is 4000001f *.h

api\ntstatus.h:#define STATUS_WX86_BREAKPOINT ((NTSTATUS)0x4000001FL)

Because this breakpoint is generated by the operating system each time the applica-
tion starts under the debugger, it must be handled automatically by the chapter’s sam-
ple. After adding the handling code, 03sample.exe can start any application,
regardless of its architecture. The output generated by the execution of the 32-bit
version of xcopy.exe is shown in Listing 12.14. Most of the noninteresting events,
which are generated by loading 32-bit DLLs, have been removed to make the listing
shorter and easier to understand. 

Listing 12.14 Debugger events generated a WOW64 process execution (xcopy.exe)

D:\AWDBIN\WinLH.AMD64.fre>03sample.exe d:\WINDOWS\SysWOW64\xcopy.exe

PID.TID=2264.3016

CreateProcess PID=2264

PID.TID=2264.3016

ImageName ntdll.dll

PID.TID=2264.3016

ImageName D:\WINDOWS\system32\wow64.dll

PID.TID=2264.3016

ImageName D:\WINDOWS\system32\wow64win.dll

PID.TID=2264.3016

ImageName D:\WINDOWS\system32\wow64cpu.dll

PID.TID=2264.3016

new ExceptionEvent:

Code = 80000003

FirstChance = 1

PID.TID=8d8.bc8

ImageName NOT_AN_IMAGE

PID.TID=8d8.bc8

UnloadDll @0000000077D40000

PID.TID=8d8.bc8

ImageName NOT_AN_IMAGE

PID.TID=8d8.bc8
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UnloadDll @000000007D4C0000

PID.TID=8d8.bc8

ImageName D:\WINDOWS\SysWOW64\ntdll32.dll

PID.TID=8d8.bc8

ImageName NOT_AN_IMAGE

PID.TID=8d8.bc8

UnloadDll @0000000077D40000

PID.TID=8d8.bc8

ImageName NOT_AN_IMAGE

PID.TID=8d8.bc8

UnloadDll @0000000078C30000

PID.TID=8d8.bc8

ImageName D:\WINDOWS\syswow64\kernel32.dll

...

PID.TID=8d8.bc8

ImageName D:\WINDOWS\syswow64\MPR.dll

PID.TID=8d8.bc8

new ExceptionEvent:

Code = 4000001f

FirstChance = 1

PID.TID=8d8.bc8

ImageName d:\WINDOWS\SysWOW64\ShimEng.dll

PID.TID=8d8.bc8

ImageName d:\WINDOWS\SysWOW64\apphelp.dll

PID.TID=8d8.bc8

UnloadDll @0000000071AF0000

PID.TID=8d8.bc8

UnloadDll @0000000075E60000

Invalid number of parameters

0 File(s) copied

PID.TID=8d8.bc8

ExitProcess ExitCode=4

The order of events is very important but relatively predictable after understanding
WOW64 implementation details. Immediately after the process creation event, the
system loads ntdll.dll and the DLLs used to implement the WOW64 emulation layer.
After all the emulation DLLs are loaded, the process is considered started, and the
operating system generates the initial breakpoint event.

So far, none of the DLLs required by the application are loaded in the process.
The next step loads all the libraries the application depends on, starting with
ntdll32.dll. At the end of this process, the operating system generates a second initial
breakpoint, signifying the start-up of the 32-bit application running in WOW64 emu-
lation mode. This initial breakpoint has the specific exception code 0x4000001f. 

Afterward, the application runs normally. Any breakpoint statement encountered
in the application, such as the ones associated with asserts, generates an exception
with the same 0x4000001f exception code. 
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Exception-Dispatching Mechanism on 64-Bit Operating Systems
Windows x64 offers the same powerful exception-dispatching mechanism used in all
Windows operating systems. The mechanism has been specially designed for the 64-
bit architecture and benefits from more than ten years of experience with the imple-
mentation on x86 processors. The exceptions structures are adjusted to contain the
information specific to the new processors and to work in the new model. 

Exception Model on Windows x64
One way to understand the new exception model is to see it in action and compare it
to the model supported by Windows x86. The function from the next listing has been
used in Chapter 3 to explain the exception model in Windows x86. 

void try_except()

{

__try

{

*((int *) 0) = 0;

}

__except(ex_filter())

{

global = 1;

}

}

In 32-bit architecture, the exception-handling mechanism assumes that each function
has a block counter associated with it that is updated each time the code execution is
transitioning into that block. Listing 12.15 shows the assembly listing generated for the
try_except function shown previously. 

Listing 12.15 Exception handling code for a very simple function (tryexcept in 02sample.exe)

PUBLIC    ?try_except@@YAXXZ                ; try_except
EXTRN    __C_specific_handler:PROC
;    COMDAT pdata
pdata    SEGMENT
$pdata$?try_except@@YAXXZ DD imagerel $LN9

DD    imagerel $LN9+32
DD    imagerel $unwind$?try_except@@YAXXZ

pdata    ENDS
;    COMDAT pdata
pdata    SEGMENT
$pdata$?filt$0@?0??try_except@@YAXXZ@4HA DD imagerel ?filt$0@?0??try_except@@YAXXZ@4HA

DD    imagerel ?filt$0@?0??try_except@@YAXXZ@4HA+29
DD    imagerel $unwind$?filt$0@?0??try_except@@YAXXZ@4HA

pdata    ENDS
;    COMDAT xdata
xdata    SEGMENT
$unwind$?filt$0@?0??try_except@@YAXXZ@4HA DD 020f01H

DD    0500b320fH



623Windows x64 Changes

xdata    ENDS
;    COMDAT xdata
xdata    SEGMENT
$unwind$?try_except@@YAXXZ DD 010409H

DD    04204H
DD    imagerel __C_specific_handler
DD    01H
DD    imagerel $LN9+4
DD    imagerel $LN9+17
DD    imagerel ?filt$0@?0??try_except@@YAXXZ@4HA
DD    imagerel $LN9+17

; Function compile flags: /Odtp
xdata    ENDS
;    COMDAT ?try_except@@YAXXZ
_TEXT    SEGMENT
?try_except@@YAXXZ PROC                    ; try_except, COMDAT
; 28   : {
$LN9:
00000    48 83 ec 28     sub     rsp, 40            ; 00000028H

; 29   :     __try
; 30   :     {
; 31   :         *((int *) 0) = 0;
00004    c7 04 25 00 00 00 00 00 00 00 00     mov DWORD PTR ds:0, 0

; 32   :     }
0000f    eb 0a         jmp     SHORT $LN4@try_except

$LN6@try_except:
; 33   :     __except(ex_filter())
; 34   :     {
; 35   :     global = 1;
00011    c7 05 00 00 00 00 01 00 00 00  mov DWORD PTR ?global@@3HA, 1

$LN4@try_except:
; 36   :     }
; 37   : }
0001b    48 83 c4 28     add     rsp, 40            ; 00000028H
0001f    c3         ret     0

?try_except@@YAXXZ ENDP                    ; try_except
; Function compile flags: /Odtp
?filt$0@?0??try_except@@YAXXZ@4HA PROC            ; `try_except’::`1’::filt$0
00020    48 89 4c 24 08     mov     QWORD PTR [rsp+8], rcx
00025    48 89 54 24 10     mov     QWORD PTR [rsp+16], rdx
0002a    55         push     rbp
0002b    48 83 ec 20     sub     rsp, 32            ; 00000020H
0002f    48 8b ea     mov     rbp, rdx

$LN5@filt$0:

; 33   :     __except(ex_filter())

00032    e8 00 00 00 00     call     ?ex_filter@@YAKXZ    ; rrex_filter
$LN7@filt$0:
00037    48 83 c4 20     add     rsp, 32            ; 00000020H
0003b    5d         pop     rbp
0003c    c3         ret     0

?filt$0@?0??try_except@@YAXXZ@4HA ENDP            ; `try_except’::`1’::filt$0
_TEXT    ENDS
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The function code, shown in italic characters in Listing 12.15, is as clean as possible.
There is no exception bookkeeping code, and only a single nonconditional jump on
the line 32 indicates that the code uses exceptions. (No conditional statement is in the
function otherwise.) 

How does the operating system know what to execute when an exception is gen-
erated on a protected block? The first part of the listing, in bold italic font, answers
this question. The compiler generates a function information block that contains gen-
eral information about each function, as well as about each block protected by an
exception handler. Each block is identified by an address’s range covering the possi-
ble values of the instruction pointer while executing that block. The current instruc-
tion pointer value is used by the exception-unwinding mechanism implemented in
Windows x64 to locate the protected block containing the exception filter and the cor-
responding exception handler. 

In Listing 12.15, the $pdata$?try_except@@YAXXZ label contains information for
the exception dispatcher that must be used when the function executes code between
the LN9# and LN9#+32 addresses, relative to the start of the module. In this case, a sin-
gle protected block is stored under the $unwind$?try_except@@YAXXZ# label. 

The block is identified by a range of addresses and contains the address of the
exception filter and the location of code continuation after exception handling, as
shown in the next listing: 

DD    @imagerel($LN9#+4)

DD    @imagerel($LN9#+17)

DD    @imagerel(?filt$0@?0??try_except@@YAXXZ@4HA#)

DD    @imagerel($LN9#+17)

At the end of the listing, few compiler-generated functions are used to invoke the
block filters. Filters are identified with symbols autogenerated and having the fol-
lowing form:

`Function Name’::`Function Number’::filt$FilterNumber

The generated code is extremely efficient, as it contains just the business logic, neglect-
ing the exceptional code paths entirely. The linker can relocate all exception-related
code and information in a separate section of the module and compact all function code
in a different section. The resultant module is extremely efficient memory-wise, as it
benefits at a maximum from the processor cache. Only one condition must be met: The
code should not raise exceptions. In other words, the exception should really be an
exception, not an expected error that can be returned over and over. 

When the code raises another exception from inside the handler, Windows x64
starts a new exception dispatch that requires a new context to be allocated from the
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stack. That can use up the available stack fairly easily, and it represents a problem that
must be explicitly addressed in highly reliable applications. 

The typical C++ exception code exhibiting this problem is shown in the following
fragment. We recommend removing any such construct from commercial code and
replacing it with other cleanup patterns such as a “Resource Acquisition Is
Initialization” pattern. 

catch(…)

{

//Cleanup

throw();

}

Chapter 5—Memory Corruptions Part I—Stacks
Chapter 5, “Memory Corruptions Part I—Stacks,” is entirely dependent on the proces-
sor architecture. The current chapter is all about the new processor architecture, and
most of the time, it covers the differences between x86 and x64 architectures. Most
debugging scenarios presented earlier are valid after considering the calling convention
used by Windows x64, presented in the section “What Is the Current Call Stack?” 

Chapter 6—Memory Corruptions Part II—Heaps
Chapter 6, “Memory Corruptions Part II—Heaps,” uses various commands and tech-
niques dependent on the x86 processor’s architecture. As within the previous section,
the information presented so far should be enough to investigate most scenarios
described in this chapter.

The scenarios in Chapter 6 rely heavily on heap structures that are slightly dif-
ferent in Windows x64. All structures that contain pointers and sizes are adjusted to
hold 64-bit values. As an example, the next listing shows the _HEAP_ENTRY structure
for 64-bit heaps. 

0:000> dt ntdll!_HEAP_ENTRY 0000000000080000

+0x000 PreviousBlockPrivateData : (null)

+0x008 Size             : 0xc5

+0x00a PreviousSize     : 0

+0x00c SmallTagIndex    : 0xb9 ‘’

+0x00d Flags            : 0x1 ‘’

+0x00e UnusedBytes      : 0 ‘’

+0x00f SegmentIndex     : 0 ‘’

+0x008 CompactHeader    : 0x1b9`000000c5
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Note that processes running applications in WOW64 have two types of heaps. The
native process contains at least one heap, the process heap, organized as a 64-bit heap,
whereas the application itself can have multiple heaps organized as 32-bit heaps. 

The !heap extension command, used without parameters, shows the list of heaps
created in the process by inspecting the process environment blocks. As with the !peb
extension command, the !heap extension command is unable to find 32-bit PEB, and
it cannot show the heaps in WOW64 applications when using a native debugger. 

Special attention must be paid to enabling the Application Verifier tool, as
explained in the section “Chapter 1—Introduction to the Tools,” in order to obtain
the desired results. 

Chapter 7—Security
All security concepts used in Windows x86 are applicable without any change in
Windows x64. Nothing has changed in the way the security principals are identified
by the operating system or in the way each object is secured. The access control is
performed using the same mechanisms used in Windows x86 but accepting argu-
ments matching the architecture pointer size. 

Listing 12.16 shows the typical usage of the most commonly used command in
the security area that is different in Windows x64. In this listing, captured from a ker-
nel mode debugger connected to a Windows x64 system, we examine the security
descriptor protecting the winlogon.exe process, as well as the token under which
the process executes. 

Listing 12.16 Security information on Windows x64

1: kd> !process 0 1 winlogon.exe

PROCESS fffffadfe74010f0

SessionId: 0  Cid: 02dc    Peb: 7fffffd4000  ParentCid: 0268

DirBase: 351de000  ObjectTable: fffffa8000b74f90  HandleCount: 691.

Image: winlogon.exe

VadRoot fffffadfe73780f0 Vads 179 Clone 0 Private 3088. Modified 2148. Locked 0.

DeviceMap fffffa80000027d0

Token                             fffffa8000742060

ElapsedTime                       2 Days 12:02:23.296

UserTime                          00:00:00.546

KernelTime                        00:00:00.906

...

CommitCharge                      3666

1: kd> !object fffffadfe74010f0
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Object: fffffadfe74010f0  Type: (fffffadfe7afcd40) Process

ObjectHeader: fffffadfe74010c0

HandleCount: 13  PointerCount: 363

1: kd> dt nt!_OBJECT_HEADER fffffadfe74010c0

+0x000 PointerCount     : 363

+0x008 HandleCount      : 13

+0x008 NextToFree       : 0x00000000`0000000d

+0x010 Type             : 0xfffffadf`e7afcd40 _OBJECT_TYPE

+0x018 NameInfoOffset   : 0 ‘’

+0x019 HandleInfoOffset : 0 ‘’

+0x01a QuotaInfoOffset  : 0 ‘’

+0x01b Flags            : 0x20 ‘ ‘

+0x020 ObjectCreateInfo : 0xfffff800`011d2f00 _OBJECT_CREATE_INFORMATION

+0x020 QuotaBlockCharged : 0xfffff800`011d2f00

+0x028 SecurityDescriptor : 0xfffffa80`000037d6

+0x030 Body             : _QUAD

1: kd> * The address of the security descriptor 

1: kd> !sd (poi(fffffadfe74010f0-8)&0xffffffff`fffffff0)

1: kd> !sd (0xfffffa80`000037d6&0xffffffff`fffffff0)

->Revision: 0x1

->Sbz1    : 0x0

->Control : 0x8004

SE_DACL_PRESENT

SE_SELF_RELATIVE

->Owner   : S-1-5-32-544

->Group   : S-1-5-18

->Dacl    :

...

->Dacl    : ->Ace[1]: ->SID: S-1-5-32-544

->Sacl    :  is NULL

1: kd> !token fffffa8000742060
_TOKEN fffffa8000742060

TS Session ID: 0

User: S-1-5-18

Groups:

00 S-1-5-32-544

Attributes - Default Enabled Owner

...

RestrictedSidCount: 0      RestrictedSids: 0000000000000000

OriginatingLogonSession: 0

Besides the pointer size, the location of the security descriptor controlling access to
kernel objects is also interesting to look for. As in Windows x86, the pointer has least
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significant bits—four in this case, as the pointers are aligned to sixteen bytes—used
for something else, and these must be masked out before using the pointer. 

In some situations, the security descriptor associated with a registry key or file
subject to WOW64 redirection is different between the native part and the WOW64
part. In such cases, the user experiences asymmetrical behavior for the same applica-
tion, depending on what version is used. After identifying the component and the
environment exhibiting the problem, the security investigation is performed using
techniques similar to the ones described in Chapter 7, “Security.” 

Chapter 8—Interprocess Communication
The LPC communication between 64-bit processes running 64-bit applications and
the processes running applications in WOW64 emulation mode is performed by the
Windows kernel, and it is not influenced by the process architecture. However, when
data is transferred between the processes without transformation, the application
should be aware of marshaling issues. Structure member offsets, member sizes, and
the member’s alignment is different between those architectures, unless they were
carefully crafted to be architecture independent. 

What are the options to fix marshaling problems? By far, the best option is to use
existing components that can marshal data between architectures without problems.
For example, Remote Procedure Call (RPC), as well as newer communication stacks,
such as SOAP, has been invented to overcome exactly this problem. Years of work and
experience have been put into those protocols that must be leveraged, if possible. If
the transition to 64-bit suffers from problems in this area, this is a good opportunity
to switch from a handcrafted communication mechanism to protocols used industry-
wide.

DCOM communication can also show the difference between native processes and
WOW64-emulated processes. The DCOM client calls the ole32!CoCreateInstance
API to obtain a pointer to a server object implementing the requested interface. DCOM
uses the registry as the main repository for registration information and loads the respec-
tive modules from the file system. 

Because DCOM registration is subject to registry redirection, the server compo-
nent must be properly registered on the architecture making the call. In other words,
the component setup must make sure that the registry entries and the files are visi-
ble to their client. Out-of-process DCOM servers are subject to another mechanism
called “registry reflector.” 

The registry reflector keeps in sync the 64-bit view and the 32-bit view of sever-
al registry keys, including out-of-process DCOM server registration. The registry
reflector uses the last writer wins policy when it synchronizes the registry’s view. As a
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result, after registering a 32-bit DCOM server application, its registration shows auto-
matically in the 64-bit registry’s view. The 64-bit client will instantiate and use the
server, a 32-bit application running in the WOW64 emulation environment. 

The communication is possible, as out-of-process servers are isolated from their
client, and they can communicate in any architecture combination: 32-bit client call-
ing into a 64-bit or 32-bit server and 64-bit client calling into a 32-bit server or 64-bit
server. Despite process isolation, client-server architectures might require proxy-stub
modules to be loaded in their processes. Because proxy-stub modules must match the
hosting process architecture, the system must contain both a 64-bit version and a 32-
bit version of those modules to facilitate the communication across architectures.
When a registered proxy-stub on the right architecture cannot be found, the com-
munication fails. 

Chapter 11—Writing Custom Debugger Extensions
Is there any reason to recompile the extension to work on 64-bit debuggers? In most
cases, such as debugging using live kernel targets or debugging memory dumps, the
existing extension works perfectly inside a 32-bit debugger. For live user mode
debugging of native applications, the recommendation is to use only the 64-bit ver-
sion of the debuggers that are unable to load the 32-bit extensions. The decision to
invest some time in creating the 64-bit version of the same extension is influenced by
the potential usage of the extension. 

Summary

After reading this chapter, describing what to expect when debugging 64-bit applica-
tions, it should be relatively safe for any engineer to move from the comfort zone
offered by Windows x86 into the Windows x64 world. The 64-bit code is optimized
for performance, causing the tools to have trouble providing reliable information to
the user. Therefore, the engineers should be ready to manually interpret the applica-
tion stack, use the information in this chapter, and solve the problem at hand. 

Because all tools are using the same symbols files, the same source files, and basi-
cally the same concepts, the right tool must be chosen in order to obtain maximum
productivity. 
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C H A P T E R  1 3

POSTMORTEM DEBUGGING

Throughout the book, we have looked at quite a few powerful tools available to devel-
opers when troubleshooting problematic code. The ultimate goal is to make sure that
these tools become integrated into the development process to ensure high quality.
These tools are excellent automated ways to find bugs, but they make no absolute
guarantees that the application will be bug free when it ships. 

Inevitably, problems surface in the application after it has been shipped. These
issues turn up at the most inopportune moments—mainly, while the customer uses it.
Depending on the severity of the bug, it can either have devastating effects on the cus-
tomer or merely be a nuisance. In either case, you can expect a phone call from an
upset customer asking why the application is not working properly. To remedy the sit-
uation and troubleshoot the problem, one option is to ask the customer for remote
access to the computer in question. While it might be feasible, at times, customers typ-
ically frown on this, and the answer is in many cases no. The reasons for not granting
remote access to a machine vary, but typically they can be because of the following.

■ The customer environment or policy does not allow inbound connections.
■ Remote debugging requires that a debugger be attached to one or more

processes and implies downtime. If the process is running on a critical server,
customers will be reluctant to accept downtime. 

■ Debugging a process via user mode or kernel mode means that developers
have full access to the state of the machine, including memory contents. For
some customers, this might constitute a privacy issue.

If the customer refuses live access to the machine exhibiting the problem and repro-
ducing the problem locally is not possible, can the problem even be debugged? The
answer is yes, and the process of doing so is called postmortem debugging. At a high
level, postmortem debugging involves the following steps.

1. Trigger the failure to occur.
2. Take a snapshot of the system state at the point of failure (or even before and

after, depending of the type of failure).
3. Send the snapshot to engineers for further analysis.
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In this chapter, we take a look at the different ways in which snapshots (also known as
dump files) can be generated, the different types of dumps available, and how to ana-
lyze them. We also cover two very powerful dump file aggregation services known as
Windows Error Reporting and Corporate Error Reporting. 

Let’s start by looking at some of the fundamental dump file topics.

Dump File Basics

As we have mentioned, a dump file is an out-of-band representation of the state of a
given process. The main purpose behind generating a dump file is to analyze application
failures without requiring live debugging access to the computer exhibiting the failures.
Once a dump file has been generated, it can be sent to the appropriate engineer, who can
then analyze the failure without access to the faulting machine. Instead, he simply loads
the dump file on his own computer and analyzes the failure using the postmortem capa-
bilities of the debuggers. What information does a dump file contain? Well, that depends
entirely on how the dump file was generated. There are two categories of dump files:

■ Full dumps 
■ Mini dumps

A full dump file contains the entire memory space of a process—the executable
image, the handle table, and other information used by the debugger. There is no way
of customizing the amount of data collected when using the full dump file. A full
dump file can, however, be converted to a mini dump file using the debuggers. 

The contents of mini dump files are variable and can be customized by the dump
file generator, depending on which generator is used. The information contained
within a mini dump file ranges from information on a particular thread to an exhaus-
tive description of the process being dumped. As strange as it might seem, the biggest
mini dump file will actually contain more debug information than a full dump file. To
that extent, this chapter focuses on the mini dump file construct. 

A number of tools are available that will generate dump files, as shown in Table 13.1. 

Table 13.1

Name Description

Windows Debuggers The Windows debuggers can generate dumps of different sizes
and enable full control of the dump file generation process.

ADPlus ADPlus is a tool that is part of Debugging Tools for Windows.
It acts as a process monitor capable of generating dump files
whenever a crash or hang occurs. Additionally, it has a notifica-
tion mechanism that can notify the user of a crash.



Windows Error Windows Error Reporting is a service Microsoft provides 
Reporting that allows customers to register with a live error reporting site.

Any time a crash occurs in one of the applications owned by a
particular customer, an error report is sent from the crashing
machine to the Windows Error Reporting Web site. The crash
information (including dump file) can be retrieved from the
WER service analyzed by the customer postmortem.

Corporate Error Corporate Error Reporting works on the same basis as 
Reporting the Windows Error Reporting, although at a corporate server

level rather than sending crash information over the Internet.
Customers can set up a Corporate Error Server and send crash
information to this server. Subsequently, crash information can
be sent to the Windows Error Reporting site.

In this section, we cover how to generate dump files using the Windows Debuggers
and ADPlus. Windows Error Reporting and Corporate Error Reporting mechanisms
are discussed later in the chapter.

To better illustrate the dump file generation process, we use a simple application
that allocates memory on the heap, writes to that memory, and then faults. Listing
13.1 shows the code for the sample application.

Listing 13.1

void __cdecl wmain ( )

{

WCHAR* pszTitle=L”Advanced Windows Debugging”;

wprintf(L”Press any key to start\n”);

WCHAR* pBuffer=(WCHAR*) new WCHAR[wcslen(pszTitle)+1];

if(pBuffer)

{

StringCchCopy(pBuffer, wcslen(pszTitle)+1, pszTitle);

wprintf(L”Title: %s\n”, pBuffer);

pBuffer=NULL;

*pBuffer=’\0’;

}

else

{
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wprintf(L”Failed to allocate memory\n”);

}

wprintf(L”Press any key to end\n”);

__getch();

}

The source of the crash should be pretty evident. After we copied the string to the
newly allocated heap buffer, the string pointer is reset to null and subsequently used
when null terminating the buffer, leading to a crash. We will start by illustrating how
to use the debuggers to generate a dump file.

Generating Dump Files Using the Debuggers
As noted earlier, the application we will be using is illustrated in Listing 13.1. The
compiled version can be found in the following location:

Source code: C:\AWD\Chapter13
Binary: C:\AWDBIN\WinXP.x86.chk\awdscenario1.exe

Run the application under the debugger and continue execution until the crash occurs.

....

ModLoad: 5cb70000 5cb96000   C:\WINDOWS\system32\ShimEng.dll

Press any key to start

Title: Advanced Windows Debugging

(9d8.f0c): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=00000000 ebx=7ffd5000 ecx=77c418bf edx=77c61b78 esi=7c9118f1 edi=00011970

eip=0100127e esp=0007ff1c ebp=0007ff44 iopl=0         nv up ei pl nz na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00010202

awdscenario1!wmain+0xbe:

0100127e c60000          mov     byte ptr [eax],0           ds:0023:00000000=??

0:000> kb

ChildEBP RetAddr  Args to Child

0007ff44 01001495 00000001 00032bf0 00036890 awdscenario1!wmain+0xbe

0007ffc0 7c816fd7 00011970 7c9118f1 7ffd5000 awdscenario1!wmainCRTStartup+0x12f

0007fff0 00000000 01001366 00000000 78746341 kernel32!BaseProcessStart+0x23

Not too surprisingly, we crash because of a second-chance access violation. At this point,
we would like to generate a dump file for further postmortem analysis. The single

Listing 13.1 (continued)
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biggest question with generating dump files is how much information to include. As a
general rule of thumb, the more state that is stored in the dump file, the more infor-
mation you will have at your disposal when doing postmortem debugging. The biggest
limiting factor is the size of the dump file. You might find yourself in environments in
which getting a huge dump file from a highly secure server is not feasible, and you
might need to work with a stripped down version. 

The means by which a dump file is generated is using the .dump command. The
.dump /m option indicates to the debugger that it should generate a mini dump file.
Additionally, the .dump /m command can take a number of other options, as detailed
in Table 13.2. 

Table 13.2 dump

Option Description

a Generates a complete mini dump with all the options enabled. It includes com-
plete memory data, handle information data, module information, basic memory
information, and thread information. Equivalent to using /mfFhut.

f Generates a mini dump that contains all accessible and committed pages of the
owning process.

F Generates a mini dump that includes all the necessary basic memory information
for the debugger to reconstruct the entire virtual memory address space.

h Generates a mini dump that contains handle information. 
u Generates a mini dump that includes information on unloaded modules. Note

that this is only available on Windows Server 2003.
t Generates a mini dump that includes information on thread times. Thread time

information includes created time, as well as user and kernel mode times.
i Generates a mini dump that includes secondary memory information. Secondary

memory is any memory (plus a small region surrounding it) that is referenced by
a stack pointer or the backing store.

p Generates a mini dump that includes the process and thread environment blocks.
w Generates a mini dump that includes all committed read-write private pages.
d Generates a mini dump that includes all the image data segments.
c Generates a mini dump that includes all image code segments.
r Generates a mini dump that is suited for scenarios in which privacy is of con-

cern. This option erases (replaces with zeroes) any information not needed in
order to re-create the stack (including local variables).

R Generates a mini dump that is suited to scenarios in which privacy is of concern.
This option removes the full module paths from the mini dump, thereby ensur-
ing the privacy of the user’s directory structure.
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In addition to the various options that control the contents of the dump file, the name
of the dump file must be specified. When a dump file is generated and a full path is
not specified, it will, by default, be generated in the directory from where the debug-
ger was launched. The following example illustrates how to generate a dump file with
full memory information using a full path.

.dump /mf c:\dumpfile.dmp

Let’s run the .dump command above on our crashing application:

0:000> .dump /mf dumpfile.dmp

Creating dumpfile.dmp - mini user dump

Dump successfully written

After the debugger is done generating the dump file, you should have a file of approx-
imately 3MB in size. To use the dump file, load it in a new debugger instance using
the /z switch. For example, to load the dump file we just generated, use the following
command.

c:\>windbg –z dumpfile.dmp

After the debugger has loaded the dump file, you will see the following debug output:

…

…

Loading Dump File [C:\dumpfile.dmp]

User Mini Dump File with Full Memory: Only application data is available

Windows XP Version 2600 (Service Pack 2) UP Free x86 compatible

Product: WinNt, suite: SingleUserTS Personal

Debug session time: Thu Nov 16 17:59:25.000 2006 (GMT-8)

System Uptime: 0 days 8:45:08.239

Process Uptime: 0 days 0:01:35.000

…

This dump file has an exception of interest stored in it.

The stored exception information can be accessed via .ecxr.

(9d8.f0c): Access violation - code c0000005 (first/second chance not available)

eax=00000000 ebx=7ffd5000 ecx=77c418bf edx=77c61b78 esi=7c9118f1 edi=00011970

eip=0100127e esp=0007ff1c ebp=0007ff44 iopl=0         nv up ei pl nz na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00010202

awdscenario1!wmain+0xbe:

0100127e c60000          mov     byte ptr [eax],0           ds:0023:00000000=??
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Near the top of the debug output, you will notice that the debugger gives some basic
information about the dump file being loaded. Information includes the location of
the dump file and the type of dump file, as well as what information is available. The
next interesting piece of information is toward the end of the debugger output, where
the reason behind the fault is displayed (access violation). Armed with this dump file,
you can now debug this failure on any machine that you want without physical access
to the faulting machine. We discuss in detail how the postmortem analysis works later
in this chapter. 

When generating a dump file explicitly using the debugger, one of the difficulties
is that a debugger has to be attached to the faulty process at the right time. Although
that might not seem like a big hurdle, think about scenarios in which the crash only
reproduces every once in a while and the opportunity to attach the debugger is
missed. It would be nice to be able to tell Windows to use the debuggers to generate
a dump file any time a process crashes. Fortunately, this mechanism exists and is com-
monly referred to as the postmortem debugger setup. By default, Windows uses Dr.
Watson (discussed later in the chapter) as the postmortem debugger. Dr. Watson gen-
erates a dump file anytime a process crashes and gives the user the option to send the
dump file to Microsoft for further analysis. The postmortem debugger to use can be
changed by using the command lines shown in Table 13.3. 

Table 13.3 

Command Line Aedebug\Debugger Registry Value Description

Windbg –I windbg.exe -p %ld –e %ld –g Changes the postmortem
debugger to be WinDbg.
Note that the –I must be
capitalized.

cdb –iae cdb.exe -p %ld -e %ld -g Changes the postmortem
debugger to be cdb.

ntsd –iae ntsd.exe –p %ld -e %ld –g Changes the postmortem
debugger to be ntsd. 

Drwtsn32 –i drwtsn32 -p %ld -e %ld -g Changes the postmortem
debugger to be Dr. Watson. 

What happens behind-the-scenes when the command lines in Table 13.3 are exe-
cuted? The answer is quite simple. They change a few registry values that Windows
looks at when it detects a process crash. The registry path used for the postmortem
debugger setup is shown here. 

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\AeDebug
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The AeDebug key contains two values that are critical for the postmortem debugger
setup.

Auto
The auto registry value dictates whether a message box should be displayed whenev-
er a crash occurs and a postmortem debugger is set up. If the value is set to 0, a mes-
sage box is displayed, and conversely, when set to 1, no message box is displayed. The
message box that is displayed is the dreaded “Application X has encountered a prob-
lem and needs to close.” In that message box, the user can choose to debug the fault-
ing application, send an error report, or skip sending the error report. Figure 13.1
shows an example of the message box when awdscenario1.exe faults and ntsd is set up
to be the postmortem debugger. 

Figure 13.1

Debugger
The debugger registry value dictates which postmortem debugger should be invoked
whenever a process faults. This value can either be edited manually to specify a post-
mortem tool or populated automatically by the debuggers if you configure any of
them as the postmortem debugger. As shown in Table 13.3, with the exception of the
name of the tool, the rest of the command line resembles the following:

-p %ld -e %ld -g

The –p %ld part indicates which process the debugger should attach to, and the –e
%ld switch specifies an event that is signaled when the attach process is completed.
Finally, the –g switch instructs the debugger to ignore the default first breakpoint
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that always occurs when a debugger is attached to a process. What if you wanted to
specify additional options? Ntsd and cdb optionally allow you to specify a key string
when you run with the –iaec switch. The key string allows you to add additional
options to the Debugger registry value even when using the debugger’s own post-
mortem registration process. For example, to set ntsd with source line debugging,
use the following command line:

ntsd -iaec -lines

If you check the Debugger registry value, you will see that the –lines switch has
been added. 

ntsd.exe -p %ld -e %ld -g -lines

Although the debuggers typically provide more than enough power and flexibility when
generating dump files, one additional tool can be used. The tool is called ADPlus.

Generating Dump Files Using ADPlus
ADPlus is a tool that monitors and automates the generation of dump files for one or
more faulty processes and has the capability to notify a user or computer when crashes
occur. ADPlus is a command-line-driven script, and Microsoft strongly recommends
running ADPlus under the cscript.exe interpreter. As a matter of fact, if the default
script interpreter is set to something other than cscript.exe, a dialog appears, asking if
you want to change the interpreter to cscript.exe. In addition to the command-line
options, ADPlus can work on the basis of configuration files. The configuration files
allow for more granular control of the operational flow of ADPlus. 

ADPlus can run in one of the following two modes:

■ Hang mode is used to troubleshoot processes that exhibit hanging symptoms
(such as not making progress or 100% CPU utilization). ADPlus must be start-
ed after the process or processes to monitor have already hung.

■ Crash mode is used to troubleshoot processes that exhibit crashing behavior.
ADPlus must be started before the process crashes.

Let’s use crash mode as an example of how to use ADPlus to generate a dump file for
awdscenario1.exe. Start by running the awdscenario1.exe application:

C:\AWDBIN\WinXP.x86.chk\awdscenario1.exe
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Before pressing any key to resume execution, run the following command line:

C:\>adplus.vbs -crash -pn awdscenario1.exe -y

SRV*c:\Symbols*http://msdl.microsoft.com/download/symbols 

The –crash switch puts ADPlus into crash mode, the –pn switch tells ADPlus the
name of the process to monitor, and the –y sets the symbol path to be used through-
out the ADPlus execution. The beauty of using the –pn switch is that it can monitor
any number of instances of any given process name by name.

After execution has finished, ADPlus will put the resulting log files under a direc-
tory of the Windows debuggers installation path. The name of the directory takes on
the following structure:

<runtype>_Mode__Date_<date of run>__Time_<time of run>

For example, when ADPlus finished executing, the following directory was created:

C:\Program Files\Debugging Tools for Windows\Crash_Mode__Date_10-21-2006__Time_10-31-

17AM

Note that the default path can be changed by using the –o switch. 
In the preceding directory, there are several files, but the most important ones are

the *.dmp files, which contain all the dump information from the run. As you can see,
several dump files are collected. Why do we have more than one dump file per crash?
Well, ADPlus automates the process of collecting dump files and generates dump files
when certain preset conditions occur during execution. The name of the dump file
gives you the necessary clues to figure out the reason the dump file was generated. For
example, in our previous run, ADPlus generated the following dump files:

PID-2728__AWDSCENARIO1.EXE__1st_chance_AccessViolation__mini_0BA8_2006-10-21_10-31-

30-671_0AA8.dmp

PID-2728__AWDSCENARIO1.EXE__1st_chance_Process_Shut_Down__full_0BA8_2006-10-21_10-31-

30-718_0AA8.dmp

PID-2728__AWDSCENARIO1.EXE__2nd_chance_AccessViolation__full_0BA8_2006-10-21_10-31-

30-687_0AA8.dmp

ADPlus generated a mini dump file when the first-chance access violation occurred,
followed by a full dump file when the second-chance access occurred, and finally also
produced a full dump file when the process was shutting down. Do we need all these
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dumps for our particular run? No—in our particular case, the most interesting dump
file is the second-chance access violation. However, there are situations in which peri-
odic generation of dump files can be very useful, as it can yield a historical perspec-
tive of the systematic deterioration of a process. ADPlus even offers a powerful way
for the user to configure how often information should be collected and under what
conditions, essentially providing a scripting front end for the debuggers. You can
learn more about the scripting capabilities of ADPlus in the debugger documenta-
tion. It is important to note that ADPlus does not do anything “magical” via its script-
ing engine. It simply takes a user-friendly way of specifying debugger directives and
translates them into pure and automated debugger commands. You can see how the
user-friendly configuration actually translates to the debugger commands by looking
at the directory called CDBScripts located in the same directory as the dump files.
In our example, the CDBScripts directory contains a file called PID-2728__
AWDSCENARIO1.EXE.cfg, which contains all the debugger commands used in that
ADPlus session.

The last important point about ADPlus is how we can control what type of dump file
is generated when a fault occurs. Four command-line switches control this behavior:

■ –FullOnFirst: This switch causes ADPlus to generate a full dump file when
a first-chance exception occurs.

■ –MiniOnSecond: This switch causes ADPlus to generate a mini dump file
when a second-chance exception occurs.

■ -NoDumpOnFirst: This switch tells ADPlus not to generate a mini dump file
when a first-chance exception occurs. This can come in very handy, as applica-
tions sometimes generate first-chance exceptions that are gracefully handled.

■ -NoDumpOnSecond: This switch tells ADPlus not to generate a mini dump file
when a second-chance exception occurs.

ADPlus is a convenient, powerful, and flexible tool for monitoring and gathering data
from faulty processes. In this section, we covered the basics of the tool, and it is well
worth your time to further investigate the other powerful features, such as the script-
ing capabilities and defining custom exception handlers that allow you to generate
dump files when custom exceptions occur.

In addition to creating user mode dump files, kernel mode dump files are also
possible. The next section illustrates how to generate kernel mode dump files.
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Creating Kernel Dumps
As with user mode debuggers, you can use any kernel memory dump as the target
image. This functionality is used mostly by kernel driver developers to investigate
driver failures postmortem. At times, user mode developers can benefit from using
kernel dumps—for example, when the system is a critical production system, and we
cannot justify down time; when the problem is reported by a customer, and the
process dump is not sufficient. 

As mentioned earlier, a crash dump file is a dump of the machine state at the time
of a serious system exception. This dump file can be analyzed through debugging
tools by loading it into the debugger to get information about the state of the machine
and eventually arrive at what caused the crash. 

Before a crash dump is created, dump creation must be enabled and configured.
To configure these settings, go to the Control Panel, click the System icon, select the
Advanced tab, go to the Startup and Recovery area, and click on Settings, as shown in
Figure 13.2. The desired dump file size must be selected from the Write Debugging
Information list. Only one dump file can be created for any given crash. The differ-
ence between the different dump files is one of size. The Complete Memory Dump is
the largest and contains the most information, the Kernel Memory Dump is somewhat
smaller, and the Small Memory Dump is only 64KB in size. The content of those three
kinds of kernel mode crash dump files are as follows: 

■ Complete Memory Dump: This dump file contains all the physical memory for
the machine at the time of the fault. This dump file requires a page file on the
boot drive that is at least as large as the main system memory: It should be
capable of holding a file whose size equals your entire RAM plus one
megabyte.

■ Kernel Memory: This type of dump contains all the memory in use by the ker-
nel at the time of the crash. This kind of dump file is significantly smaller than
the Complete Memory Dump. Typically, the dump file will be around one-
third the size of the physical memory on the system. This dump file doesn’t
include unallocated memory, or any memory allocated to user mode applica-
tions. It only includes memory allocated to the Windows kernel and hardware
abstraction level (HAL), as well as memory allocated to kernel mode drivers
and other kernel mode programs.

■ Small Memory dump (Minidump): This is a much smaller file than the other
two kinds of kernel-mode crash dumps. It is exactly 64KB in size and requires
only 64KB of page file space on the boot drive. This kind of dump file can be
useful when space is greatly limited. However, because of the limited amount
of information included, errors that were not directly caused by the thread exe-
cuting at the time of the crash might not be discovered by an analysis of this file. 
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Figure 13.2

A small memory dump file includes the following: 

■ The bug check message and parameters, as well as other blue screen data. 
■ The processor context (PRCB) for the processor that crashed. 
■ The process information and kernel context (EPROCESS) for the process that

crashed. 
■ The thread information and kernel context (ETHREAD) for the thread that

crashed. 
■ The kernel-mode call stack for the thread that crashed. If this is longer than

16KB, only the topmost 16KB will be included. 
■ A list of loaded drivers. 

In Windows XP and Windows Server 2003, the following items are also included: 

■ A list of loaded modules and unloaded modules.
■ The debugger data block. This contains basic debugging information about the

system. 
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■ Any additional memory pages that Windows identifies as being useful in
debugging failures. This includes the data pages that the registers were point-
ing to when the crash occurred, and other pages specifically requested by the
faulting component. 

■ (Itanium processor only) The backing store. 
■ (Windows Server 2003 only) The Windows type—for example, “Professional”

or “Server.” 

In some situations, the system has not crashed; therefore, a crash dump will not have
been created. To debug these cases, it might be advantageous to manually create a crash
dump file. This can be done on most systems using a PS2 keyboard. Additional config-
uration is required to enable a manual crash dump creation. Besides setting the size and
location of the dump file, you must enable the keyboard-initiated crash in the registry.
In the registry key HKEY_LOCAL_MACHINE\System\CurrentControlSet\
Services\i8042prt\Parameters, create a value named CrashOnCtrlScroll,
and set it equal to REG_DWORD 0x1 (or any nonzero value). After the system has reboot-
ed, you can generate a crash by holding down the rightmost CTRL key and pressing the
SCROLL LOCK key twice. This causes the system to call KeBugCheck() with a bug
check code of 0xE2 (MANUALLY_INITIATED_CRASH).

A common problem encountered in kernel debugger sessions is that some pages
are not loaded in physical memory. Because any paged-out memory address is not
contained in the dump, in general it is preferable to debug a live machine instead of
using the kernel dumps. If the kernel debugger is enabled on the system, the kernel
debugger is prompted to investigate the crash. If the kernel debugger is not con-
nected, the system just freezes, waiting for the kernel debugger to connect. 

You can generate an explicit dump by using the built-in dump command, .dump
[option] <filename>, as seen in Listing 13.2. All the dump information is trans-
ferred through the communication pipe between debugger and host, and the debug-
ger warns you if the requested dump is large for the communication channel between
the kernel debugger host and kernel debugger target. (For example, capturing a full
memory dump from a system with 256MB of memory must transfer all that over the
channel, and that requires many hours over a serial connection.) During this time, the
debugger target system is not operational. 

Listing 13.2

kd> * .dump without parameters creates a mini kernel dump file
kd> .dump %temp%\mini.dmp
Creating c:\temp\mini.dmp - mini kernel dump
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Dump successfully written
kd> * f parameter generates a full but large dump file 
kd> .dump /f %temp%\full.dmp
Creating a full kernel dump over the COM port is a VERY VERY slow opera-
tion.
This command may take many HOURS to complete.  Ctrl-C if you want to ter-
minate the command.
Creating c:\temp\full.dmp - Full kernel dump
Percent written 0
Failed reading target physical memory at 35000, NTSTATUS 0xC000013A

Now that we have seen how to generate dump files, it is time to illustrate how dump
files can be used in the troubleshooting process

Using Dump Files

Now that you have been presented with one or more dump files and tasked with the
investigation of finding the root cause of the faulty process, what can actually be done
using these dump files? Can you dump memory, look at handles, or step through code?
Remember that a dump file is simply a static snapshot of the state of a process. As
such, setting breakpoints and stepping through code is not possible. Using dump files
can be best viewed as manual debugging. By manual, we mean that simply by looking
at the state of an application, you will need to manually construct theories about what
code has executed to get the application into that state. It should be evident that con-
structing code execution by state analysis is a much harder proposition than engaging
in a live debug session. Nevertheless, plenty of the debugger commands that massage
application state into a more digestible form still work when using dump files; and in
most cases, with enough patience, the root cause can be found. 

Before we take a closer look at the dump files generated in the previous section,
one critical piece of information needs to be brought up: symbol files. Dump files
contain no symbolic information, and it is critical that symbol files be available when
analyzing a dump file. This might seem to be an easy enough task. When an applica-
tion ships, the symbols are archived; when a dump needs to be analyzed, you simply
point the debugger to the archived symbols. This strategy works well if only one ver-
sion of the application is ever shipped, but alas, applications evolve and typically go
through several versions before being retired. Furthermore, applications tend to be
patched, which means that individual components of the application be updated,
making it harder to manage the versioning of the symbol files. To address these prob-
lems, it is strongly recommended that a symbol server be set up so that symbols are
archived and can be accessed in a simple and organized fashion. For detailed 
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information on how to set up a symbol server, see Chapter 4, “Managing Symbol and
Source Files.” Let’s start our dump file analysis by looking at a very basic scenario—
an access violation.

Dump File Analysis: Access Violation
In the prior section, we generated a dump file of a faulting application, and we are
now tasked with finding the root cause using only the dump file. The dump file that
we generated can be found in the following location: 

C:\AWDBIN\Dumps\dumpfile.dmp

To use a dump file, we have to tell the debugger that we want to analyze a dump file
by using the –z switch. 

C:> windbg –z C:\AWDBIN\Dumps\dumpfile.dmp

When the debugger has started, the first piece of important information is the access
violation output. 

This dump file has an exception of interest stored in it.

The stored exception information can be accessed via .ecxr.

(9d8.f0c): Access violation - code c0000005 (first/second chance not available)

eax=00000000 ebx=7ffd5000 ecx=77c418bf edx=77c61b78 esi=7c9118f1 edi=00011970

eip=0100127e esp=0007ff1c ebp=0007ff44 iopl=0         nv up ei pl nz na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00010202

awdscenario1!wmain+0xbe:

0100127e c60000          mov     byte ptr [eax],0           ds:0023:00000000=??

This tells us immediately that the dump file we are investigating was generated
because of an access violation. The next logical step is to dump out the stack trace for
the offending thread and see what operations were occurring when the access viola-
tion occurred. 

0:000> kb

ChildEBP RetAddr  Args to Child

0007ff44 01001495 00000001 00032bf0 00036890 awdscenario1!wmain+0xbe

0007ffc0 7c816fd7 00011970 7c9118f1 7ffd5000 awdscenario1!wmainCRTStartup+0x12f

0007fff0 00000000 01001366 00000000 78746341 kernel32!BaseProcessStart+0x23

Judging from the stack trace, we can see that our application caused an access viola-
tion in its main function. To get some more details, we unassemble the top frame and
see what was being executed when the access violation occurred.
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0:000> u awdscenario1!wmain+0xbe

awdscenario1!wmain+0xbe:

0100127e c60000          mov     byte ptr [eax],0

01001281 eb0e            jmp     awdscenario1!wmain+0xd1 (01001291)

01001283 68a4100001      push    offset awdscenario1!`string’ (010010a4)

01001288 ff1544100001    call    dword ptr [awdscenario1!_imp__printf (01001044)]

0100128e 83c404          add     esp,4

01001291 688c100001      push    offset awdscenario1!`string’ (0100108c)

01001296 ff1544100001    call    dword ptr [awdscenario1!_imp__printf (01001044)]

0100129c 83c404          add     esp,4

The offending mov instruction appears to be moving the value 0 to an address specified
by the eax register. To find out what the eax register contains, we use the r command. 

0:000> r

eax=00000000 ebx=7ffd5000 ecx=77c418bf edx=77c61b78 esi=7c9118f1 edi=00011970

eip=0100127e esp=0007ff1c ebp=0007ff44 iopl=0         nv up ei pl nz na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00010202

awdscenario1!wmain+0xbe:

0100127e c60000          mov     byte ptr [eax],0           ds:0023:00000000=??

The eax register contains a value of 0, which means that the offending mov instruc-
tion was trying to store a value of 0 into memory location 0. Suffice it to say that we
all know the expected outcome of such an instruction—an access violation. Looking
at the code in Listing 13.1, we can also see that it matches perfectly with the debug
session. More specifically, the line of code that caused the access violation is
*pBuffer=’\0’;—and the pBuffer pointer value is null.

Now that we have seen how to investigate a simple access violation using the post-
mortem features of the debugger, we’ll take a look at a slightly more complex scenario
involving a handle leak.

Dump File Analysis: Handle Leaks
Crashes are only one category of problems that can be analyzed using dump files.
Quite often, resource leaks creep into applications and might need to be analyzed via
the dump file mechanism as well. In this section, we use a sample application from
Chapter 9, “Resource Leaks,” that can be found at

Source code: C:\AWD\Chapter9\HLeak\Client
Binary: C:\AWDBIN\WinXP.x86.chk\09HLeak.exe
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We run the application under the debugger with 20 threads, 200 iterations per
thread, and 0 sleep time between iterations. 

C:\AWDBIN\WinXP.x86.chk\09HLeak.exe /t:20 /i:200 /s:0

Using task manager, we can see a drastic increase in handle usage. Prior to the appli-
cation exiting, break into the debugger and generate a dump file using the /mf (full
memory) switch.

…

…

…

0:000> .dump /mf c:\dumpfile.dmp

Creating c:\dumpfile.dmp - mini user dump

Dump successfully written

Once the dump file has been written, exit the current debugger instance, start a new
instance with the dump file just generated (or alternatively, the dump file located at
C:\AWDBIN\Dumps\dumpfile2.dmp), and issue the !handle extension command
to get an idea of the handle usage in the application. 

0:000> !handle

ERROR: !handle: extension exception 0x80004002.

“Unable to read handle information”

Why is the !handle extension command resulting in an error? The dump file was
generated with the full memory dump switch (/mf) and should contain all the neces-
sary information. It turns out that to include handle information in the dump file, a
full memory dump is not enough. Dump files that need to include handle informa-
tion must also add h to the switch. Let’s rerun the application under the debugger and
issue the following .dump command prior to exiting the application.

.dump /mfh c:\dumpfile3.dmp

Next, we load the newly generated dump file in the debugger and try to once again
use the !handle extension command.

0:000> !handle

Handle 00000004

Type          Token

Handle 00000008

Type          Token
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Handle 0000000c

Type          File

Handle 00000010

Type          Token

Handle 00000014

Type          Token

Handle 00000018

Type          Token

Handle 0000001c

Type          Token

Handle 00000020

Type          Token

Handle 00000024

Type          Token

…

…

…

738 Handles

Type            Count

Event           2

File            1

Port            1

Directory       2

WindowStation   1

Key             1

Token           1440

KeyedEvent      1

This time, we have complete access to the handle information in the application. We
can even get detailed information about any of the listed handles by using the !handle
<handle value> command. From the handle statistics at the bottom of the !handle
output, we can see that there is an abnormally large number of token handles. We also
know from Chapter 9 that a great way of figuring out the allocation sources for handles
is to use the !htrace extension command. Enabling htrace on the dump file seems
to be the best way to go.

00> !htrace -enable

ERROR: Cannot enable handle tracing, status code 0xc0000008.

Once again, it seems as if we’ve hit a snag. Htrace returns an error code when run
on a dump file. The bad news is that htrace does not work for dump files, and
because of that, getting nice stack traces for each opened handle is not possible.
Because htrace information is static in nature, one workaround for this problem is
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to run htrace on the live machine and pipe all the results to a log file. A dump file
can be created with associated handle information that can be used to correlate all
open handles with the stack traces in the log file. Let’s try it on our leaky application
and see what can be learned from the log and dump files. Begin by running the leaky
application under the debugger. Set the symbol path, enable htrace, and open a log
file. Resume the application, and prior to exiting, run the !htrace –diff command
to get the leaked handle stack traces and subsequently close the log file. Last, gener-
ate a full memory dump with handle information.

…

0:000> !htrace –enable

Handle tracing enabled.

Handle tracing information snapshot successfully taken.

…

…

…

0:000> .logopen c:\handles.log

Opened log file ‘c:\handles.log’

…

…

…

0:000> !htrace -diff

Handle tracing information snapshot successfully taken.

0x1000 new stack traces since the previous snapshot.

Ignoring handles that were already closed...

Outstanding handles opened since the previous snapshot:

-------------------

Handle = 0x00001274 - OPEN

Thread ID = 0x000000e4, Process ID = 0x00000eb8

0x01002939: 09hleak!CServer::GetToken+0x00000049

0x01002651: 09hleak!CServer::GetSID+0x00000021

0x010015f1: 09hleak!ThreadWorker+0x00000081

0x7c80b683: kernel32!BaseThreadStart+0x00000037

-------------------

Handle = 0x00001270 - OPEN

Thread ID = 0x00000fb8, Process ID = 0x00000eb8

0x01002939: 09hleak!CServer::GetToken+0x00000049

0x01002651: 09hleak!CServer::GetSID+0x00000021

0x010015f1: 09hleak!ThreadWorker+0x00000081

0x7c80b683: kernel32!BaseThreadStart+0x00000037

-------------------

Handle = 0x0000126c - OPEN
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Thread ID = 0x00000d68, Process ID = 0x00000eb8

0x01002939: 09hleak!CServer::GetToken+0x00000049

0x01002651: 09hleak!CServer::GetSID+0x00000021

0x010015f1: 09hleak!ThreadWorker+0x00000081

0x7c80b683: kernel32!BaseThreadStart+0x00000037

-------------------

Handle = 0x00001244 - OPEN

Thread ID = 0x00000df0, Process ID = 0x00000eb8

0x01002939: 09hleak!CServer::GetToken+0x00000049

0x01002651: 09hleak!CServer::GetSID+0x00000021

0x010015f1: 09hleak!ThreadWorker+0x00000081

0x7c80b683: kernel32!BaseThreadStart+0x00000037

-------------------

Handle = 0x0000120c - OPEN

Thread ID = 0x00000b78, Process ID = 0x00000eb8

0x01002939: 09hleak!CServer::GetToken+0x00000049

0x01002651: 09hleak!CServer::GetSID+0x00000021

0x010015f1: 09hleak!ThreadWorker+0x00000081

0x7c80b683: kernel32!BaseThreadStart+0x00000037

-------------------

Handle = 0x000011d8 - OPEN

Thread ID = 0x00000bdc, Process ID = 0x00000eb8

0x01002939: 09hleak!CServer::GetToken+0x00000049

0x01002651: 09hleak!CServer::GetSID+0x00000021

0x010015f1: 09hleak!ThreadWorker+0x00000081

0x7c80b683: kernel32!BaseThreadStart+0x00000037

-------------------

Handle = 0x000011ac - OPEN

Thread ID = 0x000009b0, Process ID = 0x00000eb8

0x01002939: 09hleak!CServer::GetToken+0x00000049

0x01002651: 09hleak!CServer::GetSID+0x00000021

0x010015f1: 09hleak!ThreadWorker+0x00000081

0x7c80b683: kernel32!BaseThreadStart+0x00000037

…

…

…

-------------------

Displayed 0x349 stack traces for outstanding handles opened since the previous snap-

shot.

0:000> .logclose

Closing open log file c:\handles.log
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0:000> .dump /mfh c:\dumpfile4.dmp

Creating c:\dumpfile4.dmp - mini user dump

Dump successfully written

Next, we load the dump file just generated (or use the dump file at C:\AWDBIN\
Dumps\dumpfile4.dmp) under the debugger and issue the !handle extension com-
mand, which tells us exactly which handles are still open in the process. Selecting one
of the handles, listed as still open in dumpfile4.dmp, is handle:

Handle 00001490

Type          Token

To find out the corresponding stack trace that opened this handle, we look into the
htrace.log file and search for 00001490. 

Handle = 0x00001490 - OPEN

Thread ID = 0x000002ac, Process ID = 0x00000eb8

0x01002939: 09hleak!CServer::GetToken+0x00000049

0x01002651: 09hleak!CServer::GetSID+0x00000021

0x010015f1: 09hleak!ThreadWorker+0x00000081

0x7c80b683: kernel32!BaseThreadStart+0x00000037

The stack trace shown previously corresponds to the stack trace that resulted in open-
ing the leaked handle. From here, a targeted code review reveals the reason behind
the leaked handle. By using some simple correlative and investigative techniques, we
are able to arrive at the root cause for the leaked handles. 

In this section of the chapter, we looked at how to use the dump files to arrive at
the root cause for a particular problem. Generating the correct type of dump file is
also of paramount importance. Without the correct information included in the dump
file, the critical missing pieces might mean the difference between a successful or
failed debug session. As a general rule of thumb, you should always strive to get a
dump file that has as much information in it as possible, and the best dump switch for
achieving this is the /ma switch. 

The importance of postmortem debugging cannot be overstated. Many times, it’s
impossible to get access to a live debug session, and having the tools and knowledge
to properly analyze a bug after the fact is critical. In fact, postmortem debugging
using dump files is so important that Microsoft built an entire online service around
it, known as the Windows Error Reporting service. 
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Windows Error Reporting

Anyone who has been using Windows has come across the message box shown in
Figure 13.3 at least once.
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Figure 13.3

Figure 13.3 illustrates the signature UI of a technology known as Dr. Watson. When
presented with this message box, the user has the option to send an error report to
Microsoft. If the user chooses to send the error report, it is uploaded over a secure
channel (HTTPS) to a Microsoft database, where it is categorized (or bucketized) and
stored for later analysis. It should come as no surprise that the information sent up as
part of the error report includes a dump file that helps the developers looking at the
problem find the root cause. The applications that can partake in Windows Error
Reporting are not limited to Microsoft products. Any crashing process in Windows
will be part of the same mechanism. However, to get access to error reports that cor-
respond to your applications, you must first enroll in the Windows Error Reporting
Service. In this section, we take a look at how Windows Error Reporting works, what
is sent up as part of the error report, how to enroll in the Windows Error Reporting
database, and how to query the service to get the error reports. 

Dr. Watson
Dr. Watson is used in Windows to generate error reporting information that can be
sent up to the Windows Error Reporting service. Windows configures Dr. Watson to
be the default postmortem debugger. When an application crash occurs, Dr. Watson
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catches this crash and generates an error report that the user is notified about and can
optionally upload to Microsoft. The error collection behavior of Dr. Watson can be
customized by running drwtsn32.exe. Figure 13.4 shows the Dr. Watson configura-
tion dialog box.

Figure 13.4

Each of the configurable options is discussed next.

Log File Path
The log file path specifies the path where the Dr. Watson log file will be stored. By
default, the log file is stored in

Documents and Settings\All Users\Application Data\Microsoft\Dr Watson

If you change this path, make sure that the specified path grants all users write access.
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Crash Dump
The crash dump specifies the path to the crash dump files that are generated when
an application faults. The default file path is

Documents and Settings\All Users\Application Data\Microsoft\Dr Watson\user.dmp

If you change this path, make sure that the specified path grants all users write access.

Number of Instructions
This specifies the number of instructions that Dr. Watson will unassemble before and
after the current program counter for each thread. By default, the number of instruc-
tions to unassemble is 10. 

Number of Errors to Save
This specifies the number of errors that will be saved in the log file. By default, the
number of errors logged is 10.

Crash Dump Type
This specifies the type of crash dump file that is generated by Dr. Watson. By default,
a mini dump file is generated that contains only the registers, stack, and portions of
memory.

Options
Table 13.4 describes all the options that can be configured.

Table 13.4

Option Description

Dump Symbol Table Dump symbol table for each module. Note that this
option can make the log files very large. By default, this
option is not enabled.

Dump All Thread Contexts Dumps the state for every thread in the faulting applica-
tion. By default, this option is not enabled, and Dr.
Watson only logs the state of the faulting thread.

Append to Existing Log File Specifies if log information should be appended to the exist-
ing log file or if a new log file should be created for each
new application fault. By default, this option is enabled.
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Visual Notification Specifies if Dr. Watson provides visual notifications
about faulting applications. If this is enabled, a dialog
box is shown with an OK button. This option is dis-
abled by default.

Sound Notification Specifies if Dr. Watson should provide audible notifica-
tions about faulting applications. If enabled, a WAV file
can be specified. By default, this option is disabled.

Create Crash Dump File Specifies if Dr. Watson should generate a dump file of
the faulting application. By default, this option is
enabled and requires that a filename be specified in
the Crash Dump field.

Application Errors
The application errors option displays all the errors from the various Dr. Watson col-
lections. Let’s take the sample awdscenario1.exe used previously in the chapter and
see what type of specific information Dr. Watson collects. First, make sure that Dr.
Watson is selected as the postmortem debugger by running the following:

drwtsn32.exe -i

Next, run the awdscenario1.exe application (used earlier in the chapter) using

C:\AWDBIN\WinXp.x86.chk\awdscenario1.exe

When the Dr. Watson message box is displayed, click Don’t Send. To look at the log
file generated by Dr. Watson for this crash, we use the following path:

Documents and Settings\All Users\Application Data\Microsoft\Dr Watson\ drwtsn32.log

The log file is in plaintext, and any text reader or editor (such as Notepad) can be used
to open the file. 

The log file is organized into one or more application exception sections,
one section per fault, where each section begins with the following line:

Application exception

Table 13.4 (continued)

Option Description
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Each application exception represents a faulting application and contains the
following information:

■ App: The full path to the faulting application followed by the process identifier
■ When: The date and time of the fault
■ Exception number: The exception number and textual representation of the

exception

In our sample run of awdscenario1.exe, the application exception section of the
log file states (if you have had multiple process crashes on the system, you might have
to search for the awdscenario1.exe crash)

Application exception occurred:

App: C:\AWDBIN\WinXP.x86.chk\awdscenario1.exe (pid=2276)

When: 10/19/2006 @ 08:12:41.687

Exception number: c0000005 (access violation)

Each application exception section is broken down further into the following
additional categories. 

System Information
The system information section contains a plethora of information about the system
that the faulting application was running on. Our sample run yielded the following
system information section:

*——> System Information <——*

Computer Name: MARIOH-HOME

User Name: marioh

Terminal Session Id: 0

Number of Processors: 1

Processor Type: x86 Family 15 Model 15 Stepping 0

Windows Version: 5.1

Current Build: 2600

Service Pack: 2

Current Type: Uniprocessor Free

Registered Organization: The High-tech Avenue

Registered Owner: Mario Hewardt

As you can see, information such as processor count, processor type, and Windows ver-
sion are all included in this list and can be quite useful when analyzing a problem post-
mortem. Imagine that a particular crash only occurred when running on Windows XP
SP2. The error logs for all the crashes clearly specify that the crash occurred on
Windows XP SP2, which helps the developer narrow down the scope of the problem.
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Task List
The task list contains a list of processes running on the system at the point of failure.
The list is very similar to the output of the familiar tlist.exe command. 

Module List
The module list section contains all the modules (including the address range each
module occupies) that were loaded into the faulting process’s address space at the
point of failure. For our sample run, the module list consists of

*——> Module List <——*

(0000000001000000 - 0000000001003000: C:\AWDBIN\WinXP.x86.chk\ awdscenario1.exe

(0000000076390000 - 00000000763ad000: C:\WINDOWS\system32\IMM32.DLL

(0000000077b40000 - 0000000077b62000: C:\WINDOWS\system32\Apphelp.dll

(0000000077c00000 - 0000000077c08000: C:\WINDOWS\system32\VERSION.dll

(0000000077c10000 - 0000000077c68000: C:\WINDOWS\system32\msvcrt.dll

(0000000077d40000 - 0000000077dd0000: C:\WINDOWS\system32\USER32.dll

(0000000077dd0000 - 0000000077e6b000: C:\WINDOWS\system32\ADVAPI32.dll

(0000000077e70000 - 0000000077f01000: C:\WINDOWS\system32\RPCRT4.dll

(0000000077f10000 - 0000000077f57000: C:\WINDOWS\system32\GDI32.dll

(0000000077f60000 - 0000000077fd6000: C:\WINDOWS\system32\SHLWAPI.dll

(000000007c800000 - 000000007c8f4000: C:\WINDOWS\system32\kernel32.dll

(000000007c900000 - 000000007c9b0000: C:\WINDOWS\system32\ntdll.dll

State Dump for Thread ID X
The state dump for the faulty thread includes the processor register state, as well as
the unassembly of code prior to and after the faulting instruction. Additionally, the
assembly code in this section has one annotation, FAULT ->, that helps pinpoint the
exact location of the failure.

*——> State Dump for Thread Id 0xb6c <——*

eax=00000000 ebx=7ffdf000 ecx=77c418bf edx=77c61b78 esi=01c709ea edi=fcead396

eip=0100127e esp=0007ff1c ebp=0007ff44 iopl=0         nv up ei pl nz na pe nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000202

function: awdscenario1!wmain

01001259 8b4dfc           mov     ecx,[ebp-0x4]

0100125c 51               push    ecx
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0100125d e84e000000       call    awdscenario1!StringCchCopyA (010012b0)

01001262 8b55fc           mov     edx,[ebp-0x4]

01001265 52               push    edx

01001266 68c0100001       push    0x10010c0

0100126b ff1544100001   call dword ptr [awdscenario1!_imp__printf (01001044)]

01001271 83c408           add     esp,0x8

01001274 c745fc00000000   mov     dword ptr [ebp-0x4],0x0

0100127b 8b45fc           mov     eax,[ebp-0x4]

FAULT ->0100127e c60000           mov     byte ptr [eax],0x0      ds:0023:00000000=??

01001281 eb0e             jmp     awdscenario1!wmain+0xd1 (01001291)

01001283 68a4100001       push    0x10010a4

01001288 ff1544100001   call dword ptr [awdscenario1!_imp__printf (01001044)]

0100128e 83c404           add     esp,0x4

01001291 688c100001       push    0x100108c

01001296 ff1544100001   call dword ptr [awdscenario1!_imp__printf (01001044)]

0100129c 83c404           add     esp,0x4

0100129f ff154c100001   call dword ptr [awdscenario1!_imp___getch (0100104c)]

010012a5 33c0             xor     eax,eax

010012a7 8be5             mov     esp,ebp

Stack Back Trace
The stack back trace section contains the stack trace of the faulting thread. Please
note that the stack back trace might (and most likely will) contain the incorrect
frames, as symbolic information is typically not available. For example, frame 3 in the
following shows an incorrect frame for a function in kernel32.dll. The fact that incor-
rect frames are reported is not an issue, however, because the correct symbols can be
loaded when analyzing the fault postmortem using the debuggers.

*——> Stack Back Trace <——*

*** ERROR: Symbol file could not be found.  Defaulted to export symbols for C:\WIN-

DOWS\system32\kernel32.dll - 

WARNING: Stack unwind information not available. Following frames may be wrong.

ChildEBP RetAddr  Args to Child              

0006ff44 01001495 00000001 00262430 00264260 awdscenario1!wmain+0xbe (FPO: [Non-Fpo])

0006ffc0 7c816fd7 20c88c32 01c7a3a2 7ffd7000 awdscenario1!wmainCRTStartup+0x12f (FPO:

[Non-Fpo])

0007fff0 00000000 0100131d 00000000 78746341 kernel32!RegisterWaitForInputIdle+0x49
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Raw Stack Dump
The raw stack dump section contains a raw dump of the stack at the point of failure.

*——> Raw Stack Dump <——*

000000000007ff1c  1a 00 00 00 00 00 00 00 - a5 10 00 01 bf 10 00 01  ................

000000000007ff2c  1a 00 00 00 c0 45 03 00 - a5 10 00 01 bf 10 00 01  .....E..........

000000000007ff3c  a4 10 00 01 00 00 00 00 - c0 ff 07 00 48 14 00 01  ............H...

000000000007ff4c  01 00 00 00 70 3b 03 00 - 28 45 03 00 50 10 00 01  ....p;..(E..P...

000000000007ff5c  54 10 00 01 94 ff 07 00 - 98 ff 07 00 a0 ff 07 00  T...............

000000000007ff6c  00 00 00 00 9c ff 07 00 - 58 10 00 01 5c 10 00 01  ........X...\...

000000000007ff7c  a4 5b 64 2d 8f f3 c6 01 - 00 c0 fd 7f 00 dc 31 e4  .[d-..........1.

000000000007ff8c  00 00 00 00 05 00 00 c0 - 01 00 00 00 70 3b 03 00  ............p;..

000000000007ff9c  00 00 00 00 28 45 03 00 - 00 00 00 00 7c ff 07 00  ....(E......|...

000000000007ffac  40 fb 07 00 e0 ff 07 00 - 2e 15 00 01 c0 10 00 01  @...............

000000000007ffbc  00 00 00 00 f0 ff 07 00 - d7 6f 81 7c a4 5b 64 2d  .........o.|.[d-

000000000007ffcc  8f f3 c6 01 00 c0 fd 7f - 05 00 00 c0 c8 ff 07 00  ................

000000000007ffdc  40 fb 07 00 ff ff ff ff - a8 9a 83 7c e0 6f 81 7c  @..........|.o.|

000000000007ffec  00 00 00 00 00 00 00 00 - 00 00 00 00 1d 13 00 01  ................

000000000007fffc  00 00 00 00 41 63 74 78 - 20 00 00 00 01 00 00 00  ....Actx .......

000000000008000c  98 24 00 00 c4 00 00 00 - 00 00 00 00 20 00 00 00  .$.......... ...

000000000008001c  00 00 00 00 14 00 00 00 - 01 00 00 00 06 00 00 00  ................

000000000008002c  34 00 00 00 14 01 00 00 - 01 00 00 00 00 00 00 00  4...............

000000000008003c  00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00  ................

000000000008004c  02 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00  ................

In addition to the wealth of information logged in the Dr. Watson log file, the dump
file is perhaps the most important piece of information in the postmortem analysis
process. The dump file is located in the same directory as the log file and is named
user.dmp (unless the configuration has changed). Let’s use the dump file for our
awdscenario1.exe run and load it in the debugger (remember to use the –z switch). 

…

…

…

This dump file has an exception of interest stored in it.

The stored exception information can be accessed via .ecxr.

(bb0.b6c): Access violation - code c0000005 (first/second chance not available)

eax=00000000 ebx=7ffdf000 ecx=77c418bf edx=77c61b78 esi=01c709ea edi=fcead396

eip=0100127e esp=0007ff1c ebp=0007ff44 iopl=0         nv up ei pl nz na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000202

awdscenario1!wmain+0xbe:

0100127e c60000          mov     byte ptr [eax],0           ds:0023:00000000=??

0:000> kb
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ChildEBP RetAddr  Args to Child

0007ff44 01001495 00000001 00032c38 000372c8 awdscenario1!wmain+0xbe

0007ffc0 7c816fd7 fcead396 01c709ea 7ffdf000 awdscenario1!wmainCRTStartup+0x12f

0007fff0 00000000 01001366 00000000 00000000 kernel32!BaseProcessStart+0x23

Notice how frame 3 in the stack trace now shows the correct symbolic name. From here
on, analyzing the dump file is identical to the exercise shown earlier in the chapter.

Is it possible to turn Dr Watson off? Absolutely! The easiest way to turn off Dr
Watson is to right-click on My Computer and select Properties, followed by the
Advanced tab. Figure 13.5 shows the dialog displayed.
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Figure 13.5

As can be seen from Figure 13.5, two main options are available:

■ Disable error reporting: This option disables error reporting but still gives you
the option of being notified about critical errors.

■ Enable error reporting: You can control which type of error reports to enable
by choosing Windows operating system related errors and/or Program errors.
If the Programs category is chosen, you can further choose which programs to
report errors on by clicking on the Choose Programs button. The process of
choosing specific applications is fairly simple and self-explanatory. 

The important take-away from this section is how Dr. Watson works, how its config-
ured, what it collects, and where the resulting data is stored.
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Although it’s useful to be able to configure and debug problems locally, the power
of Windows Error Reporting comes from the capability to upload the error informa-
tion to Microsoft and subsequently extract the error information in a structured fash-
ion. The next section discusses the details of Windows Error Reporting, including the
enrollment process, configuration process, feedback loops, and much more. 

Windows Error Reporting Architecture
Windows Error Reporting is a failure data aggregation service that enables Microsoft
and ISVs to easily access failure data related to their applications. Figure 13.6 shows
the high-level operational flow of the WER service. 

Two primary entities are involved in Figure 13.6: 

■ Computers running applications that exhibit problems and upload error
reports to WER 

■ ISV that monitors for failures related to their applications, reported to WER

Say that a given machine somewhere in the world is running an application (illustrat-
ed as Process X in Figure 13.6) produced by company AWD. Furthermore, say that
the application crashes and that the user experiencing the crash will be presented
with the Dr. Watson UI and asked if he wants to send the error report to Microsoft.
The user chooses to do so, and the error report is sent using a secure (HTTPS) chan-
nel to the WER service. The WER service, in turn, organizes the error information
received into categories (knows as buckets) and stores the error information. To make
use of the error reports, a user from company AWD queries the WER service for
crashes related to his application and gets the error information reported. If AWD
chooses, they can now fix the problem and provide a response so that the next time a
user encounters the same crash, Dr. Watson presents him with the response. The
response can come in the form of a fix or other helpful information.

As you can see, the WER service is an incredibly powerful mechanism that pro-
vides secure aggregation of error reporting information that ISVs can query to active-
ly gauge the health of their applications. Additionally, ISVs can provide responses to
known problems and integrate the responses into the WER feedback loop, making it
very easy for customers to apply responses when available. 
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The Importance of Sending Error Information

When the Dr. Watson UI rears its head and tells you about an application crash, you might
ask yourself: Why bother sending it? Is something ever going to be done about it? The truth
of the matter is that Microsoft takes error reporting very seriously. After all, that is why this
incredible service was implemented to begin with. Error reporting data is actively monitored
and fanned out across the company to the appropriate product groups. When a fix has
been identified and is ready to be released (typically via Microsoft Update), users can easi-
ly apply the fix. In other words, you—the user—have a direct impact on the visibility of
bugs; therefore, you should always make sure to upload the error reports so that Microsoft
or other ISVs have the opportunity to analyze the problem and provide a fix. 

Throughout the remainder of the discussion of WER, we will be using the awdsce-
nario1.exe application used in the previous part of the chapter to practically illustrate
the process of using WER. 

The first step in using WER is to enroll, which is described next. 

Enrolling in Windows Error Reporting
To participate in WER, an enrollment process must be completed. The enrollment
process is broken down into two steps:

■ Creating a user account
■ Creating a company account

To start the enrollment process, navigate to the following URL:
https://winqual.microsoft.com/SignUp/

After the page has loaded, you will be presented with the account creation page,
as shown in Figure 13.7.

To create a user account, you must first have a company account. If you have
already created a company account, you can either search for that account or locate
it using the drop-down list. Clicking the Next button then takes you to the account
creation page. Because we have not yet created a company account, click the expand
button next to Create a Company Account to start the company account creation
process, as shown in Figure 13.8.

https://winqual.microsoft.com/SignUp/
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Figure 13.7
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Figure 13.8
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Three steps are involved with creating a company account. 

1. Generate a code signed Winqual.exe file. For a company to participate in WER,
Microsoft requires that the company be capable of securely and uniquely identi-
fying itself. This is accomplished by using a Class 3 digital code signing certificate
available to purchase from VeriSign (http://www.verisign.com/products-
services/security-services/code-signing/index.html). After the code-signing certifi-
cate has been received, you will need to sign the Winqual.exe file with the
certificate and upload it to Microsoft for verification. 

2. Provide billing information. Although Microsoft does not charge companies for
the majority of WER functionality, a few features of WER do cost money, and,
as such, Microsoft requires that you enter your billing information. 

3. The last part of the process is to provide contact data by creating a user account
that you will use to access your company account.  

Let’s start with step 1 (code signing the Winqual.exe file). As mentioned, for security
reasons, Microsoft requires that all WER company accounts be identified by using a
Class 3 digital code signing certificate. The rest of the sections on WER assume that
you have acquired a code signing certificate from VeriSign. The first step is to down-
load the binary we need to sign from Microsoft. Use the following URL to start the
download of Winqual.exe:

https://winqual.microsoft.com/signup/winqual.exe
Save this file to your hard drive in C:\Sign. Next, we need to get the code signing

tools that are required to sign binaries. The URL used to download the code signing 
tools is

https://winqual.microsoft.com/signup/signcode.zip
Save this file and extract the signcode.zip to C:\Sign. You should now have two

files as a result of extracting the zip file: 

■ Readme.rtf: This file contains instructions on how to code sign a binary using
the code-signing tools. It also contains a password that must be used when
extracting the signcode.exe file (password protected), also located in the zip file. 

■ Signcode.exe: This is the application that we will use to code sign the Winqual.exe
file.

http://www.verisign.com/productsservices/security-services/code-signing/index.html
http://www.verisign.com/productsservices/security-services/code-signing/index.html
https://winqual.microsoft.com/signup/winqual.exe
https://winqual.microsoft.com/signup/signcode.zip


667Windows Error Reporting

Extract the signcode.exe file (remember to enter the password found in the readme
file when extracting) to the same location as the Winqual.exe file (C:\Sign). Also
make sure to copy the code-signing certificate file (.spc extension) and the private key
(.pvk extension) to the same location. Use the following command line to sign the
Winqual.exe file: 

C:\Sign>signcode.exe /spc myCert.spc /v myKey.pvk -t

http://timestamp.verisign.com/scripts/timstamp.dll winqual.exe

Succeeded

You will need to replace mycert.spc and mykey.pvk with the names of your certifi-
cate and private key files. During the signing process, you will be asked to enter a pri-
vate key password. Enter the password provided to you by VeriSign during the
certificate purchase process. If the signing succeeds, a Succeeded message is shown. If
an error occurs, make sure that you have typed the name of the certificate and private
key files properly and that they are located in the same directory as the signcode.exe
binary.

The next step in the enrollment process is to take the newly signed Winqual.exe
file and upload it to Microsoft for verification purposes. Continuing from the page
illustrated in Figure 13.8, click the Next button. The next page enables you to upload
your signed Winqual.exe file, as shown in Figure 13.9.  
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Figure 13.9

Simply enter the path to the signed Winqual.exe binary and click Next to upload the file.
The next page in the process is the Billing information page, as shown in Figure 13.10.
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Figure 13.10

As mentioned earlier, most of the WER features are free of charge, but some have a
fee. The billing information is used if a customer uses the WER services that cost
money.

Enter the billing information for your company (bold fields are required), and
click the Next button, which will take you to the account (profile) creation page, as
shown in Figure 13.11. 
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Figure 13.11

The User Name and Password fields represent the logon information that you will use
when accessing the WER site. Fill in all the information, and pay particular attention
to the strong password requirements listed at the bottom. These password require-
ments are important to ensuring that your company’s error information is kept secure. 

After all the information has been filled in, click the Next button, and you will be
taken to a page indicating that the account has been successfully created, as shown in
Figure 13.12.
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Figure 13.12

The final steps that must be completed before we can access WER involve setting up
permissions and signing the legal agreements. Let’s start with managing permissions.
Click the Manage Permissions link to access the permissions page, as shown in Figure
13.13.

Figure 13.13
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Make sure that the Sign Master Legal Agreements, View WER Data, and Download
WER Data check boxes are enabled for your account, and click the Update button.
Note that it is possible to have multiple user accounts associated with one company
account in WER. This can be quite useful if you want different users to have varying
levels of access (as shown in Figure 13.13). For example, one user can be granted
access to the error reports, whereas another user can be granted access to sign legal
agreements.  

Next, we go back to the page shown in Figure 13.12 to complete the process by
signing legal agreements as required by Microsoft. Unfortunately, at the time of this
writing, the Sign Legal Agreements link was unavailable, and we must use an alter-
native URL shown here:

https://winqual.microsoft.com/member/LAC/DocumentDetails.aspx?id=420
&type=0

The URL takes you to the Windows Error Reporting legal agreement page.
Carefully read through all the information presented, and if you choose to accept, fill
in the information at the bottom of the last page to sign the agreement. If you want a
copy of the agreement for your records, you can enter your company information in
the form and print a copy. 

The signup process is now complete, and you can access the full range of WER
features by signing into your account using the following URL: 

https://winqual.microsoft.com/default.aspx

Navigating the WER Web Site
When you log on to the WER Web site, you will be presented with a page that con-
tains recent Winqual announcements. To the left of the announcements is a pane that
allows you to navigate to different parts of the site. The three main sections of the
navigation pane are

■ Windows Logo Programs
■ Windows Error Reports
■ Driver Distribution Center

In this chapter, we only cover the Windows Error Reports section of the Web site
and, more specifically, the Software portion of WER. Figure 13.14 illustrates the
options that are available in the Software menu.
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Figure 13.14

The Product Rollups option under the Event Views category shows a view that organ-
izes the error reports according to product name and version. Figure 13.15 shows an
example of the Product Rollup page.

Figure 13.15
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Figure 13.15 shows two products registered: Crash and Test Application. Each of the
products has two columns that allow you to dig deeper into any events (crashes or
other) that might have been reported for the applications:

■ Eventlist: The Eventlist icon takes you to a page that details the complete list
of events that have occurred in the application. 

■ Hotlist: The Hotlist icon takes you to a page that details the biggest hitters for
the application over the past 90 days. 

The next menu item is the Administrative category. It contains the following options:

■ Manage Mappings: This option allows you to map binaries with products so
that WER knows which binaries go with which product. We show you how to
create a mapping file later in this chapter.

■ Manage Responses: This option allows you to define responses to common
problems reported by customers and, in essence, create a feedback loop that
might contain anything from informative messages to fixes. We look at how to
generate a response later in this chapter.

■ Getting Started: The Getting Started option takes you to a help page.

Now that we have familiarized ourselves with the general layout of the WER site,
it is time to map our product’s binaries to a particular product so that WER knows
which binary belongs to which product.  

Mapping Binaries to Products
After you’ve accessed your account, you will need to make sure that any error infor-
mation reported for your applications is routed to your company account. When an
error report is sent to the WER service, it needs to know what about the application
identifies it as belonging to a particular company. The key ingredient in this mapping
process is the name of the application. As such, companies that sign up with WER
need to tell the service the name of the applications (including all binaries) associated
with their company. The mapping information is then presented to the WER site using
an XML file that the WER service understands. Rather than having customers manu-
ally compile this mapping XML file, the WER site has a tool named Microsoft Product
Feedback Mapping Tool. The tool can be found at the following URL:

http://www.microsoft.com/downloads/details.aspx?FamilyId=4333E2A2-5EA6-
4878-BBE5-60C3DBABC170&displaylang=en

Once installed, run the tool from Start, Programs, Microsoft Product Feedback
Mapping Tool, and you are presented with a wizard that guides you through the map-
ping process. The first page of the wizard is illustrated in Figure 13.16.
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Figure 13.16

To illustrate the process of setting up a mapping file for WER, we will use the 
awdscenario1.exe application used earlier in the chapter. Make sure that Create a
New Mapping File is selected, and click Next. Figure 13.17 shows the Gathering
Product Mapping Information page.

The options shown in Figure 13.17 are explained next. Make sure that you enter
the information as shown in the figure. 

■ Product File(s) Directory Path: Specifies the directory path to the application
binaries that you want to map. 

■ Product Name: Specifies the name of the product that you want the binaries
to be associated with. Note that the product name is simply a friendly name
used on the WER site so that users can more efficiently group and search for
error information.

■ Product Version: Specifies the product version that you want the binaries to be
associated with. Note that the product version is simply a friendly version used
on the WER site so that users can more efficiently group and search for error
information. 

When all information has been entered, click Next, followed by another Next. The
wizard now asks you to specify a filename for the mapping file it is about to generate.
Enter the following path for the map file and click Next. 

C:\testmap.xml
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Figure 13.17

Figure 13.18 shows the last step of the process, which allows you to upload the map-
ping file to the WER site. 
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Figure 13.18
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Make sure that the check box is checked, and click Finish. The wizard now launches
your browser and presents the File Upload page, as illustrated in Figure 13.19.

Figure 13.19

Enter the path to the map file we just created and click Submit. Upon a successful
upload, the file-mapping process and upload are completed. If you have more than
one product, you would go through the whole mapping process again—once for each
product.  

Back on the main WER site, you can manage your product and file mappings by
choosing the Software and Manage Mappings options in the left navigation pane. You
can choose to manage product and file mappings, as well as upload a mapping file.
For example, selecting the File Mapping link after we uploaded the mapping file is
shown in Figure 13.20.
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Figure 13.20

From Figure 13.20, you can see that we have one file mapping, where the filename
is awdscenario1.exe with specific attributes (such as link date and map date), as well
as administrative information, such as who created the mapping and his email
address.

Now that we have created a product and file mapping, it is time to look at the
report generation aspects of WER. We look at how we can generate reports of the
error information sent by customers, as well as delve deeper into each error report
(such as crash dumps).

Querying the Windows Error Reporting Service
Now that we have created an account and mapped our awdscenario1.exe binary to a
product, it’s time to look at how we can query WER for uploaded error reports. Let’s
run our awdscenario1.exe application several times, and when it crashes, tell Dr.
Watson to upload the error information to the WER site. Note that there is a time
delay between the time a user uploads a report and when it becomes available to view.
The average delay is typically around 7 days. 

After the error reports have been uploaded and made available to you, you will
see a table of products on the Product Rollup page, as illustrated in Figure 13.21.
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Figure 13.21

Figure 13.21 shows the product we mapped (AWD Scenario1), as well as the total
number of events that have been reported. Additionally, the Eventlist and Hotlist
columns contain icons that display all the events that have occurred for that particu-
lar product, as well as the top error events that have occurred over the past 90 days.
The hotlist is a convenient way to identify the top issues with the product. Figure
13.22 illustrates the Event List page displayed when clicking on the Eventlist icon.

Figure 13.22
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The Event List page contains a table in which each row represents a unique error
event. In Figure 13.22, we can see that there is only one event with a total hit count
of 22. The table also shows what type of event caused the report; in our case, the
event type is Crash32, which simply means that the event occurred due to a crash. If
you click on the event ID, you will see a breakdown of information related to that par-
ticular event. The Event Details page is broken down into three main sections:

■ Event Signature: Because one product can have multiple events associated
with it, each event must be made unique. The different pieces of information
that make an event unique are application name and version, module name
and version, and the offset into the module that caused the event to occur. As
you can see from Figure 13.23, the offset into the awdscenario1.exe module
that caused the crash was 4734. 

■ Event Time Trending Details: The graph displayed in the Event Time
Trending Details section shows how the event manifested itself over time. In
Figure 13.23, we can see that our event spiked on November 16 and gradual-
ly decreased in frequency over time.

■ Platform Details: The last section shows the platform details for the specific
event. It shows the operating system breakout, as well as language breakout.
This section is critical when trying to identify problems that only occur under
certain configurations and can yield clues, such as the event only occurring on
non-English versions of the product. 

The last important column in the table illustrated in Figure 13.22 is the cabs col-
umn. Clicking on the icon gives a list of cabs available for the event. A cab is nothing
more than a conglomerate of files that represent the event information (one cab per
upload) sent by users who choose to upload the information to Microsoft. One of the
most critical files in the cab is the dump file that was generated at the point of fail-
ure. This dump file can be used while debugging the problem postmortem, as
explained previously. The exact list of files in the cab file is discussed in more detail
in the “Corporate Error Reporting” section of the chapter. 

Now that we have looked at the various pieces of information accessible through
the WER Web site, everything from a high-level overview of the events to a more
detailed drilldown using the information the customer uploaded to Microsoft, we
next turn our attention to the last critical step in the process—how to provide
responses to customers after the issue has been understood.
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Figure 13.23

Providing Responses
To provide a response to customers about a particular event, you must navigate to the
Event Details page (illustrated in Figure 13.23). If a response has not yet been
recorded for the event, the topmost section of the page contains options for register-
ing a response, as illustrated in Figure 13.24. 
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Figure 13.24

Responses can be registered at three different levels:

■ Event: This is typically used when a fix is very isolated and will not be incor-
porated into a product update. 

■ Application: Providing a response at the application level allows you to create
a rules-based response that all users with a particular version of your applica-
tion see. The response can be in the form of an update (such as a new version). 

■ Module: Providing a response at the module level allows you to create a rules-
based response that your users with a particular version of your module see.
The response can be in the form of an update (such as a new version).

For our particular scenario, we will choose to use the event-based response registra-
tion. Select the Event radio button and click Register Response. The next step is to
fill out details about the event response. The following information is required before
a response can be registered:

■ Products: Enter the name of the product into the Products field.
■ URL of Solution/Info: Enter a URL to the response. The URL should point to

a page with all the required information for that particular response. 
■ Response Template: You can choose to use a predefined template for your

response or use your own custom template. Examples of predefined templates
include the following: System Does Not Meet Minimum Requirements,
Product Upgrade, Upgrade to New Version, and more. Depending on which
template is chosen in this drop-down, the preview field will change.

■ Response Template Preview: This shows a preview of what information will be
included in the response. 

■ Additional Information: Enter any additional information you want to include
with the response.
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When all the information is filled out, proceed to register the response, and you will
be redirected to the Response Management page, which lists all the responses you
have registered. Note that a newly registered response does not go into effect imme-
diately, but rather goes through an approval process that takes a few days to process.
The Response Management page also allows you to manage all the responses that
have been created. You can view the responses in detail, make changes, and delete
individual responses that are no longer applicable. 

How will this response be presented to the user? The next time a user experiences a
failure that has a response associated with it, he sees the dialog illustrated in Figure 13.25. 

Figure 13.25

If the user clicks on the More Information link, he is taken to a Web page that con-
tains the response to the particular failure with associated information on how to
resolve the problem. In our case, he is routed to the page registered as part of the
response: http://www.advancedwindowsdebugging.com. 

As you can see, WER is an incredibly powerful service that allows you to monitor
how well your application behaves in the real world. Allowing customers to send error
information that you can analyze and create a response to is an incredible technology
that eases the pain customers go through when encountering software problems.

Corporate Error Reporting

Windows Error Reporting is a great technology to use when gauging the health of
your application out in the real world. If a problem ever arises, a fix can be produced
and fed to the customer’s computer using the response system of WER. The key
behind WER is its capability to send error information, which includes information

http://www.advancedwindowsdebugging.com
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such as general fault information, as well as a mini dump file of the process that
crashed. Although the capability to catch and send this error information to Microsoft
is the key enabler of WER, it also serves to discourage some ISVs from using the 
system. More specifically, some ISVs do not want error information sent to Microsoft
because of the sensitive nature of the data that might be sent as part of the error infor-
mation. One example of this is a banking application that contains sensitive informa-
tion about customer accounts. Because of the strict requirements of some ISVs,
Microsoft created what is known as Corporate Error Reporting (CER). CER allows
an ISV to enable error reporting across the company and instructs each machine to
send information to a file share rather than sending the information to Microsoft. The
file share can then be queried periodically to look for any problems that might have
surfaced.

In this last part of the chapter, we take a look at how to set up CER, as well as
how the data is uploaded and stored on the file share. 

Setting Up Corporate Error Reporting
Group Policy (GP) is a technology in Windows that provides centralized management
of computers and users in an Active Directory environment. CER is part of the group
policy management capabilities. GP must be used to enable CER either locally (on
one machine) or across all company machines. All examples in this part of the chap-
ter are run locally (that is, setting up CER on one machine), but the same principles
apply when pushing down policy to all the machines in a company. Note that GP is
not available for Windows Home Edition, and you must be running Windows XP
Professional Edition or higher when using GP. 

To enable CER on a specific machine, the Group Policy edit tool must be used
by going to Start, Run and typing gpedit.msc. This brings up the GP Microsoft
Management Console (MMC) snap-in, as shown in Figure 13.26.

In the navigation pane on the left side, CER settings can be accessed via the fol-
lowing nodes: Local Computer Policy, Computer Configuration, Administrative
Templates, System, Error Reporting. Once selected, you can see the available options
on the right side. Let’s start by taking a look at the Display Error Notification option
shown in Figure 13.27. Make sure to enable the settings for each of the configuration
dialogs, as shown in figures that follow.

13.
P

O
STM

O
RTEM

D
EBUGGIN

G



684 Chapter 13 Postmortem Debugging

Figure 13.27

Figure 13.26
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The display error notification option allows you to control whether a user who
encounters an error will see a UI, giving him the choice to report the error seen. If
this option is enabled, the UI that appears to the user gives the user access to the
error information. If, furthermore, the configure error reporting is on, the UI will also
allow him to send the error report. 

If the display error notification is disabled, the user will not be presented with a
UI. This does not, however, mean that the error reports are not sent. Whether an
error report is sent also depends on the configure error reporting setting. 

The next setting is the Configure Error Reporting setting, as shown in Figure
13.28, and it constitutes the main part of CER configuration.
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Figure 13.28

The Configure Error Reporting settings UI allows you to control how error reporting
behaves when encountering errors. The highest-level settings are to enable, disable,
or not configure this setting and can be selected through the radio buttons. If you
choose to enable error reporting, the following options become configurable:

■ Do Not Display Links to Any Microsoft Provided ‘More Information’ Web
Sites: This check box allows you to disable the Microsoft links in the error UI
displayed to the user when an error occurs. For example, by default, the UI
contains a link to the Microsoft data collection policies. 

■ Do Not Collect Additional Files: If this check box is checked, the error reports
will not collect additional information (files) with the error report.
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■ Do Not Collect Additional Machine Data: If this check box is checked, addi-
tional machine data will not be collected with the error report.

■ Force Queue Mode for Application Errors: If this check box is checked, the
user will not be able to immediately send error reports; rather, all error reports
will be queued so that when the next administrator logs on to the machine, a
list of error reports shown, and the administrator can choose which error
reports to send. 

■ Corporate File Path: This field enables CER. Type in the UNC path you want
to use for CER. All error reports will be stored at this location, and the admin-
istrator can choose which of the error reports to send. Make sure that all the
machines reporting errors have write access to this location.

■ Replace Instances of the Word ‘Microsoft’ With: This enables you to customize
the error dialogs that show up for users by replacing the word Microsoft with
something else. For example, if I typed in The High-tech Avenue and expe-
rienced a crash, I would see the error dialog shown in Figure 13.29. As you can
see, the sentence that used to say: “Please tell Microsoft about this problem” is
now replaced with “Please tell The High-tech Avenue about this problem.” 

Figure 13.29

In Figure 13.26, the final CER configuration settings that we have not yet discussed
are the Advanced Error Reporting settings. These configuration settings are summa-
rized next.

■ Default Application Reporting: This setting controls which applications take
part in the error reporting infrastructure. You can, for example, configure this
option so that all Windows applications are included in error reporting or only
Windows components are included.
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■ List of Applications to Always Report Errors On: This setting allows you to
control a list of applications that should always be included in error reporting,
regardless of what the default application reporting states.

■ List of Applications to Never Report Errors On: This setting allows you to con-
trol a list of applications that should never be included in error reporting.

■ Report Operating System Errors: This setting controls whether operating sys-
tem components should be part of error reporting.

■ Report Unplanned Shutdown Events: This setting controls whether unplanned
shutdown events should be part of error reporting.

Now that we have configured and enabled CER via the error reporting settings, it’s
time to take a look at a practical example of how the error information for a faulty
application shows up in the directory we specified in Figure 13.28. Remember that
we are running the faulty application on the same machine that we just configured
error reporting on to simulate a domain-enforced group policy.

Reporting Errors Using Corporate Error Reporting
Now that we have successfully enabled CER, it’s time to take a look at what actually
happens when an application crashes. We will use our trusty old friend, the 
awdscenario1.exe application, that we used in previous parts of this chapter. Run the
application on the same machine that we used to configure CER using the following
path:

C:\AWDBIN\WinXP.x86.chk\awdscenario1.exe

When you are presented with the Dr. Watson error UI, click the Send button. What
happens next is that rather than the error report being sent to the global Windows
Error Reporting service, the error report will be stored in the path specified when
configuring CER. In our case, we configured the path to be

C:\AWD\Chapter13\CER

To ensure that error information from multiple sources does not overwrite each other,
CER organizes the files under the error reporting folder. Two primary folders are cre-
ated the first time an error report is generated in the folder:

■ Cabs: The Cabs folder contains the actual error information (such as dump
files and associated error information).

■ Counts: The Counts folder contains the hit count for each fault. The hit count
is extremely useful information, as it allows you to focus your efforts on the
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faults with the highest hit count. The file stored in the Counts folder is a text
file that contains two counts. The first count indicates how many Cabs have
been gathered for this fault, and the second count indicates how many hits
have been recorded for the particular fault.  

Under each of the preceding folders, another nested folder hierarchy is created that
uniquely identifies a particular fault. The uniqueness comes from the following 
properties:

■ Image Name: The name of the image that caused the fault. In our example, the
folder created would be called awdscenario1.exe.

■ Image Version: The version number of the image causing the fault. In our case,
the image version number is 1.1.0.0.

■ Module Name: The name of the module that caused the fault. In our example,
we do not have a separate module (say a DLL), so the name chosen is simply
the image name.

■ Module Version: The version number of the module causing the fault. In our
case, the image version is the same as the module version number 1.1.0.0.

■ Offset: The offset in the module that caused the fault to occur (typically the
eip register). In our example, the offset was 0000127E.

Figure 13.30 illustrates the folder hierarchy after running the awdscenario1.exe
binary. 

Figure 13.30
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In the leaf folder of any given fault’s Cab directory is a compressed cab file. The name
of the cab file is chosen at random to avoid multiple failures originating from the same
faults overwriting each other’s error data. Uncompressing the cab file yields three
files:

■ Mini dump file: The mini dump file represents the state of the process at the
point when the fault happened. Earlier in the chapter, we discussed how to use
the dump file to glean more information about the reasons for the fault. 

■ Version.txt: The version.txt file contains the version of the operating system
that the process was running on.

■ app compat file: The app compat file is an XML file that contains a list of
attributes about the process that failed (such as file description, check sum,
and more).

Extract the files in the CAB file generated for our sample run and attach a debugger
to the dump file. (Remember to use the –z switch.) 

…

…

…

This dump file has an exception of interest stored in it.

The stored exception information can be accessed via .ecxr.

(f0f0f0f0.6fc): Access violation - code c0000005 (first/second chance not available)

eax=007b0000 ebx=0006ddec ecx=00001000 edx=7c90eb94 esi=00000000 edi=7ffdd000

eip=7c90eb94 esp=0006ddc4 ebp=0006de60 iopl=0         nv up ei pl zr na pe nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00000246

Unable to load image D:\WINDOWS\system32\ntdll.dll, Win32 error 2

*** WARNING: Unable to verify timestamp for ntdll.dll

*** ERROR: Module load completed but symbols could not be loaded for ntdll.dll

ntdll+0xeb94:

7c90eb94 c3              ret

0:000> .ecxr

eax=00000000 ebx=7ffdd000 ecx=77c418bf edx=77c61b78 esi=01c709ef edi=a32cec54

eip=0100127e esp=0006ff1c ebp=0006ff44 iopl=0         nv up ei pl nz na po nc

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00010202

awdscenario1!wmain+0xbe:

0100127e c60000          mov     byte ptr [eax],0           ds:0023:00000000=??

0:000> kb

*** Stack trace for last set context - .thread/.cxr resets it

ChildEBP RetAddr  Args to Child

0006ff44 01001495 00000001 00263798 00264160 awdscenario1!wmain+0xbe

0006ffc0 7c816d4f a32cec54 01c709ef 7ffdd000 awdscenario1!wmainCRTStartup+0x12f

0006fff0 00000000 01001366 00000000 00000000 kernel32!BaseProcessStart+0x23
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0:000> u awdscenario1!wmain+0xbe

awdscenario1!wmain+0xbe:

0100127e c60000          mov     byte ptr [eax],0

01001281 eb0e            jmp     awdscenario1!wmain+0xd1 (01001291)

01001283 68a4100001      push    offset awdscenario1!`string’ (010010a4)

01001288 ff1544100001    call    dword ptr [awdscenario1!_imp__printf (01001044)]

0100128e 83c404          add     esp,4

01001291 688c100001      push    offset awdscenario1!`string’ (0100108c)

01001296 ff1544100001    call    dword ptr [awdscenario1!_imp__printf (01001044)]

0100129c 83c404          add     esp,4

As you can see, the debug session is identical to the previous debug sessions on the
same binary. 

This concludes our discussion of Corporate Error Reporting. As illustrated, CER
is a powerful mechanism that can be enabled via group policy. It enables companies
to keep all error reports locally for further analysis, or, alternatively, select error
reports can be sent to Microsoft, depending on the configuration of CER.

Summary

Postmortem debugging is a critical aspect of a software engineer’s job. Once an appli-
cation is shipped to customers, it is usually very difficult to troubleshoot problems.
Having the knowledge and ability to respond quickly, accurately, and with as little
pain as possible for the customer is key to a company being capable of efficiently
managing customer complaints.

In this chapter, we discussed the reasons why it’s necessary to sometimes debug
a problem postmortem. We looked at what type of debug information is required for
postmortem debugging to work and what tools we can use to collect that information.
Once the information is in our hands, we also discussed how the debugger can be
used to analyze the debug information to arrive at the source of the problem. 

A powerful service called Windows Error Reporting was detailed, which gives you
the capability to monitor your application’s health in the real world and even get
access to error information (such as crash dumps) for each particular problem your
application might be experiencing, as well as provide a response to the problem. 

Corporate Error Reporting was also discussed, which allows you to collect error
information and store it on a centralized file share before sending the error reports to
Microsoft.
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C H A P T E R  1 4

POWER TOOLS

Throughout the book, you have seen how various tools and the debuggers work in tan-
dem to ease the software troubleshooting process. We’ve discussed a wide range of
problems, such as memory corruptions, security-related problems, resource leaks, syn-
chronization problems, and much more. Whenever we encountered a problem, we did
a basic investigative analysis before diving deeper into a detailed debug session. The
more you debug particular categories of problems, the more the initial investigation
process starts resembling a generic process. Wouldn’t it be nice if we could automate
all or parts of the initial investigation and focus our efforts on using the results of the
analysis to find the root cause? Fortunately, there are freely available tools that allow
us to do just that. In this chapter, we discuss two of these power tools:

■ Debug Diagnostics Tool: The Debug Diagnostic Tool automates the process of
analyzing crashing, hanging, and leaking processes.

■ The !analyze extension command: The Debugging Tools for Windows
comes with a set of debugger and extension commands that help in the trou-
bleshooting process. One of these commands is called analyze, and it auto-
mates the initial investigative process.

Debug Diagnostic Tool

The Debug Diagnostic Tool (also known as DebugDiag) was originally developed as
a tool to analyze and debug Internet Information Server (IIS) issues such as crashes,
hangs, and memory leaks. While the tool’s focus was portrayed as IIS centric, it was
designed to be capable of analyzing any process, and it quickly became popular as a
general troubleshooting tool. The power of DebugDiag comes in the form of an easy-
to-use UI, great analysis capabilities (via analysis scripts), and an extensibility model
supported by a large object model that makes writing your own analysis scripts easy. 
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The DebugDiag tool consists of four primary components.

■ Service: The debugger service process (dbgsvc.exe) is the workhorse of
DebugDiag. Its responsibilities include controlling the processes being
debugged, performance monitoring, enabling memory leak detection, and
more. 

■ Host: The debugger host (dbghost.exe) is the debugger engine of DebugDiag.
It allows live debugging of processes through automated scripts and post-
mortem debugging.

■ User Interface: The UI of the DebugDiag tool.
■ Leak tracker: The leak tracker component is responsible for all the work relat-

ed to tracking memory leaks. It is implemented as a DLL (leaktrack.dll) and is
injected into the process being monitored to track memory allocations and
their associated call stacks.

Three primary usage scenarios (also known as rules) exist in DebugDiag. Each of the
rules focuses on a specific category of problems.

■ Crash: The crash rule enables you to analyze a process crash.
■ Hang: The hang rule enables you to analyze a hung IIS process.
■ Leaks: The leaks rule enables you to analyze leaked resources such as 

memory and/or handles.

The tool (January 2006 version) can be found at the following location:
http://www.microsoft.com/downloads/details.aspx?familyid=9BFA49BC-376B-4A54-
95AA-73C9156706E7&displaylang=en

Installation of the tool is straightforward, and, unless you want to select which
specific tools to install, a typical installation is sufficient (installs all the tools). 

DebugDiag can be started from Start, All Programs, IIS Diagnostics, Debug
Diagnostics Tool, Debug Diagnostics Tool 1.0. 

The first time DebugDiag is started, a wizard appears that allows you to select a
rule that you are interested in. You can select the crash, hang, or leaks rule. If you
don’t want to select a rule at that point, clicking Cancel takes you to the main
DebugDiag window. In the main window, the Rules tab is selected by default, and the
main window displays a list of active rules (initially empty). Every time a new rule is
added, it is also added to the rules list. Two other tabs are available: Advanced
Analysis and Processes. The Advanced Analysis tab contains a list of analyzer scripts
available, as well as a list of data files (dump files) on which the analysis script can be
executed. You will see how the Advanced Analysis tab is used in more detail later in

http://www.microsoft.com/downloads/details.aspx?familyid=9BFA49BC-376B-4A54-95AA-73C9156706E7&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=9BFA49BC-376B-4A54-95AA-73C9156706E7&displaylang=en
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the chapter. The Processes tab simply lists all processes running on the system with
associated attributes (such as process ID, process name, process identity, and more).

Let’s take a look at one of the rules available in conjunction with a buggy applica-
tion and see how DebugDiag can make our life easier when analyzing the application.

Analyzing a Memory or Handle Leak
To illustrate how DebugDiag can be used to analyze a leaking application, we will use
a scenario from Chapter 9, “Resource Leaks.” 

Source code: C:\AWD\Chapter9\BasicMLeak\Client
Binary: C:\AWDBIN\WinXP.x86.chk\09BasicMLeak.exe

The command-line arguments we will use for the test application are as follows:

09BasicMLeak.exe /t:50 /i:2000 /s:0

The command-line arguments tell the application to run with 50 threads, 2,000 iter-
ations per thread, and 0 sleep time between iterations. When you run this application,
you will quickly notice that memory consumption goes up but never comes back
down (even when the application is about to terminate). Restart the application and
when the Press any key to start stress application appears, launch
DebugDiag. In the wizard, select the Memory and Handle Leak radio button and
click Next. The wizard now allows you to choose which process you want to analyze.
Select the 09BasicMLeak.exe process and click Next. The next page in the wizard
allows you to configure how memory and handle leak tracking should be performed.
The following options are available.

■ Warm-Up Time: This option allows you to specify when memory tracking
should start. By default, memory tracking will start as soon as the rule is acti-
vated. To specify a time limit (in minutes) after which the memory tracking
should start, uncheck the check box and specify the time limit in the Edit field. 

■ Tracking Time: This option allows you to control the time window in which
tracking should be performed. By default, this option is set to 60 minutes.

■ Auto-Create Crash Rule: If this check box is checked, DebugDiag creates a
dump file if an unexpected process exit occurs.

■ Auto-Unload: If this check box is selected, DebugDiag automatically unloads
the leaktrack.dll when memory tracking completes.
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For this exercise, leave the default values intact and click the Next button. The final
page of the wizard allows you to name the newly created rule and specify a location
where the dump files should be stored. Let’s call the rule Stress and leave the dump
file location as the default. Finally, we can click Finish to save and activate the rule.
The main rules window now displays two rules (a leak rule and a crash rule). Proceed
with the execution of the sample application and let it terminate. We can now go back
to the main window in DebugDiag and click the Analyze button, which brings up a
browser to display the results of the memory tracking. The memory tracking report is
broken down into two main sections: Analysis Summary and Analysis Details.

The Analysis Summary section contains a table with a summary of problems
found during the analysis process. It shows information on all outstanding allocations,
including the size of each allocation, as well as the module responsible for the alloca-
tion. For each of the problems found, the last column in the table also gives recom-
mendations on actions that can be taken to resolve the problem. Figure 14.1
illustrates the Analysis Summary for the sample run we were investigating.

Figure 14.1

As you can see, 09BasicMLeak.exe is responsible for approximately 980KB worth of
leaked memory. More specifically, the function GetSID seems to be the source of the
allocation. A row also seems to imply that ntdll.dll is responsible for 446 bytes of out-
standing allocations. Normally, rows that show system DLLs do not constitute mem-
ory leaks—rather allocations that have not yet had the chance of being freed. The
summary section of the report can be quite useful when trying to get an overview of
the various components in a process and their corresponding allocation activity. 

To get a more detailed picture, consult the analysis details section. This section
contains a number of subsections, where each section details specific memory-related
information.
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■ If a dump file was requested at process exit, the first section contains a sum-
mary of the information in the dump file.

■ Virtual Memory Analysis: This section contains information on the virtual
memory activity in the process being analyzed. The section includes informa-
tion such as virtual memory details, loaded modules, and threads.

■ Heap Analysis: The Heap Analysis section contains a top-level overview of
heap usage, as well as a detailed breakdown of heap statistics for each heap. 

■ Leak Analysis: The Leak Analysis section contains the result of the leak analy-
sis performed by DebugDiag. It shows a top-level overview of memory activi-
ty, as well as individual heap activity broken down by module. 

Let’s take a look at the Leak Analysis section of the sample application we just ran.
The first part of interest is the overview section, as shown in Figure 14.2.
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Figure 14.2

As you can see from Figure 14.2, 09BasicMLeak.exe is the module that serves as our
biggest allocation hog, with a total of 36,000 allocations and 984.38KB total memory.
This information allows us to quickly get the information we need in order to focus
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our troubleshooting efforts in the correct code location. Following the overview sec-
tion is a detailed drilldown into each module’s activity. Because we already know, from
the overview section, that 09BasicMLeak.exe seems suspect, we begin by looking at
the 09BasicMLeak.exe module section illustrated in Figure 14.3.

Figure 14.3

The Module section begins with a summary of the module information, such as image
name, module name, module size, and much more. Following the module summary
is a breakdown of the functions in the module with the biggest allocation activity. In
our case, we can see that the GetSID function is responsible for both the largest allo-
cation count and allocation size. The final piece of information is the Function Details
section, which details the top allocation functions and gives a breakdown of the dif-
ferent allocations made in the function. For example, Figure 14.3 shows that the
GetSID function was responsible for 36,000 allocations of size 28 bytes each. 

As you have seen, DebugDiag offers truly amazing analysis capabilities that
relieve the developer from having to manually perform costly debug steps.
Additionally, DebugDiag shows the outcome of the analysis in an easy-to-read and
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digestible form. Two other rules are available: crash and hang analysis rules. We
strongly encourage you to look into these rules, as they provide information similar to
that of the memory and handle leak rules. Both of these rules are backed by power-
ful analysis scripts. The big question, however, is can this tool be extended and new
custom analysis scripts be developed for scenarios that the existing scripts do not
cover? The answer is yes, and it involves using the extensibility model of the tool,
which we look at next.

Authoring Custom Analysis Scripts
In addition to providing exciting and powerful analysis scripts out of the box,
DebugDiag also exposes powerful scripting access with a rich object model that
enables developers to write their own analysis scripts using their favorite scripting lan-
guage (such as VBScript or JScript). The object model is very extensive and covers a
great majority of debugging objects that a developer might need. To get more detailed
information on the complete object model, see the DebugDiag documentation. 

In this part of the chapter, we illustrate how the scripting capabilities can be used
to write your own analysis script that outputs all the locked critical sections in a dump
file. 

Each script begins with a metadata section that tells the analysis engine the script
language used and its category, as well as a description. The metadata section looks
very much like an ASP header, as illustrated in Listing 14.1.

Listing 14.1

<%@ Language = VBScript %>

<%@ Category = Sample analysis script %>

<%@ Description = Example of a custom analysis script %>

<% script code goes here %>

Each of the elements in the metadata (with the exception of the Language element)
represents the information that will be displayed on the Advanced Analysis tab in the
DebugDiag UI. 

The goal of our sample script is to be able to dump out all the locked critical sec-
tions in the dump file. The perfect object to use for this purpose is the CritSecInfo
object, which exposes a critical section collection of all the locked critical sections in
the dump file. The CritSecInfo object has a Count property, as well as an Item
property (among others), that allows you to iterate over all the locked critical sections.
Listing 14.2 shows the code required to get access to the critical sections. 

14.
P

O
W

ER
TO

O
LS



698 Chapter 14 Power Tools

Listing 14.2

Set DataFiles = Manager.DataFiles

For each DataFile in DataFiles

Manager.Write “<B>Analyzing dump file “ & DataFile & “</B><BR>”

Set Debugger = Manager.GetDebugger(DataFile)

Set CritSecInfo = Debugger.CritSecInfo

CritSecCount = CritSecInfo.Count

if CritSecCount = 0 Then

Manager.Write “No locked critical sections found<BR>”

else

For i = 0 to CritSecCount-1

Set DbgCritSec = CritSecInfo.Item(i)

Manager.Write “The owner of critsec: “ & DbgCritSec.Address & “ is thread: “

& DbgCritSec.OwnerThreadID & “<BR>”

Next

End If

Set Debugger = Nothing

Next

All DebugDiag analysis scripts intrinsically have access to a Manager object. The
Manager object enables the script, for example, to report the results of the analysis,
as well as provide access to the data files (that is, dump files) to analyze. The first
thing we need to do is get access to all the dump files that the user has chosen to run
the script on. The DumpFiles property of the Manager object returns a collection of
user-selected dump files. Because we want to analyze every dump file specified by the
user, we next iterate over the returned dump file collection and get a Debugger
object for each of the dump files in the collection. The Debugger object allows the
script to get access to a plethora of information about the dump file. (See the
DebugDiag documentation for a list of properties.) In our particular case, we are
interested in the critical sections of the dump file, and, as such, we use the
CritSecInfo property of the Debugger object. The CritSecInfo property
returns an instance of the CritSecInfo object that can further be used to find all
critical sections loaded for that particular dump file. The CritSecInfo object has a
property called Count that returns the number of locked critical sections in the dump
file. After the count has been retrieved, you can use the Item property to get access
to each locked critical section. The Item property returns an instance of the
DbgCritSec object, which contains critical section properties, such as the address of
the critical section, the owning thread ID, the spin count, the state, and much more.
In our sample script in Listing 14.2, we used the Address and OwnerThreadID
properties to print out the address and owner of the critical section. 



699!analyze Extension Command

As you’ve noticed in Listing 14.2, the Write method of the Manager object
allows you to write data to the report being prepared for the user. Because the reports
are rendered using a browser, we include the proper HTML tags to make sure that
the information is formatted properly (that is, using horizontal line breaks). 

After the script has been authored, save it with an .asp extension and place it in
the Scripts folder of the installation path for DebugDiag. For example, if the instal-
lation drive is C:\, place the script file in the following directory:

C:\Program Files\IIS Resources\DebugDiag\Scripts

After the script has been saved, you can launch DebugDiag, click the Advanced
Analysis tab, and select the new and powerful analysis script just created. Notice that
you can select multiple dump files, and the new critical section analysis script ana-
lyzes each of the selected scripts in turn.

DebugDiag’s custom scripting capabilities and rich object model enable engi-
neers to create complex and powerful postmortem analysis scripts that can dramati-
cally reduce the time spent on analyzing the problem. Without this tool, a developer
would have to either manually perform all the steps that the script performs (each and
every debug session) or, alternatively, write a custom debugger extension that per-
forms the same job as the script. Needless to say, you have already seen in Chapter
11, “Writing Custom Debugger Extensions,” that writing custom debug extensions is
a slightly more complex endeavor. It is important to note that although the object
model exposed by DebugDiag is fairly comprehensive, it is not 100% inclusive, and it
is sometimes necessary to write a debug extension that can subsequently be called
from a DebugDiag script.

!analyze Extension Command

The analyze extension command was invented as a way of automating failure analy-
sis with the ultimate goal of automatic failure analysis and detection and assignment
of known problems. Over time, the breadth and scope of the !analyze extension
command has grown significantly, and it is now capable of doing automatic analysis of
a large range of difficult problems. Examples of such problems include stack smash-
ing, Application Verifier faults, and more. One of the great features of the !analyze
extension command is its capability to assign failures based on the results of the analy-
sis. For example, you can tell the !analyze extension command that any failures that
occur within a specific module should be assigned to a particular owner. This can be
quite a handy mechanism when failures are automatically analyzed using the 
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!analyze extension command, and this can reduce the amount of manual time spent
doing initial analysis and failure assignments. In this part of the chapter, we take a
look at how the !analyze extension command can be used to analyze a failure in one
of the applications used in Chapter 10, “Synchronization.” Additionally, we show how
the automatic failure assignment mechanism can help you reduce the amount of time
spent on the analysis and follow-up process. 

The Faulty Application
In Chapter 10, we spent some time investigating a basic deadlock. The initial analy-
sis process involved dumping out all the threads and, for each of them, looking for any
locking behavior that might have caused the deadlock to occur. After potential thread
culprits had been identified, an in-depth investigation of each of the locking con-
structs was performed to see if there was a relationship between the threads that
might have caused the deadlock. In this section, we take a look at the same deadlock
scenario and see how the !analyze extension command can help us become more
efficient in the initial analysis. The binary we are investigating can be found in the fol-
lowing location:

Source code: C:\AWD\Chapter10\Deadlock
Binary: C:\AWDBIN\WinXP.x86.chk\10DeadLock.exe

To begin the automatic analysis process, start 10DeadLock.exe under the debugger
and let it run until the deadlock has occurred. Once deadlocked, break into the debug-
ger and dump out all the threads. Next, we need to try to identify a thread that we
believe is hung and switch the current thread to the hung thread. In our scenario,
thread 0 might be a potential culprit (as can be seen by the attempt to enter a critical
section). After you have switched to the potential culprit thread, issue the !analyze
extension command as shown here: 

!analyze –v –hang

The –v switch causes the !analyze extension command to output the results in ver-
bose mode, and the –hang switch tells the !analyze extension command that it
should perform a hang analysis. The result of executing the command is a slew of
information that the command was capable of extrapolating based on the overall state
of the process. Let’s take a closer look at the output of the command.



701!analyze Extension Command

Analyze Results
Listing 14.3 shows the output of the analyze –hang –v command we just executed. 

Listing 14.3

0:000> !analyze -hang -v

*******************************************************************************

*                                                                             *

*                        Exception Analysis                                   *

*                                                                             *

*******************************************************************************

FAULTING_IP:

kernel32!CtrlRoutine+bd

7c87533d 834dfcff        or      dword ptr [ebp-4],0FFFFFFFFh

EXCEPTION_RECORD:  ffffffff -- (.exr ffffffffffffffff)

ExceptionAddress: 7c87533d (kernel32!CtrlRoutine+0x000000bd)

ExceptionCode: 40010005 (Control-C exception)

ExceptionFlags: 00000000

NumberParameters: 0

FAULTING_THREAD:  00000d08

BUGCHECK_STR:  HANG

PROCESS_NAME:  10DeadLock.exe

ERROR_CODE: (NTSTATUS) 0xcfffffff - <Unable to get error code text>

CRITICAL_SECTION: 01003320 (!cs -s 01003320)

BLOCKING_THREAD:  00000d08

DERIVED_WAIT_CHAIN:

Dl Eid Cid     WaitType

-----------------------

x  0   85c.d08 Critical Section       ->

x  1   85c.8f4 Critical Section       -^
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WAIT_CHAIN_COMMAND:  ~0s;k;;~1s;k;;

DEFAULT_BUCKET_ID:  APPLICATION_HANG_DEADLOCK

PRIMARY_PROBLEM_CLASS:  APPLICATION_HANG_DEADLOCK

LAST_CONTROL_TRANSFER:  from 7c90e9c0 to 7c90eb94

STACK_TEXT:

0007fed4 7c90e9c0 7c91901b 000007dc 00000000 ntdll!KiFastSystemCallRet

0007fed8 7c91901b 000007dc 00000000 7c97c140 ntdll!NtWaitForSingleObject+0xc

0007ff60 7c90104b 00003320 0100137d 01003320 ntdll!RtlpWaitForCriticalSection+0x132

0007ff68 0100137d 01003320 000007f4 000008f4 ntdll!RtlEnterCriticalSection+0x46

0007ff7c 0100153b 00000001 00032470 00032ce0 10DeadLock!main+0xad

0007ffc0 7c816fd7 00011970 7c9118f1 7ffd6000 10DeadLock!__mainCRTStartup+0x102

0007fff0 00000000 01001679 00000000 78746341 kernel32!BaseProcessStart+0x23

FOLLOWUP_IP:

10DeadLock!main+ad

0100137d 6808110001      push    offset 10DeadLock!`string’ (01001108)

SYMBOL_STACK_INDEX:  4

FOLLOWUP_NAME:  MachineOwner

MODULE_NAME: 10DeadLock

IMAGE_NAME:  10DeadLock.exe

DEBUG_FLR_IMAGE_TIMESTAMP:  45c93d82

SYMBOL_NAME:  10DeadLock!main+ad

STACK_COMMAND:  ~0s ; kb

FAILURE_BUCKET_ID:  HANG_10DeadLock!main+ad

BUCKET_ID:  HANG_10DeadLock!main+ad

Followup: MachineOwner

-----

Listing 14.3 (continued)
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A breakdown and detailed description of the output is discussed in the following list.

■ FAULTING_IP
FAULTING_IP shows the value of the instruction pointer when the fault
occurred. In our case, the faulting instruction pointer is due to us breaking into
the debugger when the deadlock was detected (kernel32!CtrlRoutine). 

■ EXCEPTION_RECORD
EXCEPTION_RECORD gives more detail about the exception that occurred in
the form of an exception record. From Listing 14.3, we can see that we do not
have an exception record recorded with this fault (ffffffff). If an exception
record were available, you could use the exr command to display its contents. 

■ ExceptionAddress
ExceptionAddress shows the address where the exception occurred. In our
scenario, the exception address is 7c87533d, which corresponds to the control
routine function in kernel32.dll (kernel32!CtrlRoutine). 

■ ExceptionCode
ExceptionCode tells us the exact exception that caused the fault. In our sce-
nario, the exception code is 40010005, which corresponds to a Control-C
exception. This exception address is recorded because of breaking into the
debugger using Control-C.

■ ExceptionFlags
ExceptionFlags shows the flags associated with the exception. In our case,
the flag is set to 00000000. 

■ NumberParameters
NumberParameters tells us the number of parameters associated with the
exception. In our case, the number of parameters is 0.

■ FAULTING_THREAD
FAULTING_THREAD tells us which thread caused the fault to occur. From the
output in Listing 14.3, we can see that the faulting thread is 00000d08. If we look
for thread 00000d08 in our thread list, we can see that the faulting thread corre-
sponds to one of the threads waiting for a critical section to become available.

■ BUGCHECK_STR
BUGCHECK_STR represents a textual description of the “bugcheck” that
occurred. Note that the name of this field can be misleading because we are in
user mode and a bugcheck is typically relevant only in kernel mode faults.
Even though the distinction between user mode and kernel mode is not made
in the name of this field, the reason behind the fault can still be trusted. In our
scenario, the reason for the fault is a HANG.
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■ PROCESS_NAME
PROCESS_NAME tells us the name of the process that is exhibiting the fault
(10DeadLock.exe).

■ ERROR_CODE
ERROR_CODE tells us the error code (NTSTATUS) that caused the fault. 

■ CRITICAL_SECTION
CRITICAL_SECTION shows the address of the critical section that was found
and analyzed in the starting thread. Because our starting thread was 0, the crit-
ical section address shown is 01003320. 

■ BLOCKING_THREAD
BLOCKING_THREAD gives the ID of the thread that is blocking on the critical
section shown in the CRITICAL_SECTION field. In our case, the thread that is
blocking on the critical section located at address 01003320 is 00000d08.

■ DERIVED_WAIT_CHAIN
DERIVED_WAIT_CHAIN is at the heart of the hang analysis capabilities of the
!analyze extension command. When the command was run, it made an
attempt to derive how the wait chain looks for each of the threads in the
process associated with the critical section listed in the CRITICAL_SECTION
field. Let’s take a closer look at the output.

Dl Eid Cid     WaitType

-  --  ----    -------------

x  0   85c.d08 Critical Section       -->

x  1   85c.8f4 Critical Section       --^

From this output, we can see that we have two threads that are associated with
the critical section. The most interesting question is what the state of this crit-
ical section is (that is, is it locked, and which thread owns it). At the end of each
of the threads displayed is a series of characters that denote the state of the
critical section in relationship to the thread. The symbols include

■ -->: The thread is waiting for the critical section. 
■ --^: The thread owns the critical section.

From this output, we can very quickly see that the thread with a thread ID of
d08 is waiting for a critical section owned by thread 8f4.
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■ WAIT_CHAIN_COMMAND
This field shows the commands that can be used to further analyze the wait
chain of the problematic lock. In our scenario, the commands to be executed
are ~0s;k;;~1s;k;;

■ DEFAULT_BUCKET_ID
DEFAULT_BUCKET_ID details the general category of faults that this particular
fault falls under. In our scenario, the fault was determined to be an APPLICA-
TION_HANG_DEADLOCK fault.

■ PRIMARY_PROBLEM_CLASS
PRIMARY_PROBLEM_CLASS indicates the primary class of problems that the
fault was categorized in. Once again, the primary problem class for our sce-
nario is APPLICATION_HANG_DEADLOCK.

■ LAST_CONTROL_TRANSFER
LAST_CONTROL_TRANSFER shows the last two function calls made on the
stack. Listing 14.3 shows the following addresses:
from 7c90e9c0 to 7c90eb94
If we use the ln command on these addresses, we can see that the last func-
tion call made in our scenario was from ntdll!NtWaitForSingleObject to
ntdll!KiFastSystemCallRet.

■ STACK_TEXT
STACK_TEXT shows the full stack trace of the thread. In our case, it shows the
stack trace of thread 0.

■ FOLLOWUP_IP
FOLLOWUP_IP shows the instruction that most likely caused the fault. From
the output in Listing 14.3, you can see that the call to EnterCritical
Section caused a problematic hang in the code. 

■ SYMBOL_STACK_INDEX
SYMBOL_STACK_INDEX corresponds to the frame in the thread’s stack trace
that caused the fault. In our scenario, symbol-stack-index is 4, which
corresponds to the frame on the stack that caused the fault:
10DeadLock!main 

■ FOLLOWUP_NAME
FOLLOWUP_NAME shows who should be following up with this particular fault.
As you can see, the follow-up in our scenario is said to be MachineOwner,
which is typically used when a follow-up directive cannot be found for the par-
ticular fault. Later in the chapter, you will see how we can control the contents
of this field.

■ MODULE_NAME
This field simply states the module that is exhibiting the fault (10DeadLock). 
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■ IMAGE_NAME
IMAGE_NAME states the name of the image that the fault occurred in
(10DeadLock.exe). 

■ DEBUG_FLR_IMAGE_TIMESTAMP
This field shows the image time stamp for the image, where the fault occurred
(45c93d82).

■ SYMBOL_NAME
This field shows the symbolic name, where the fault occurred
(10DeadLock!main).

■ STACK_COMMAND
STACK_COMMAND shows the commands that were executed to get the stack
trace for the faulting thread. In our case, the sequence of commands was 
~0s ; kb.

■ FAILURE_BUCKET_ID and BUCKET_ID
The bucket ID fields show the specific category of problems that the fault falls
under. This information can be used by the !analyze extension command to
determine what additional information to display in the analysis result. 

■ FOLLOWUP
FOLLOWUP shows the most appropriate owners for this particular fault. If an
owner cannot be found, the default MachineOwner is displayed. 

As you have seen, executing the !analyze extension command results in a lot of
information that could have otherwise taken quite some time to manually gather. In
addition to all this valuable information, another important feature of the !analyze
extension command is its capability to assign owners to particular faults. We will take
a look at how to customize this capability next.

Fault Follow-Up
In the previous section, we took a look at the results of running the !analyze exten-
sion command on an application that deadlocked. Part of the information we got from
the !analyze extension command was the follow-up contact for that particular fault.
Because analyze did not have knowledge of who we wanted to assign this particu-
lar problem to, it simply defaulted to MachineOwner. We now take a look at how we
can customize this behavior to fit our own needs. 

For this scenario, we assume that the owner of the 10DeadLock.exe application
is named John Anderson (e-mail: johna@fictionous.com). We would like to associate
John’s name with any failures that occur in the 10DeadLock.exe image. This associa-
tion is made via a file called the triage.ini file, located under the triage folder
in the debugger installation path. By default, the triage.ini file contains a bunch
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of associations that either ignore the specified faults or assign the faults to a default
owner (such as MachineOwner). Let’s take a look at an example from the
triage.ini file:

nt!Zw*=ignore

This line shows that any faults occurring in the nt module and starting with the letters
Zw should be ignored and that no follow-up owner will be displayed by the !analyze
extension command. As you can see, the triage.ini file supports specifying wild-
cards to make it easier to assign a range of problems to a particular entity. 

Let’s add a line in the triage.ini file that associates John Anderson as the
owner of 10DeadLock.exe:

10DeadLock!*=John Anderson (johna@fictionous.com)

By using only the wildcard character *, we can tell the !analyze extension com-
mand to assign all the faults that occur in the scenario1 module to John. Let’s run the
application under the debugger again and perform a hang analysis to make sure that
the fault does get assigned to John. Listing 14.4 shows an abbreviated version of the
result of the !analyze extension command.

Listing 14.4

0:000> !analyze -v -hang

*******************************************************************************

*                                                                             *

*                        Exception Analysis                                   *

*                                                                             *

*******************************************************************************

FAULTING_IP:

kernel32!CtrlRoutine+bd

7c87533d 834dfcff        or      dword ptr [ebp-4],0FFFFFFFFh 

…

…

…

FOLLOWUP_NAME:  John Anderson (johna@fictionous.com)

…

.

..

…

Followup: John Anderson (johna@fictionous.com)

-----
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As you can see, the follow-up has now been changed from MachineOwner to John
Anderson, making it easier for the person looking at the analysis to assign the fault
to the correct owner.

The capability to specify the owner is incredibly useful when you have a complex
system in which a large number of developers are working with many different images
and modules. While testing, anytime a fault occurs somewhere in the system, the
!analyze extension command can be used to glean information about the source of
the problem, as well as immediately identify who to contact regarding this failure. One
could even imagine a fully automated notification process that automatically parsed
the output of the !analyze extension command and sent an e-mail to the follow-up
specified in the result. 

Summary

In this chapter, we investigated two power tools that can dramatically reduce the
amount of time spent on initial failure analysis. The Debug Diagnostics tool intro-
duced a mechanism by which we can automate memory leak detection, crash analy-
sis, and hang analysis, as well as write our own custom analysis scripts. The result of
the analysis consists of a well-formatted and easily digestible report with all the rele-
vant information categorized and displayed both in textual, as well as graphical, form.
The other tool examined in this chapter came in the form of an extension command
called !analyze. The !analyze extension command has strong analytical capabil-
ities. It has matured over time to be capable of analyzing a large number of difficult
problems and performing automatic failure assignments of identified problems.
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C H A P T E R  1 5

WINDOWS VISTA FUNDAMENTALS

Most applications benefit seamlessly from all the Windows Vista improvements.
Most customers using those applications are thrilled by the improvements and are
eager to upgrade all computers to Windows Vista. However, some applications crash
at random intervals when started under Windows Vista, and the customer demands a
new version. The vendor must investigate the root cause of the problem, find a solu-
tion, and provide a Vista upgrade for his application. 

On previous versions of Windows, crash investigations could be completed in a
reasonable time. On Windows Vista, it can take considerably longer. Why is that so? 

Although most applications run great in the new environment, Windows Vista
security and reliability enhancements affect their functionality. The system is more
robust at the expense of applications’ compatibility. The Windows Vista operating sys-
tem is less tolerant of application memory failures and enforces higher security
restrictions on system resources. Several familiar system mechanisms redesigned for
Windows Vista require some ramp-up time. 

This chapter walks through all the scenarios described in the book—scenarios
that we consider commonly used in debugging Windows applications with the goal of
discovering what is different in Windows Vista. The intent of this chapter is not to be
a compressive list of Vista changes; it is limited to the changes with direct implications
in the debugging process. 

The following sections, each corresponding to a previous chapter, follow the same
sequence as the book chapters. Each subheading loosely follows the corresponding
chapter organization and focuses only on differences from the previous operating sys-
tem versions. Chapters not represented here present no significant differences from
Windows XP Service Pack 2, and you can assume that nothing specific has been
changed.  However, it is possible to see slightly different behaviors caused by securi-
ty improvements. 

This chapter reuses several samples introduced in the previous chapters. The
binary files targeted to Windows Vista x64 are available in the C:\AWDBIN\
WinLH.AMD64.chk folder. The binary files targeted to Windows XP are available in
the C:\AWDBIN\WinXP.x86.chk folder. 
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Chapter 1—Introduction to the Tools 

Anytime substantial changes are introduced into the core architecture of any operat-
ing system, application compatibility becomes an issue. Applications that previously
used to work might now need to be changed. Although Microsoft spends an incredi-
ble amount of time and resources on ensuring that applications continue working
with each operating system version, it is sometimes not feasible or desirable to
achieve 100% compatibility. The tools used throughout this book are no exception.
Although most of the tools work, some do not work yet on Windows Vista. Table 15.1
shows all the tools used in the book along with their Vista compatibility state. 

Table 15.1

Tool Vista Compatible Alternative Tool

WDK Yes
LeakDiag No UMDH
UMDH Yes
Application Verifier Yes
Global Flags Yes
Process Monitor Yes
Ethereal Yes
DebugDiag No None
Debugging Tools for Windows Yes

For each of the tools listed as not working in Table 15.1, the Alternative Tool column
indicates a suggestion of a different tool to be used instead. Windows Vista security
enhancements affect all tools, and the possible change in behavior must be well
understood, as exemplified in the section “Registry and File Virtualization.” 

Windows Debug Logs
Windows Vista brings huge improvements in the manageability area, especially in the
area of managing events raised by various components, which can be used when
debugging applications.. The new Event Log system is the central store for all com-
ponent logs, known as diagnostic logs or debug logs. The debug logs are shown in the
Event Viewer after changing the log settings using the Show Analytic and Debug
menu item in the View menu. Several channels are disabled by default and may be
enabled using the right side panel. 
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Even if some channels have information useful only to the component designers, the
majority of them contain information useful for getting a gut feeling about the machine
state. One such log is the Diagnostic-Performance Operational log that contains clear
messages about various performance measurements, as shown in Figure 15.1.
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Figure 15.1

Chapter 2—Introduction to the Debuggers

Before deciding if this section is necessary, we did try the scenarios described in Chapter
2, “Introduction to the Debuggers,” in all possible configurations. The few problems
encountered when establishing the debugging session are discussed in this section.

Display analytic and debug logs COM infrastructure debug logs

Performance infrastructure diagnostic log Performance infrastructure operational log
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User Access Control Side Effects
In the beginning, we used the user mode debuggers to start new processes or to
attach them to existing ones. The debugger attaches to most running processes with-
out problems, until the target process is a system process. In such cases, the debug-
ger generates an error, as shown in Listing 15.1.

Listing 15.1

C:\>cdb -pn winlogon.exe

Microsoft (R) Windows Debugger Version 6.6.0007.5

Copyright (c) Microsoft Corporation. All rights reserved.

Cannot debug pid 564, Win32 error 5

“Access is denied.”

Debuggee initialization failed, Win32 error 5

“Access is denied.”

The debugger fails to attach to the privileged process, returning an access denied
error even if the account running the debugger is part of a local administrator group.
Because the error seems to be caused by the security changes in Windows Vista, a
quick look at the new security features pointed the investigation toward a side effect
of the User Account Control (UAC) feature. The UAC feature in Windows Vista pro-
tects the computer from unauthorized changes, achieved by multiple means. In this
case, UAC converted the powerful administrator account into a low-privilege user
account that cannot use the administrative group membership. More details are avail-
able in the section that covers Windows Vista security changes. 

In the next phase, we started several processes under the user mode debugger. Most
processes started without a problem, but some failed to start. The failing ones do so with
an error message stating The requested operation requires elevation, as in
Listing 15.2. This error happens for all processes that show a UAC elevation prompt. 

Listing 15.2

C:\>cdb mmc.exe

Microsoft (R) Windows Debugger  Version 6.6.0007.5

Copyright (c) Microsoft Corporation. All rights reserved.

CommandLine: mmc.exe

Cannot execute ‘mmc.exe’, Win32 error 740

“The requested operation requires elevation.”

Debuggee initialization failed, Win32 error 740

“The requested operation requires elevation.”
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Next, we start a console in an elevated privilege mode, which has similar rights to
those of an administrator account on a down-level platform. Any executable can start
under full administrative privileges after selecting the Run as Administrator option
from the application shortcut’s context menu. Figure 15.2 shows the options available
to run the shortcut.
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Figure 15.2

From the elevated command prompt, the user mode debugger works as expected. It
can attach to any running process in the system and can start any application. 

We use those two command prompts—one running as a UAC user and one run-
ning as an elevated user—to test the kernel mode debugger. The kernel mode debug-
ger running in local mode has proven very useful for investigating access permission
problems, deadlocks, or following a series of LPC calls. When started from the nor-
mal command prompt, the debugger fails as expected, as shown in Listing 15.3. 

Start the application
elevated
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Listing 15.3

C:\>kd -kl

Microsoft (R) Windows Debugger  Version 6.6.0007.5

Copyright (c) Microsoft Corporation. All rights reserved.

The system does not support local kernel debugging.

Local kernel debugging requires Windows XP, Administrative

privileges, and is not supported by WOW64.

Only a single local kernel debugging session can run at a time.

Debuggee initialization failed, HRESULT 0x80004001

“Not implemented”

There should be no surprise to see the operation failure, as the kernel mode debug-
ger in local mode can do unlimited damage to the system. However, after trying the
same operation from an elevated prompt, we were a little bit surprised that the tool
is failing with the access denied error shown in Listing 15.4.

Listing 15.4

C:\>kd -kl

Microsoft (R) Windows Debugger  Version 6.6.0007.5

Copyright (c) Microsoft Corporation. All rights reserved.

Debugger can’t get KD version information, Win32 error 5

To check the kernel mode configuration, we use the kdbgctrl.exe tool, installed with
Debugging Tools for Windows. The tool can be used to find out the kernel debugger
current state and changing it as needed. The command output tells us that the kernel
mode debugger is disabled, as shown in the following listing: 

C:\>kdbgctrl.exe -c

Kernel debugger is disabled

In Windows Vista, as well as in the previous versions of Windows operating systems,
the kernel debugger must be enabled at boot time to become active. The next section
describes how to configure the kernel debugger’s state at the next boot. 

Enabling the Kernel Mode Debugger
Chapter 2 uses bootcfg.exe as the preferred tool to make changes in boot.ini, which
controls the kernel mode debugger’s state. However, the tool does not exist in
Windows Vista because the entire boot loader system changed and the boot 
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configuration moved from boot.ini to a different system store called Boot
Configuration Data (BCD). The BCD store can be manipulated using the
bcdedit.exe command line. Used without command-line parameters, the command
displays all BCD objects from the BCD store with all the configuration parameters or
BCD elements, as shown in Listing 15.5. 

Listing 15.5

C:\>bcdedit

Windows Boot Manager

----------

identifier              {bootmgr}

device                  partition=C:

description             Windows Boot Manager

locale                  en-US

inherit                 {globalsettings}

default                 {current}

resumeobject            {b4e45951-b979-11db-b123-967f83be464e}

displayorder            {current}

{9556a9b0-7a61-11db-935f-fbbbd349454f}

toolsdisplayorder       {memdiag}

timeout                 3

Windows Boot Loader

----------

identifier              {current}

device                  partition=C:

path                    \Windows\system32\winload.exe

description             Microsoft Windows Vista

locale                  en-US

inherit                 {bootloadersettings}

osdevice                partition=C:

systemroot              \Windows

resumeobject            {b4e45951-b979-11db-b123-967f83be464e}

nx                      OptIn

debug                   Yes 

nx                      OptIn

The configuration can be changed by passing new values as parameters on the com-
mand line. By default, all changes affect the BCD object corresponding to the cur-
rent running configuration. The changes can be targeted to a different BCD object
by specifying it in the command line. Listing 15.6 uses bcdedit.exe to enable the ker-
nel mode debugger on serial port COM1 at a baud rate of 115200. 
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Listing 15.6

C:\>bcdedit /debug {current} on

The operation completed successfully.

C:\debug.x86>bcdedit /dbgsettings SERIAL DEBUGPORT:1 BAUDRATE:115200

The operation completed successfully.

The BCD store, as well as the bcdedit.exe command-line tool, is very well docu-
mented on Microsoft’s Web site. 

After enabling the kernel mode debugger and restarting the system, the kernel
debugger works as expected, both in local mode or connected to the host system
using a physical cable.  Moving on to the next chapter, we are pleasantly surprised to
see that the sample used in Chapter 3, “Debuggers Uncovered,” works as expected
after taking into account UAC restrictions and using an elevated prompt when need-
ed. The mechanism of treating unhandled exceptions is greatly improved in Windows
Vista and is described in detail in the section covering Chapter 13, “Postmortem
Debugging.” 

Address Space Layout Randomization 
In some cases, engineers make assumptions about the addresses holding various ele-
ments, such as the address of a global variable or a function address. The assumption can
be as simple as a note with several commands using virtual addresses to set breakpoints.
Such “command notes” are often used by engineers to enter a set of commands faster. 

In Windows Vista, the Address Space Layout Randomization (ASLR) feature
challenges this assumption. Under ASLR, the system ignores the preferred load
address and loads dynamic libraries at different addresses at every system start-up.
Listings 15.7 and 15.8 show a fragment from the process environment of the sample
08cli.exe process before and after the system has been restarted. 

Listing 15.7

0:000> !peb

...

Base TimeStamp                     Module

400000 4529f49a Oct 09 00:04:58 2006 c:\AWDBIN\WinXP.x86.chk\08cli.exe

77570000 4549bdc9 Nov 02 01:43:37 2006 C:\Windows\system32\ntdll.dll

76d70000 4549bd80 Nov 02 01:42:24 2006 C:\Windows\system32\kernel32.dll

76e50000 4549bd92 Nov 02 01:42:42 2006 C:\Windows\system32\ole32.dll

...
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After we restart the system, the same application loads all system dynamic link
libraries at different addresses. 

Listing 15.8

0:003> !peb

...

Base TimeStamp                     Module

400000 4529f49a Oct 09 00:04:58 2006 c:\AWDBIN\WinXP.x86.chk\08cli.exe 

774b0000 4549bdc9 Nov 02 01:43:37 2006 C:\Windows\system32\ntdll.dll

75f40000 4549bd80 Nov 02 01:42:24 2006 C:\Windows\system32\kernel32.dll

760a0000 4549bd92 Nov 02 01:42:42 2006 C:\Windows\system32\ole32.dll

...

The process image is loaded at the same address because it was linked for Windows
XP without the /dynamicbase option, the linker option controls the ASLR behavior. 

Chapter 6—Memory Corruptions—Part Heaps

The heap manager in Windows Vista has undergone some major changes. Although
the previous versions of the heap manager worked well, rapid advancements in com-
puting hardware have led to new requirements of the heap manager. As development
of the operating system moved forward, the three biggest challenges facing the heap
manager were those of security, performance, and increased resilience to misbehav-
ing applications. In prior versions of Windows, security attacks became increasingly
sophisticated and eventually led to heap-based attacks. While not as frequent as other
types of attacks (such as stack-based attacks) and much more complex in nature, the
engineers at Microsoft decided to address this very important attack vector in
Windows Vista. The other reason for revamping the heap manager dealt with the evo-
lution of hardware. From a historical perspective, computers have gone from having
a few megabytes of memory (or kilobytes depending on how far back one goes) to
gigabytes and even terabytes of RAM. Additionally, with the advent of multiproces-
sor systems as standard machine configurations, the requirements on the heap man-
ager changed to be capable of performing well on these types of systems. Finally, the
last category of improvement was in the area of increased resilience to misbehaving
applications. Mismanaging heap memory has been a constant source of problems in
applications, and with Windows Vista, the heap manager now has built-in early detec-
tion of several different types of common heap corruptions. 
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To address the new requirements, Windows Vista introduced an updated version of
the front end allocator called the low-fragmentation front end. The low-fragmentation
heap has been part of Windows since Windows Server 2003 and Windows XP but is
now vastly improved and enabled by default in Windows Vista. 

Figure 15.3 illustrates the low-fragmentation heap architecture.
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Subsegments
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9-16

Front End Allocator

Free Lists
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16

24

…

1016

Segment List

Segment 1
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…

Segment x

Subseg1 Subseg20

1

2

3

…

127

Back End Allocator

…

1025-1088

15873-16384

Subsegments

Figure 15.3

The basic idea behind the low-fragmentation heap is to reduce the amount of frag-
mentation that could occur with the old look aside list front end. Prior to Windows
Vista, the free and busy blocks in any given segment could be interleaved in such a
way that there were no free blocks with enough contiguous memory to satisfy the
allocation. Figure 15.4 illustrates a hypothetical example of a heap segment that suf-
fers from fragmentation.



719Chapter 6—Memory Corruptions—Part Heaps

Figure 15.4

The heap segment contains five busy heap blocks of size 32 bytes and four free heap
blocks of size 16 bytes. If an allocation of 32 bytes is requested, the allocation would
not be satisfied from that segment because the heap manager is unable to find 32
bytes of contiguous memory available (even though more than 32 bytes of total free
memory are available). 

The low-fragmentation front end allocator in Windows Vista serves to address this
problem by maintaining subsegments within each heap segment. Each subsegment
can contain only blocks of a predetermined size. For example, Figure 15.3 shows that
allocations of size 9–16 bytes have a set of subsegments where each subsegment is
housed in the back end allocator’s heap segments. 

Because each subsegment takes up committed memory from the back end heap
segment and is managed by the low-fragmentation front end, how are the heap blocks
managed? Say that a heap block of size 16 bytes is freed from one of the subsegments.
Who knows that the block is freed? Besides the heap block itself containing flags indi-
cating the status of the heap block (free or busy), the low-fragmentation front end also
keeps a singly linked list associated with each subsegment. This singly linked list acts
as the free list for the subsegment. When a free heap block becomes available, it is
pushed onto the list, and if a subsequent allocation request comes in for that size heap
block, the first entry in the list is popped from the list and returned to the caller. The
free list for each subsegment can be accessed via a subsegment header that contains
some metadata including a pointer to the free list. The subsegments are created when
allocation requests arrive at the front end. When a subsegment is created, the heap
manager decides the initial size of the subsegment (that is, the number of slots to pre-
allocate) based on the history of the heap usage in the application or, if no history is
available, a default initial size. If a subsegment ever becomes full, the heap manager
can create another subsegment to house allocations. 

The layout of a heap block in the low-fragmentation heap is illustrated in 
Figure 15.5.
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Figure 15.5

At a high level, the major difference between the old heap blocks and the low-
fragmentation heap blocks is that of a reference to the subsegment of which the heap
block is a part. Additionally, it is important to note that the heap block metadata is
now “randomized.” The implication of randomizing the metadata is that dumping out
the raw contents of the metadata (using, for example, the dc command) no longer
yields output that can be easily understood. Fortunately, the !heap extension com-
mand has been updated to take the randomization into account, and prior to display-
ing the contents of the heap block, the !heap extension command decodes the
metadata and displays the results. To display low-fragmentation heap blocks using the
!heap extension command, the –i switch must be used. For example, if a low-
fragmentation heap block resides at address 0x10b25de0, the output of the !heap
extension command would be the following:

0:028> !heap -i 10b25de0

Detailed information for block entry 10b25de0

Assummed heap      : 0x00100000 (Use !heap -i NewHeapHandle to change)

Header content     : 0x3C67E5EE 0xC2006898

Block flags        : 0x1 LFH (busy )

Total block size   : 0xe units (0x70 bytes)

Requested size     : 0x58 bytes (unused 0x18 bytes)

Subsegment         : 0x05f4dc58

7710dab4: ntdll!RtlAllocateHeap+0x0000021d

76eedcaf: ole32!CGIPTable::LazyMarshalGIPEntry+0x00000045

76eedef2: ole32!CRemoteUnknown::DoCallback+0x0000007a

76bb6dfe: RPCRT4!Invoke+0x0000002a

76c303ef: RPCRT4!NdrStubCall2+0x0000027b

76c321e2: RPCRT4!CStdStubBuffer_Invoke+0x000000a0

76fd92a0: ole32!SyncStubInvoke+0x0000003c

76fd923a: ole32!StubInvoke+0x000000b9

Sub Segment

Flags

…

User Data

Metadata
8 bytes
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76f025c2: ole32!CCtxComChnl::ContextInvoke+0x000000fa

76f024d3: ole32!MTAInvoke+0x0000001a

76f03403: ole32!STAInvoke+0x00000046

76fd9162: ole32!AppInvoke+0x000000aa

76fd8fdf: ole32!ComInvokeWithLockAndIPID+0x0000032c

76fd9696: ole32!ComInvoke+0x000000c5

76f032d9: ole32!ThreadDispatch+0x00000023

76f0339e: ole32!ThreadWndProc+0x000000f5

77021a10: USER32!InternalCallWinProc+0x00000023

77021ae8: USER32!UserCallWinProcCheckWow+0x0000014b

77022a47: USER32!DispatchMessageWorker+0x00000322

77022a98: USER32!DispatchMessageW+0x0000000f

6f4ce5db: IEFRAME!CTabWindow::_TabWindowThreadProc+0x00000189

767d3833: kernel32!BaseThreadInitThunk+0x0000000e

770da9bd: ntdll!_RtlUserThreadStart+0x00000023

Low Fragmentation Heap and Processor Affinity

In Chapter 6, “Memory Corruptions—Part II” we described how the look aside front end allo-
cator works. As multiprocessor systems became more and more common, the look aside front
end suffered a performance hit in the form of cross processor synchronization. If multiple
processors accessed the look aside front end, all requesting the same size allocation, access
to the look aside front end had to be synchronized (at the bus level), leading to a perform-
ance penalty being paid. To address the performance issue, the low fragmentation front end
introduced the notion of subsegment processor affinity. The low fragmentation front end
keeps a per-processor array of subsegments of specific sizes to avoid contention when
manipulating the heap. When multiple processors access heap blocks contained within these
subsegments, the heap blocks are managed in isolation; therefore, the chance of multiple
processors accessing the same memory locations and cache lines concurrently is reduced.

To illustrate how the debuggers can be used to show information about a low-
fragmentation heap, we use the !heap extension command with the –s and –a
switches. The output of the !heap extension command when run on an instance of
Internet Explorer 7.0 can be found in the following location:

C:\AWDBIN\Logs\heap.log

In the detailed segment section of the log file, you will find the list of heap blocks
available in the segment. Some of the heap blocks with varied sizes are interleaved,
whereas some (with the same size) are consecutive. When the output shows a list of
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same size consecutive heap blocks, the start of the list also shows the subsegment that
those blocks are part of (including metadata). An example is shown here:

...

...

...

092b95b0  092b95b8  00c50000  09280000       208       208         8  busy 

092b97b8  092b97c0  00c50000  09280000       208       208         8  busy 

092b99c0  092b99c8  00c50000  09280000       208       208         8  busy 

092b9bc8  092b9bd0  00c50000  09280000       208       208         8  busy 

092b9dd0  092b9dd8  00c50000  09280000       208       208         8  busy 

092b9fd8  092b9fe0  00c50000  09280000       208       208         8  busy 

092ba1e0  092ba1e8  00c50000  09280000       208       208         8  busy 

092ba3e8  092ba3f0  00c50000  09280000       208       208         8  busy 

092ba5f0  092ba5f8  00c50000  09280000       208       208         8  busy 

092ba7f8  092ba800  00c50000  09280000       208       208         8  busy 

Sub-segment 092dbcd8

User blocks:       0x092baa08

Block size:        0x208

Block count:       15

Free blocks:       0

Size index:        48

Affinity index:    0

Lock mask:         0x1

Flags:             0x0

092baa18  092baa20  00c50000  092dbcd8       208      -            8  LFH;busy 

092bac20  092bac28  00c50000  092dbcd8       208      -            8  LFH;busy 

092bae28  092bae30  00c50000  092dbcd8       208      -            8  LFH;busy 

092bb030  092bb038  00c50000  092dbcd8       208      -            8  LFH;busy 

092bb238  092bb240  00c50000  092dbcd8       208      -            8  LFH;busy 

092bb440  092bb448  00c50000  092dbcd8       208      -            8  LFH;busy 

092bb648  092bb650  00c50000  092dbcd8       208      -            8  LFH;busy 

092bb850  092bb858  00c50000  092dbcd8       208      -            8  LFH;busy 

092bba58  092bba60  00c50000  092dbcd8       208      -            8  LFH;busy 

092bbc60  092bbc68  00c50000  092dbcd8       208      -            8  LFH;busy 

092bbe68  092bbe70  00c50000  092dbcd8       208      -            8  LFH;busy 

092bc070  092bc078  00c50000  092dbcd8       208      -            8  LFH;busy 

092bc278  092bc280  00c50000  092dbcd8       208      -            8  LFH;busy 

092bc480  092bc488  00c50000  092dbcd8       208      -            8  LFH;busy 

092bc688  092bc690  00c50000  092dbcd8       208      -            8  LFH;busy

...

...

...
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The preceding metadata shows a subsegment with 15 blocks in it of size 0x208 bytes.
Following the metadata is the list of heap blocks in that subsegment. As you can see,
each block is 0x208 bytes in size and is marked with the LFH to indicate that it is
indeed a low-fragmentation heap block. 

As you can see, the Windows Vista heap manager has gone through a major face
lift. Problems related to security and performance have been greatly improved by the
new low-fragmentation front end allocator. The !heap extension command has been
updated to work seamlessly with the new heap structures, making it easy to investi-
gate the heap in depth. As more and more applications venture into the Vista space,
it will become increasingly important to understand how the new heap works in order
to effectively debug applications running on Windows Vista.

Chapter 7—Security

Without a doubt, Windows Vista introduced unprecedented changes in the security
options available to the user. The security model defined in Windows NT has been
carried over and enhanced to support the new options, but it remains fully backward
compatible. The new security options can be switched on and off, as needed.
Windows Vista default settings should meet most application expectations because
those defaults are the result of countless hours of application compatibility testing.
On rare occasions when one application does not run as expected, the engineers
developing a Vista-compatible application should know the significant changes in this
space, how to identify them, and their effect on the application. This section is limit-
ed to significant changes visible to the engineer debugging an application that has
security problems. 

The most visible aspect of the new security options is the User Account Control
feature already encountered in previous sections. To understand this feature, it is nec-
essary to understand the concepts behind the feature. 

Each running process performs at one of the integrity levels shown in Table 15.2,
determined based on a multitude of facts. The integrity level is identified by a SID,
as is any other principal on Window Vista. The integrity levels use a new identifier
authority having the value {0,0,0,0,0,16}. The relative identifiers (RIDs) correspon-
ding to those integrity levels are, starting at low integrity levels, as follows: 0x1000,
0x2000, 0x3000, and 0x4000. 
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Table 15.2

Integrity Level Name Integrity Level Identifier Examples of Applications 

Running at Level

System S-1-16-16384 Svchost.exe
Winlogon.exe
Windows Kernel

High S-1-16-12288 mmc.exe
setup.exe

Medium S-1-16-8196 explorer.exe
ieuser.exe

Low S-1-16-4096 iexplore.exe

What is the purpose of each integrity level, and how does the system decide what
integrity level it should choose for each process? Some of the factors used in this eval-
uation are as follows: 

■ Windows Vista always runs the Windows services process and the kernel code
at the system integrity level.

■ The tools requesting administrative privileges are specially recognized by the
operating system from their application manifest. An example of the manifest
requesting a high integrity level is shown in Listing 15.9. The system also uses
other heuristics to determine the required integrity level. For example, any
application called setup.exe always starts at a high integrity level.

■ The applications used to perform daily tasks, such as word processors, spread-
sheet applications, or e-mail software run at the medium integrity level. One
way to look at the processes running at the medium integrity level is to consid-
er them as processes started by a normal user, without administrative privileges. 

■ To prevent the spread of Internet malware, Internet Explorer runs at a low
integrity level. Currently, Internet Explorer is the only application using the
lowest integrity level. 

Listing 15.9

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>

<assembly xmlns=”urn:schemas-microsoft-com:asm.v1” manifestVersion=”1.0”> 

<assemblyIdentity version=”1.0.0.0” processorArchitecture=”X86” name=”Application”
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type=”win32”/> 

<description>Application descriptions</description> 

<trustInfo xmlns=”urn:schemas-microsoft-com:asm.v3”>

<security>

<requestedPrivileges>

<requestedExecutionLevel level=”requireAdministrator” uiAccess=”false”/>

</requestedPrivileges>

</security>

</trustInfo>

</assembly>

The processes are grouped by their integrity level, and the interaction between two
processes running at different integrity levels is controlled by the operating system.
The kernel objects created by the processes running at one integrity level cannot be
accessed by default by processes running at a lower integrity level. 

In addition, the User Interface Privilege Isolation (UIPI) feature controls the
flow of Windows messages between processes running at different integrity levels. By
default, a process can send Windows messages only to processes running at the same
or lower integrity levels. 

Both restrictions can be overridden using different techniques. The object cre-
ator can adjust the security descriptor protecting the kernel objects to make them
accessible by the processes running at lower integrity levels. 

An application can demand bypassing UIPI by setting the uiAccess flag to true in
the application manifest. Such an application must be Microsoft Authenticode signed
and be in a protected location, such as %systemdrive%\Program Files and
%systemdrive%\Windows\System32 to start properly. 

User Access Control
User Access Control (UAC) changes how the members of local administrators groups
run their applications. UAC can be enabled by using the Local Security Policy snap-
in, as shown in Figure 15.6. 

In Windows XP, the local administrator members run all their applications under
their context, having full administrative privileges. Any vulnerability in any of the
applications used by the administrators can be exploited, with severe implications for
the whole system. The exploited vulnerability can allow a silent installation of other
components on the system, a silent change of the registry and files permission, or per-
formance of administrative tasks. 
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Figure 15.6

In Windows Vista, the local administrator’s members run the shell process at the
medium integrity level when the UAC policy is set to run all administrators in Admin
approval mode and in high integrity level when the policy is disabled. 

Unless the administrator starts an application in administrative mode, as shown in
Figure 15.2, every new application started from shell inherits shell’s integrity level. If
the system detects that the application needs additional privileges, as defined in the
application manifest or determined by the system heuristics defined in the local secu-
rity policy, it prompts the administrator for consent in a dialog window similar to the
one shown in Figure 15.7. 

Local security policy snap-in Local policy Admin approval policy entry

Security options Admin approval policy state

Figure 15.7
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After selecting the Continue button, the system starts the application under full
administrative privileges, similar to previous operating system versions. Consent
behavior is controlled from the same snap-in used to enable UAC.   

UAC in Debugger
When investigating security failures related to UAC, we start by understanding the
role of all actors in the failure. As with any other security failure, a UAC failure follows
the same pattern: One entity requests access to an object protected by a gatekeeper
that uses the object security descriptor to deny access to that object. Listing 15.10 is
not a result of debugging a failure case. It displays the security token used by the
process running a system process and the security descriptor protecting the process
object, illustrating how a mandatory integrity level applies to the kernel object. 

Listing 15.10

kd> * Use !process extension command to get the process token

kd> !process 0 1 wininit.exe

PROCESS 82e59888  SessionId: 0  Cid: 01cc    Peb: 7ffd5000  ParentCid: 0198

DirBase: 11d85000  ObjectTable: 8c65ff38  HandleCount:  93.

Image: wininit.exe

VadRoot 82efb180 Vads 53 Clone 0 Private 227. Modified 156. Locked 2.

DeviceMap 84403128

Token                             8c6651d8

...

CommitCharge                      294

kd> * Use !token extension command to dump token information.

kd> * Integrity level is the last group in the token 

kd> !token 8c6651d8

_TOKEN 8c6651d8

TS Session ID: 0

User: S-1-5-18

Groups:

00 S-1-5-32-544

Attributes - Default Enabled Owner

01 S-1-1-0

Attributes - Mandatory Default Enabled

02 S-1-5-11

Attributes - Mandatory Default Enabled

03 S-1-16-16384

Attributes - GroupIntegrity GroupIntegrityEnabled

Primary Group: S-1-5-18

Privs:

03 0x000000003 SeAssignPrimaryTokenPrivilege     Attributes -
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...

35 0x000000023 SeCreateSymbolicLinkPrivilege     Attributes - Enabled Default

Authentication ID:         (0,3e7)

Impersonation Level:       Anonymous

TokenType:                 Primary

Source: *SYSTEM*           TokenFlags: 0x800 ( Token in use )

Token ID: 6c01             ParentToken ID: 0

Modified ID:               (0, 6a7a)

RestrictedSidCount: 0      RestrictedSids: 00000000

OriginatingLogonSession: 0

kd> * What is the security of system-integrity level objects?

kd> * The process object is a perfect example to illustrate it

kd> !sd poi(82e59888-4)&FFFFFFF8

->Revision: 0x1

->Sbz1    : 0x0

->Control : 0x8814

SE_DACL_PRESENT

SE_SACL_PRESENT

SE_SACL_AUTO_INHERITED

SE_SELF_RELATIVE

->Owner   : S-1-5-32-544

->Group   : S-1-5-18

->Dacl    :

->Dacl    : ->AclRevision: 0x2

->Dacl    : ->Sbz1       : 0x0

->Dacl    : ->AclSize    : 0x3c

->Dacl    : ->AceCount   : 0x2

->Dacl    : ->Sbz2       : 0x0

->Dacl    : ->Ace[0]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

->Dacl    : ->Ace[0]: ->AceFlags: 0x0

->Dacl    : ->Ace[0]: ->AceSize: 0x14

->Dacl    : ->Ace[0]: ->Mask : 0x001fffff

->Dacl    : ->Ace[0]: ->SID: S-1-5-18

...

->Sacl    :

->Sacl    : ->AclRevision: 0x2

->Sacl    : ->Sbz1       : 0x0

->Sacl    : ->AclSize    : 0x1c

->Sacl    : ->AceCount   : 0x1

->Sacl    : ->Sbz2       : 0x0

->Sacl    : ->Ace[0]: ->AceType: SYSTEM_MANDATORY_LABEL_ACE_TYPE

->Sacl  : ->Ace[0]: ->AceFlags: 0x0

->Sacl    : ->Ace[0]: ->AceSize: 0x14

->Sacl    : ->Ace[0]: ->Mask : 0x00000003

->Sacl    : ->Ace[0]: ->SID: S-1-16-16384

Listing 15.10 (continued)
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The integrity level is present in the process token as a special group, the third group
having the system-integrity level SID value S-1-16-16384. Each object that must be
accessible only to users running at a specific integrity level has the access encoded as
an ACE entry in the SACL part of the object security descriptor. Unlike the access
checks based on the group membership—where the permission is evaluated by test-
ing each SID from the token against the matching SID from the security descriptor—
the mandatory system integrity level is tested taking into account the relative order of
mandatory integrity levels. SYSTEM integrity level is highest, followed by HIGH,
MEDIUM, and LOW. When the token used to access the resource runs at a lower
level than the object integrity level, SYSTEM_MANDATORY_LABEL_ACE_TYPE
flags control further access. In Listing 15.10, the flags are interpreted as follows:

0x03 = SYSTEM_MANDATORY_LABEL_NO_WRITE_UP | SYSTEM_MANDATORY_LABEL_NO_READ_UP

In this case, the object is not accessible to any user on the system except the
LocalSystem principal. Listing 15.11 shows the same analysis for a process running
under an account part of local administrator group, with UAC policy enabled.

Listing 15.11

kd> !process 0 1 explorer.exe

PROCESS 901674f0 SessionId: 1  Cid: 0c04    Peb: 7ffd7000  ParentCid: 09cc

DirBase: 0a53e000  ObjectTable: 8f55b850  HandleCount: 599.

Image: explorer.exe

VadRoot 82ec6428 Vads 337 Clone 0 Private 3112. Modified 27217. Locked 0.

DeviceMap 927fb4f8

Token                             9256d890

...

kd> !token 9256d890

_TOKEN 9256d890

TS Session ID: 0x1

User: S-1-5-21-2084298851-3655559499-3523964647-1000

Groups:

00 S-1-5-21-2084298851-3655559499-3523964647-513

Attributes - Mandatory Default Enabled

01 S-1-1-0

Attributes - Mandatory Default Enabled

02 S-1-5-32-544

Attributes - DenyOnly

...

10 S-1-16-8192

Attributes - GroupIntegrity GroupIntegrityEnabled

Primary Group: S-1-5-21-2084298851-3655559499-3523964647-513
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Privs:

19 0x000000013 SeShutdownPrivilege               Attributes -

23 0x000000017 SeChangeNotifyPrivilege           Attributes - Enabled Default

25 0x000000019 SeUndockPrivilege                 Attributes -

33 0x000000021 SeIncreaseWorkingSetPrivilege     Attributes -

34 0x000000022 SeTimeZonePrivilege               Attributes -

Authentication ID:         (0,9ec99)

Impersonation Level:       Anonymous

TokenType:                 Primary

Source: User32             TokenFlags: 0xa00 ( Token in use )

Token ID: a2c7b            ParentToken ID: 9ec9c

Modified ID:               (0, 173021)

RestrictedSidCount: 0      RestrictedSids: 00000000

OriginatingLogonSession: 3e7

kd> !sd poi(901674f0-4) & 0xFFFFFFF8

->Revision: 0x1

->Sbz1    : 0x0

->Control : 0x8814

SE_DACL_PRESENT

SE_SACL_PRESENT

SE_SACL_AUTO_INHERITED

SE_SELF_RELATIVE

->Owner   : S-1-5-21-2084298851-3655559499-3523964647-1000

->Group   : S-1-5-21-2084298851-3655559499-3523964647-513

...

->Sacl    :

->Sacl    : ->AclRevision: 0x2

->Sacl    : ->Sbz1       : 0x0

->Sacl    : ->AclSize    : 0x1c

->Sacl    : ->AceCount   : 0x1

->Sacl    : ->Sbz2       : 0x0

->Sacl    : ->Ace[0]: ->AceType: SYSTEM_MANDATORY_LABEL_ACE_TYPE

->Sacl    : ->Ace[0]: ->AceFlags: 0x0

->Sacl    : ->Ace[0]: ->AceSize: 0x14

->Sacl    : ->Ace[0]: ->Mask : 0x00000003

->Sacl    : ->Ace[0]: ->SID: S-1-16-8192

Listing 15.11
(continued)
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The explorer’s process token has a medium integrity level in this case, and the process
token is restricted to an integrity level equal to or higher than medium. Furthermore,
the third SID in the process token is a restricted SID having the role of denying
access to the resources accessible only to that restricted SID, Local
Administrators represented by S-1-5-32-544 in this case. It is important to
mention that the restricted SID concept is not new. Restricted SIDs are used in
down-level platforms by applications using restricted tokens. 

The integrity level can be, and is, applied to resources managed by other entities,
such as the file system or registry keys. The integrity level is not exposed in the usual
places used to change the security on such resources. The operating system installs a
new integrity-level-aware tool, icalcs.exe, that supersedes cacls.exe. icacls.exe displays
or changes the integrity level of any file by using the setintegritylevel option
with the desired integrity level. However, the tool does not allow fine-tuning of the
access allowed to lower integrity users, and it always uses the SYSTEM_
MANDATORY_LABEL_NO_WRITE_UP flag. Listing 15.12 checks the security on one of
the sample files, changes its integrity level, and rechecks its security descriptor. The
new mandatory integrity level is set to medium, no write up. 

Listing 15.12

C:\>icacls c:\AWDBIN\WinXP.x86.chk\01sample.exe

c:\AWDBIN\WinXP.x86.chk\01sample.exe BUILTIN\Administrators:(I)(F)

NT AUTHORITY\SYSTEM:(I)(F)

BUILTIN\Users:(I)(RX)

C:\>icacls c:\AWDBIN\WinXP.x86.chk\01sample.exe /setintegritylevel M

processed file: c:\AWDBIN\WinXP.x86.chk\01sample.exe

Successfully processed 1 files; Failed processing 0 files

C:\>icacls c:\AWDBIN\WinXP.x86.chk\01sample.exe

c:\AWDBIN\WinXP.x86.chk\01sample.exe BUILTIN\Administrators:(I)(F)

NT AUTHORITY\SYSTEM:(I)(F)

BUILTIN\Users:(I)(RX)

Mandatory Label\Medium Mandatory Level:(NW)

Successfully processed 1 files; Failed processing 0 files
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Registry and File Virtualization
This section addresses a more subtle problem encountered when running a nontriv-
ial application in Windows Vista. The sample used in Chapter 7, “Security,” demon-
strates how the application can fail when moved to the new operating system. The
sample has an option to save some data in two protected locations—the
HKEY_LOCAL_MACHINE\Software registry key and the C:\Program Files fold-
er—and another option to read this data. The scenario is common for any application
that uses global settings, configurable through an MMC snap-in. The application cre-
ates the configuration information by pressing the ‘4’ key and verifies the configura-
tion by pressing the ‘5’ key.

The next two listings simulate the preceding situation. Listing 15.13 shows the
application that required administrative privileges in Windows XP and now runs flaw-
lessly in the UAC context. 

Listing 15.13

c:\>c:\AWDBIN\WinXP.x86.chk\07sample.exe

Press:

0     To use Security Descriptor APIs

1     To run Impersonation test

2     To run Default SD test

3     To run MAXIMUM_ALLOWED test

4     To set application configuration information

5     To read application configuration information

x     To exit

> Creating application settings ...

Registry key HKEY_LOCAL_MACHINE\Software\Advanced Windows Debugging created

Create file C:\Program Files\sample4.test

Creating application done.

> Retrieving application settings ...

Registry key HKEY_LOCAL_MACHINE\Software\Advanced Windows Debugging found

Create file C:\Program Files\sample4.test found

Retrieving application done.

Listing 15.14 simulates the application configuration whose functionality is usually
hosted within an MMC snap-in. Because MMC.EXE prompts for elevation at start-
up, the application used in Listing 15.14 has also been started from an elevated
prompt, obtained as shown in Figure 15.2. 



733Chapter 7—Security

Listing 15.14

c:\>c:\AWDBIN\WinXP.x86.chk\07sample.exe

Press:

0     To use Security Descriptor APIs

1     To run Impersonation test

2     To run Default SD test

3     To run MAXIMUM_ALLOWED test

4     To set application configuration information

5     To read application configuration information

x     To exit

> Retrieving application settings ...

RegOpenKeyW failed.Last error = 2

CreateFile failed with:Last error = 2

Retrieving application done.

Even if the application can find the configuration while it runs in the UAC context, in
Listing 15.14, the application is unable to retrieve any information from the global store. 

The registry and file virtualization feature—which has been added to Windows
Vista to fix, for a limited time, applications that require administrative privileges—
causes the error encountered in this case. This feature is enabled by default, but it
can be disabled using the Local Security Policy snap-in used to control UAC behav-
ior, as seen in Figure 15.6. It is not recommended that you disable the virtualization
because all existing virtual files or registry keys are lost afterward. 

The virtualized files are stored in the user profile, in a folder structure similar to
the system folder structure, located in %USERPROFILE%\AppData\Local\
VirtualStore. This folder tree structure is as follows:

C:\>tree %USERPROFILE%\AppData\Local\VirtualStore /a

Folder PATH listing for volume New Volume

Volume serial number is 5C50-0187

C:\USERS\DANIEL\APPDATA\LOCAL\VIRTUALSTORE

+--Program Files

|   +--Common Files

|   \--SmartFTP Client 2.0

|       \--Minidump

\--Windows

\--Debug

\--UserMode
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The virtualized registries are stored in the current user profile in a registry structure
similar to the registry hierarchy, under the HKEY_CURRENT_USER\Software\
Classes\VirtualStore key. The command-line tool reg.exe is handy for searching for
the key location using a command line as in the following listing: 

C:\>reg query HKCU /s /k /f “Advanced Debugging”

HKEY_CURRENT_USER\Software\Classes\VirtualStore\MACHINE\SOFTWARE\Advanced Debugging

End of search: 1 match(es) found.

Because the applications running at elevated mode are not subject to virtualization,
they will have a different view of the system compared to the application running
under UAC. Windows Vista virtualization affects all tools using Windows registry as
the configuration store. The tool should run elevated or not as needed. For example,
to enable Application Verifier on an MMC snap-in, we need to run Application Verifier
elevated because MMC.EXE always runs elevated. Otherwise, the configuration tool
updates the virtual registry key, which is not used when the application starts in ele-
vated mode. The virtualization state is visible in the Windows Task Manager under the
Visualization column in the Processes tab, as shown in Figure 15.8. The column can
be enabled using View followed by the Select columns menu command.  

Figure 15.8

Processes 
virtualization 

state
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Applications such as cmd.exe or reg.exe are not subject to virtualization because they
have an application manifest specifying a requestedExecutionLevel in their mani-
fests, as shown in Listing 15.9. 

Native x86-64 applications are not virtualized and will fail under a UAC account
in the same way they failed on Windows XP, when running under the standard user
account. This provides the motivation for writing applications that does not require
administrative privileges to work properly. This enforcement has a minimal impact on
the applications’ compatibility, as the number of x86-64 applications is still small.

WHY ARE APPLICATIONS NOT WORKING UNDER A STANDARD USER
ACCOUNT? Some applications write on locations protected by the operating system default
security settings. To write into those locations, the applications must run under a local admin-
istrator account. Applications keeping their configurable setting in the installation folder or in
a global registry hive, such as HKEY_LOCAL_MACHINE, are the common failure cases. 

The easiest way to find those failures is testing the application under Application
Verifier, as described in Chapter 1, “Introduction to the Tools.” Another simple tool to evalu-
ate this application behavior is the Microsoft Standard User Analyzer tool, available as a
free download on Microsoft’s Web site.

Fixing the application, during the development phase is the quickest and the most effi-
cient solution to those problems. As a positive side effect, the application is one step closer
to being able to obtain the Certified for Windows Vista logo. 

To find out all processes that are not meeting the standards for Windows Vista certifica-
tion, a simple check of the virtual file and registry locations will most likely reveal them. 

Besides the security changes made with the intent of creating the “most secure ver-
sion of Windows yet,” Windows Vista introduced other security changes designed to
prevent tampering with so-called protected processes. A protected processes, usual-
ly a hosting media playback application, offer a higher degree of protection from tam-
pering, especially when it uses media protected with DRM technologies. Although
the changes supporting protected process are implemented deeply in the kernel, they
are manifesting themselves in the inability to debug such processes. Microsoft
MSDN has several whitepapers describing the protected process and the future of
developments in this area. 

You learned in this section what is behind security changes implemented in
Windows Vista and the effect those changes have on software applications.
Furthermore, you learned the mechanisms to extract detailed information from the
failing system, failure caused by those security changes. 
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Chapter 8—Interprocess Communication

The changes introduced by Windows Vista in the interprocess communication area
are restricted to the boundaries of a single physical system. Because the computers
running Windows Vista must work seamlessly in a heterogeneous network, network-
observable behavior is similar to previous operating system behavior, and all tech-
niques based on interpreting the network traffic are still applicable. However, the
communication model between various components within the same physical system
has been changed. The Lightweight Procedure Call (LPC) protocol has been
replaced with the new Advanced Lightweight Procedure Call (ALPC) protocol,
which is the foundation for other protocols. 

RPC and DCOM Protocol Changes
All the protocols built on top of ALPC have been changed to take advantage of the
new communication paradigms. DCOM and RPC have been also enhanced in the
reliability and manageability area. 

To improve the RPC debugging capability, its development team introduced two
tracing channels. In the Microsoft-Windows-Rpcss-EndpointMapper/Debug chan-
nel, the RPC infrastructure records each interface that is registered or unregistered
with the EndpointMapper. The Microsoft-Windows-RPC/EEInfo channel collects
the error generated by the RPC infrastructure as described in Chapter 8, in the sec-
tion “RPC Extended Error Information.” 

As part of management improvements, DCOM has a tracing channel, Microsoft-
Windows-COM/Analytic, that can capture events generated by the infrastructure.
However, at the time of writing, no information about how to enable this channel or
how to interpret the events generated in this log was available. 

Chapter 9—Resource Leaks

In Chapter 9, we discussed a number of different tools and strategies for tracking
down resource leaks. Two types of resource leaks were discussed: handles and mem-
ory. Handles, as seen from a debugging perspective, behave the same in Windows
Vista (that is, the !htrace extension command is fully functional), whereas heap
memory has dramatically changed to improve performance and security. Even though
the heap manager has changed, some of the leak-detection tools can still be used to
track down memory leaks. The two primary tools discussed in Chapter 9 are
LeakDiag and UMDH. Unfortunately, at the time of this writing, LeakDiag does not
work on Windows Vista, although UMDH can be used as an alternative. 
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Chapter 10—Synchronization

In Chapter 10, “Synchronization,” we discussed the most commonly used thread syn-
chronization primitives available in Windows. Critical sections, events, mutants, and
so on have all been part of the Windows operating system for quite some time. With
the advent of Windows Vista, the synchronization capabilities have been extended to
include a range of new features. Specifically, the following new synchronization prim-
itives have been introduced:

■ Slim reader/writer lock
■ Condition variables
■ One-time initialization
■ Improved thread pool

In this part of the chapter, we take a brief look at the new synchronization features
available in Windows Vista. 

Slim Reader/Writer Lock
A reader/writer lock is a synchronization construct commonly used when addressing
concurrent access to a shared resource in which multiple concurrent readers are
allowed, but writers acquire exclusive ownership of the resource. Although read/write
access to a shared resource can be easily solved by using one of the existing synchro-
nization primitives (such as a critical section or a mutex), the benefit of a
reader/writer lock is when there is a fairly large number of readers and relatively few
writers. In this scenario, using a critical section can be suboptimal because a critical
section only allows exclusive access to a shared resource, regardless of whether all the
threads trying to get access to the resource are reader threads. The means by which
the new reader/writer lock distinguishes between reader and writer lock access is by
introducing two lock modes:

■ Exclusive: Grants exclusive access to the shared resource. No other thread can
access the resource while a thread has exclusive access to a lock. Writer threads
typically request exclusive access. 

■ Shared: Grants shared access to the resource, enabling multiple concurrent
threads to read the data protected by the lock. Reader threads typically request
shared access.
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As with any synchronization construct, fairness is an important aspect. It is important
to note that the new reader/writer lock in Windows Vista does not observe fairness. 

Table 15.3 lists the new reader/write locks in Windows Vista.

Table 15.3

API Description

InitializeSRWLock Initializes the simple reader/writer lock. The data
structure used to represent a reader writer lock is of
type SRWLOCK. 

AcquireSRWLockExclusive Acquires a reader/writer lock in exclusive mode,
indicating that no other threads are allowed to
access the lock. An example of this would be for a
writer to acquire exclusive access to the lock.

AcquireSRWLockShared Acquires a reader/writer lock in shared mode, indi-
cating that other threads are allowed to access the
lock. An example of this would be for a reader to
acquire shared access to the lock.

ReleaseSRWLockExclusive Releases a reader/writer lock previously acquired in
exclusive mode.

ReleaseSRWLockShared Releases a reader/writer lock previously acquired in
shared mode.

Debugging reader/writer locks can prove to be a challenging task mainly because
of the limited amount of bookkeeping associated with the lock. The definition of the
SRWLOCK is shown in the following:

typedef struct _RTL_SRWLOCK {                            

PVOID Ptr;                                       

} 

As you can see, the contents of the lock are minimal and contain only a pointer to a
VOID type. Contrast this definition with that of the critical section, which contains a
whole slew of information, such as owning thread, lock count, recursion count, and so
on. Even though limited information is available with a reader/writer lock, the debug-
ging process is similar to that of other synchronization constructs. 
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Condition Variables
A condition variable is a new synchronization construct introduced in Windows Vista.
A condition variable always works in conjunction with either a critical section or a slim
reader/writer lock. The basic idea behind a condition variable is that it allows threads
to wait until a particular condition occurs. The wait is performed with a three-step
atomic operation:

1. Release the lock associated with the condition variable.
2. Enter a wait state.
3. Once woken up, reacquires the lock associated with the condition variable. 

The functions associated with condition variables are illustrated in Table 15.4.

Table 15.4

API Description

InitializeConditionVariable Initializes a condition variable.
SleepConditionVariableCS Waits on a condition variable and releases the

specified critical section as an atomic operation.
SleepConditionVariableSRW Waits on a condition variable and releases the

specified slim reader/writer lock as an atomic
operation.

WakeAllConditionVariable Wakes up all threads waiting on the specified
condition variable.

WakeConditionVariable Wakes a single thread waiting on the specified
condition variable.

Similar to the new slim reader/writer lock, the definition of a condition variable
(CONDITION_VARIABLE type) is relatively simple in nature, as shown in the 
following:

typedef struct _RTL_CONDITION_VARIABLE {                    

PVOID Ptr;                                       

}
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One-Time Initialization
It is often necessary for the code to perform one-time initialization work. In a single-
threaded environment, it is typically not a difficult chore to achieve, but in a multi-
threaded environment, ensuring that the object is constructed only once requires
some work. To make it easier for developers requiring one-time initialization in a
multi-threaded environment, Windows Vista introduced APIs that help developers
take the pain out of the initialization code. Table 15.5 shows the function associated
with one-time initialization.

Table 15.5

API Description

InitOnceBeginInitialize Begins one-time initialization.
InitOnceComplete Completes one-time initialization.
InitOnceExecuteOnce Executes the specified initialization function once. No other

threads specifying the same one-time initialization structure
can execute while the current thread is executing.

InitOnceInitialize Initializes a one-time initialization structure.

The fundamental data type behind one-time initialization is the INIT_ONCE
structure shown in the following:

typedef RTL_RUN_ONCE INIT_ONCE;

typedef union _RTL_RUN_ONCE {       

PVOID Ptr;                      

}

Improved Thread Pool
The thread pool in Windows Vista has gone through a major face-lift. In fact, the
thread pool has been rewritten from the ground up to make it more reliable and
intrinsically provide many features missing from prior versions of Windows. Here are
a few examples of new features added to the Windows Vista thread pool:

■ Multiple pools per process
■ Cancellation of work
■ Automatic cleanup (including releasing of locks)
■ Configurable maximum and minimum number of threads
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Chapter 11—Writing Custom Debugger Extensions

Unless you are writing a custom debugger extension that requires Windows Vista 
specific functionality, you will not need to do anything different. If, however, you are
writing a Windows Vista-specific extension, you will need to ensure that the build win-
dow in which you choose to build the extension is a Windows Vista build window. This
can be done by installing the WDK and choosing the Windows Vista and Windows
Longhorn Server build window from the Windows Driver Kits menu item in the Start
menu. 

In general, it is recommended that debugger extensions are versioned according
to the operating system version that they work on. If you look at the debugger exten-
sions that ship with Debugging Tools for Windows, you will see several subdirecto-
ries, each representing a particular version of the operating system. Within each of
the subdirectories, you can find the debugger extensions requiring that particular
Windows version. If, however, you are developing an extension that does not depend
on any specific version of Windows, you can simply build one, and the same exten-
sion works across multiple Windows versions. The only caveat to this approach is to
make sure that the extension is built for the lowest common denominator to ensure
that it loads in later versions of Windows.

Chapter 13—Postmortem Debugging

Postmortem debugging is an important part of an engineer’s work. In versions prior
to Windows Vista, the fundamental component enabling postmortem data collection
was Dr. Watson. Anytime a crash or a hang occurred, Dr. Watson would be invoked
to collect postmortem data (in the form of a log file and dump file). 

In Windows Vista, Dr. Watson has been retired in favor of a more reliable archi-
tecture. Previously, the mechanism by which Dr. Watson was invoked involved an
unhandled exception filter that wrapped all the threads executing within a process.
When a thread faulted and the exception filter was executed, it launched the Dr.
Watson process (via the CreateProcess API) to do error reporting. This approach
worked well, but there were certain situations in which complications arose. An exam-
ple of such a complication was the case when a thread stack has been exhausted or
smashed. In that situation, the exception filter might or might not run correctly,
depending on the state of the stack. In order to make error reporting in Windows
Vista more reliable, the architecture of collecting postmortem data was changed.
Figure 15.9 illustrates the new postmortem architecture in Windows Vista.

15.
W

IN
DO

W
S

V
ISTA

FUN
DAM

EN
TALS



742 Chapter 15 Windows Vista Fundamentals

Figure 15.9

When Windows Vista boots, a new service called WERSVC is loaded into a service host
and registers a port with the kernel (step 1). The port serves as the communication chan-
nel between the kernel and the failures in user mode. When a fault occurs in a user-
mode process, the kernel is the first component to see the exception. Because a
user-mode application should have the chance of handling first-chance exceptions, the
kernel simply routes the exception to the faulting user-mode process (step 2). If the user-
mode process cannot handle the exception (an unhandled exception), the try/catch
block around the user-mode thread simply returns EXCEPTION_CONTINUE_SEARCH
back to the kernel, indicating that it was an unhandled exception (step 3) and that the
kernel should continue looking for other components that might be willing to handle the
exception. The kernel once again forwards the exception to any associated exception
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step 5) with associated fault information (such as process identifier, thread identifier, and
exception parameters). In turn, the WERSVC component invokes the WERFAULT.EXE
process (step 6), which checks to see if it should invoke a Just In Time (JIT) debugger. If
a JIT debugger is enabled, the WERFAULT.EXE process launches the debugger and
attaches it to the faulting process (step 7). Subsequently, the WERFAULT.EXE process
returns a status to kernel mode, indicating that a JIT debugger was launched, and the
kernel dispatches the exception to the debugger (step 8). If a JIT debugger was not
enabled, the user is presented with an error dialog, allowing him to send an error report
to Microsoft or debug the fault. 

As you can see, by decoupling and delegating the error-handling responsibilities
from the faulting user-mode process to kernel mode, we are no longer at the mercy
of user-mode faults (such as stack exhaustion or stack smashing) that might cause the
error handling logic to fail. This new architecture and process allow for very reliable
error reporting that was previously not possible. 

Dump File Generation

In Chapter 13, we discussed the various ways that dump files can be generated. Windows
Vista provides another convenient mechanism available via Task Manager. Right-clicking on a
process in the Process tab of Task Manager allows you to select the Create Dump File context-
menu item. Creating a dump file using this option creates a mini dump file with full memory
information. 

Another important change that occurred in Windows Vista is how the error-reporting
technology saves dump files locally on the machine. Prior to Windows Vista, Dr. Watson
stored generated dump files on the local machine by default. These dump files could be
accessed by anyone wanting to debug a particular dump file. In Windows Vista, Dr.
Watson has been retired in favor of a more reliable and robust error-reporting mechanism.
As part of this change, dump files generated on a machine are not stored on the local
machine (by default). To change the default behavior, you can set the ForceQueue registry
setting to 1, which forces all dump files to be queued locally prior to being uploaded to
Microsoft. The ForceQueue registry value is located in the following registry path:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Windows Error
Reporting
After the ForceQueue registry value is set to 1, all dump files generated will be stored in

the following location:
Processes running in system context or elevated:
%ALLUSERSPROFILE %\Microsoft\Windows\WER\ [ReportQueue |
ReportArchive]
All other processes:
%LOCALAPPDATA%\Microsoft\Windows\WER\ [ReportQueue |
ReportArchive]
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In addition to improved reliability, Windows Vista introduced a set of new API(s) that
enable applications to do much more than just trigger the standard error collection mech-
anism (upload of dump file). More specifically, applications can now programmatically
upload custom data in addition to the dump file. The data can come in the form of cus-
tom log files, augmented memory dumps, and more. Table 15.6 details the new API(s).

Table 15.6

API Name Description

WerAddExcludedApplication Excludes a specified application from error reporting.
WerGetFlags Retrieves the error by reporting settings for the

specified process.
WerRegisterFile Adds a file to the collection of files that can be added

to reports generated for the current process. This is a
very useful mechanism for adding custom files to the
error-reporting process.

WerRegisterMemoryBlock By default, error reporting only collects certain types
of memory information. Sometimes it is necessary for
processes to augment this information by adding mem-
ory dumps of custom memory regions. This API allows
the caller to specify the starting address and size of the
memory region to be included in the report.

WerRemoveExcludedApplication Removes an application from being excluded from
error reporting.

WerReportAddDump Allows the caller to control what is added to the
dump file generated during error reporting. 

WerReportAddFile Adds a file to the report that is being generated for
the fault. 

WerReportCloseHandle Closes the specified report.
WerReportCreate Creates a new report.
WerReportSetParameter Sets the parameters of a report. 
WerReportSetUIOption Allows the caller to customize the UI that is 

displayed for a specific report.
WerReportSubmit Submits the specified report.
WerSetFlags Sets the error-reporting settings for the current

process.
WerUnregisterFile Removes a file from the collection of files to be added

to the reports generated for the current process.
WerUnregisterMemoryBlock Removes a memory block previously registered with

the WerRegisterMemoryBlock API.
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The added reliability features as well as new functionality make Windows Vista an
extremely powerful platform when it comes to diagnostics and postmortem analysis.

Summary

Windows Vista represents the latest update to the Windows client family of operating
systems. An incredible wealth of new features exist, ranging from exciting new appli-
cations to extensively enhanced reliability, robustness, and security features. It should
come as no surprise that Windows Vista represents a big milestone in Windows oper-
ating system history and enables software developers to use all the new and exciting
features when developing software. 

Throughout the book, we have discussed specific debugging scenarios, and in this
chapter, we detailed each of the scenarios and the differences encountered (as relat-
ed to debugging) when running with Windows Vista. The discussion started with how
the tools work under Windows Vista and then showed specific debugging scenarios
related to a specific technology, such as security, heap manager, interprocess com-
munication, and more. 
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A P P E N D I X  A

APPLICATION VERIFIER TEST
SETTINGS

Throughout the book, we have used Application Verifier to find problems early in the
development phase that otherwise would have been costly to repair. In addition to the
test settings that we have used, Application Verifier includes a ton more test settings
that can be used, depending on the problem at hand. This appendix serves as a ref-
erence to the available test settings. 

Exceptions

The name of this test setting is actually quite misleading. Although you might be led
to think that this stop deals with all kinds of exception-related issues, it has only one
stop in it. Specifically, it is a stop that allows you to break into the debugger as soon
as a first-chance access violation exception occurs. This enables you to catch any first-
chance access violations that might have been inadvertently caught by the application.

Handles

Handles are used as an abstraction model to core operating system objects. One of the
most common problems when working with handles is specifying the wrong handle
value to the various APIs that accept them. This test setting checks for a variety of dif-
ferent handle problems, as illustrated by Table A.1. By default, all handle-related stop
codes cause a break in the debugger if triggered.
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Table A.1

Stop code Test Description

00000300 Invalid handles Causes Application Verifier to stop execution
when passing an invalid handle value to system
routines.

00000301 Invalid Thread local To retrieve thread local storage 
storage (TSL) index (TLS) data, you must pass in a TLS index value

that corresponds to the storage location for the
data. If you specify an invalid TLS index,
Application Verifier stops execution.

00000302 Invalid parameters When a call to WaitForMultipleObjects
in calls to is made, the caller needs to specify an array 
WaitForMultipleObjects of handles to wait for, as well as the number of

handles in the array. If either of those parame-
ters is null or 0, Application Verifier stops exe-
cution.

00000303 null handle values When a call to a system routine that accepts a
handle as input is made with a null handle
value, the debugger stops execution.

00000304 DllMain concurrency If a thread that is currently executing 
problems code in DllMain is waiting for another thread

handle, Application Verifier  stops execution.
The error is that the only way for the waiting
thread to be signaled is by the executing thread
to exit. When the executing thread terminates,
it tries to call into the DllMain function with a
DLL_THREAD_DETACH message. To do so, it
must acquire the DLL loader lock. The acqui-
sitions fail due to the first thread already own-
ing the lock. The net result is a deadlock.

00000305 Invalid handle types This stop is triggered when code calls into an
API that expects a handle of a specific type but
passes the wrong handle type instead. For
example, calling SetEvent with a handle to a
semaphore causes this stop to occur.
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Heaps

The Heaps test setting contains some really powerful instrumentation to make life
easier when trying to figure out heap-related problems. In addition to a wide range
of verifier stops, the heaps test setting enables instrumentation on a per-heap block
basis that includes heap block fill patterns, heap block guard pages, and stack tracing.
The stack tracing capabilities are extremely useful, as they provide a historic view (via
stack trace recording) of all the allocations and de-allocations made in a process. 

The properties that are part of the heaps test setting are quite powerful and
extensive. Figure A.1 illustrates the properties available by right-clicking on the heaps
test setting and selecting the Properties menu item.
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Each of the configurable options is discussed in the following list:

■ Full
Heap instrumentation falls into two modes:

■ Normal pageheap: This pageheap option is a lighter version of the
full heap instrumentation and does not detect heap-related prob-
lems as timely as full pageheap. The benefit in using this mode is
that it runs faster and requires fewer resources. To run using normal
pageheap, uncheck the Full check box in the Properties window. 

■ Full pageheap: Full pageheap is the king of heap instrumentation.
It has the capability to detect heap-related problems at the point of
occurrence rather than postmortem and typically allows for easier
debugging than using normal pageheap. The drawback of full page-
heap is that it requires quite a lot of resources (memory) and subse-
quently runs slower than normal pageheap. To select the full
pageheap option, check the Full check box in the Properties win-
dow. 

We discuss how both normal and full pageheap work later on this section.
■ Dlls

The Dlls field allows you to specify which DLLs should be part of the heap
tests. Specify the name of the DLL (including extension), and if more than one
DLL is desirable, separate each DLL with a space.

■ Size
The Size check box allows you to enable testing of allocation of a particular size
or size range. If you check this check box, you must also fill in the SizeStart and
SizeEnd fields.

■ SizeStart
If you have elected to test allocations of specific sizes, you must enter the start
of the size range that you are interested in.

■ SizeEnd
If you have elected to test allocations of specific sizes, you can enter the end of
the size range that you are interested in.

■ Random
This check box allows you to select whether to introduce a random factor in
which instrumentation model is chosen for allocations. For example, checking
this check box allows you to specify that you want some allocations made on the
normal pageheap and some allocations made on the full pageheap. If you check
this check box, you must also specify the random rate in the RandRate field.
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■ RandRate
The RandRate field must be filled in if you also checked the Random check
box. In this field, enter a value between 0 and 100 to indicate the probability
of making allocations on the normal pageheap versus the full pageheap.

■ Backward
Typically, full pageheap guards against buffer overflows by placing guard pages
at the end of each heap block. It is, however, also possible to detect buffer
underrun problems by checking the Backward check box.

■ Unalign
Checking the Unalign check box generates allocations that are not aligned with
the heap manager’s allocation granularity. All heap-based allocations are made
at the granularity level of the heap manager, depending on the architecture you
are running on (8 bytes on x86 and 16 bytes on x64). Say, for example, that you
allocated 5 bytes from the heap. The allocation returned to you is in actuality
8 bytes. The remaining 3 bytes are simply used as padding to align the alloca-
tion on the 8-byte allocation granularity. Checking the Unalign check box
comes in handy when trapping heap block overruns. Because padding was
added, overwriting these padding bytes will not cause an immediate break in
the debugger (because a guard page was not there to trap it). To make sure that
these overruns surface, the Unalign check box returns allocations that have not
been padded to satisfy the heap manager’s allocation granularity. Note that
some components require that allocations be aligned on the heap manager’s
allocation granularities and will not work with the Unalign check box checked.
(A great example is RPC.) 

■ DeCommit
The DeCommit check box, if checked, decommits guard pages when no longer
in use, which results in lower memory usage.

■ Traces
Checking the Traces check box causes the test setting to collect stack traces for
allocations and deallocations. This check box is on by default and should be left
on most of the time, as having the stack traces available when debugging heap-
related problems can be a lifesaver.

■ Protect
If this check box is checked, the test setting protects internal heap structures
from being corrupted. This can be used to detect random corruptions.

■ NoLock
If this check box is checked, the test setting will not do critical section 
verification.
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■ Faults
If this check box is selected, the test setting enables heap fault injection. If you
check this check box, you must also fill in the FaultRate and TimeOut fields.

■ FaultRate
If the Faults check box was checked, you must specify the probability of a fault
occurring in the heap manager by specifying a value between 1 and 10,000.

■ TimeOut
If the Faults check box was checked, you can change the time (in milliseconds)
during process initialization, where fault injection doesn’t occur. This is almost
always required, as fault injection during process initialization might prevent
the process from starting.

■ Addr
This check box allows you to control the address range in which the test setting
works. If you check this check box, you must also specify the AddrStart and
AddrEnd fields.

■ AddrStart
The AddrStart field specifies the starting address of the range that the test set-
ting works under. 

■ AddrEnd
The AddrEnd field specifies the ending address of the range that the test set-
ting works under. 

■ UseLFHGuardPages
This check box, if checked, uses guard pages on the low-fragmentation heap.
The low-fragmentation heap is a relatively new heap that was introduced in
Windows 2003 Server and turned on by default in Windows Vista.  

Before we move on and discuss the various stops available as part of the heap test set-
ting, we need to take a closer look at the difference between normal and full pageheap. 

The basic idea behind the normal pageheap setting is to try to catch some cate-
gories of heap-related problems by using a fill pattern on the heap blocks. When a
heap allocation is made, the heap manager fills the entire allocation with an ‘E0’ fill
pattern. If the allocated memory is not initialized properly and referenced, an access
violation will most likely occur, as the application tries to use the contents of the allo-
cated memory (filled with ‘E0’). For example, if the allocation is supposed to contain
a valid pointer (but does not because of failed initialization), the application might try
to dereference ‘E0E0,’ which is not a valid address, and we will see an access viola-
tion. Subsequently, when an allocation is freed, the heap manager fills the allocation
with the ‘F0’ fill pattern. Any attempt to use that allocation after it has been freed
most likely also causes an access violation. 
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Both of these scenarios, memory usage without initialization and memory usage
after freeing, are very common problems that plague developers daily. 

A final note about fill patterns—in addition to filling the allocation with prede-
fined patterns, Application Verifier prefixes and postfixes each allocated block with a
predefined pattern. This can, in certain circumstances, help detect heap under- and
overrun problems. Let’s say that you had an application that allocated 1Kb of memo-
ry. The application populates that memory allocation with what it deems fit, and at
times populates more than 1Kb of memory, essentially leading to a scenario in which
the allocated block is too small to hold the data. If the application overruns the end
of the allocation by a few bytes, the application might generate a fault when trying to
use this invalid memory. This is by no means a guarantee to catch all invalid heap
usage because you might write to any random memory locations, but it does catch
some of the cases. The overall structure of fill patterns used by this test setting is
shown in Figure A.2.
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The various parts of the block in Figure A.2 are shown in Table A.2.

Table A.2

Block Portion Fill Pattern

Block Header Start Fill Pattern If allocation is not initialized, filled with 0xABCDAAAA
If allocation is freed, filled with 0xABCDAAA9

Block Header None
Block Header End Fill Pattern If allocation is not initialized, filled with 0xDCBAAAAA

If allocation is freed, filled with 0xDCBAAA9
User Allocation Fill Pattern If allocation is not initialized, filled with 0xE0

If allocation is freed, filled with 0xF0
Post Allocation Fill Pattern 0xA0A0A0A0
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At the point of allocation, the heap manager fills the memory allocation with the cor-
rect fill pattern. Usage of the memory that contains fill patterns might or might not
fail, depending on how the memory is used. If an application dereferences these fill
patterns, an access violation occurs. If it simply overwrites the fill patterns with some
data but does not dereference the data, an Application Verifier stop occurs. However,
the Application Verifier stop only occurs at the point of deallocation because this is
the only chance for Application Verifier to validate the integrity of the fill patterns.
Although it’s great that it can verify the integrity of the heap block by fill pattern
checks, most of the time the damage has already been done, and it can be hard to
backtrack and figure out the code path that caused the overwrite. Fortunately, there
exists another type of pageheap, known as full pageheap, that is much more aggres-
sive and causes an access violation at the point of misuse, thereby isolating the local-
ity of the code at the point where it is misbehaving. 

Full pageheap works by employing what are called guard pages that guard the
allocation in question. Every time an allocation is performed, a page of inaccessible
memory is added to the end of the allocation, causing any memory access past the end
of the allocation to fail (immediately). Similarly, a guard page can also be placed at the
beginning of the allocation to catch any memory writes that occur before the actual
allocation. In addition, when a memory block is freed, it is not immediately returned
to the system; rather, it is kept around for a while (in a pool of protected memory),
enabling the system to trap any code that might try to access the allocation after it has
been deleted. It shouldn’t come as a surprise that using this test setting comes with a
great cost. The cost is that of additional memory (because of guard pages) used for
each allocation made in the application. Actually, the memory pressure is so high it is
recommended that you have at least 256MB of RAM and a 1GB pagefile to make
good use of this test. Having said that, when it comes to memory-related problems,
this is the most exhaustive test setting one could imagine, and it catches a lot of prob-
lems early on. In addition to guard pages, full pageheap uses fill patterns. The layout
of the fill pattern is shown in Figure A.3, and the actual fill patterns are shown in
Table A.3.

Block
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BLOCK HEADER USER ALLOCATION FILL PATTERN

Block
Header
End Fill
Pattern

Post
Allocation

Fill
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Inaccessible
Page

Figure A.3
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Table A.3

Block Portion Fill Pattern

Block Header Start Fill Pattern If allocated, filled with 0xABCDBBBB
If allocation is freed, filled with 0xABCDBBA

Block Header None
Block Header End Fill Pattern If allocated, filled with 0xDCBABBBB

If allocation is freed, filled with 0xDCBABBBA
User Allocation Fill Pattern If allocation is not initialized, filled with 0xC0

If allocation is freed, filled with 0xF0
Post Allocation Fill Pattern 0xD0D0D0D0

The biggest advantage of this test setting in comparison to the previous one is that the
guard pages guarantee that an access violation occurs at the point of memory usage
(and not just at memory allocation and freeing). This greatly simplifies tracking down
memory-related problems because you catch the code in action rather than post-
mortem.

The heap test setting contains a number of stop codes that are monitored during
execution of the process. Table A.4 details the different stop codes. By default, all
heap-related stop codes cause a break in the debugger if triggered.

Table A.4

Stop Code Test Description

00000001 Unknown error This stop triggers when a heap error occurred that can-
not be classified in any other way.

00000002 Buffer overrun In cases in which full pageheap is enabled, this stop
triggers when the application writes past the end of a
buffer and hits the guard page.

00000003 Unserialized heap Heaps that are not serialized should not be accessed from
concurrent threads. This stop triggers if two or more
threads access a nonserialized heap at the same time.

00000004 Large allocations This stop triggers if the allocation size specified to the
HeapAlloc and HeapReAlloc API(s) is unreasonably
high. 
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00000005 Invalid heap handles This stop triggers if an invalid handle is specified to
one of the heap API(s).

00000006 Mismatched heaps This stop triggers if a block of memory allocated in
one heap is freed in another heap.

00000007 Over freed blocks This stop triggers if a heap block is freed twice.
00000008 Generic heap This error is caused by a heap corruption that cannot 

corruption be categorized.
00000009 Destroying the This stop triggers if an application tries to destroy the 

default process heap default process heap.
0000000A Heap manager This stop triggers if the heap manager code raises an

access violation.
0000000B Generic heap This stop triggers if the source of the heap corruption 

corruption is undetermined. This can happen when passing an
address that points to nonaccessible memory to the
heap-free API.

0000000C Generic heap This stop triggers if the source of the heap corruption 
corruption is undetermined. This can happen when passing an

address that points to nonaccessible memory to the
heap-free API. This can also happen if you are double
freeing memory.

0000000D Use after delete This stop triggers if a block of memory has been freed
and is subsequently written to.

0000000E Use after delete This stop triggers if a block of memory has been freed
and is subsequently written to. This stop code in com-
parison to stop code 0000000E typically happens in
normal pageheap mode, which uses fill patterns to
detect heap problems.

0000000F Buffer overrun This stop will be triggered when a buffer overrun
occurs in normal pageheap mode by checking the fill
patterns employed by normal pageheap.

00000010 Buffer underrun This stop is triggered when a buffer underrun occurs and
the start stamp of the heap block header is corrupted.

00000011 Buffer underrun This stop is triggered when a buffer underrun occurs and
the end stamp of the heap block header is corrupted.
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Table A.4 (continued)

Stop Code Test Description
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00000012 Buffer underrun This stop is triggered when a buffer underrun occurs
and the prefix of the heap block header is corrupted.

00000013 First chance This stop is trigged when a first-chance access 
access violation violation occurs.

00000014 Process heaps This stop is triggered when a call to GetProcessHeaps
causes the heap manager to detect inconsistencies in
the heap manager structures.

Full Pageheap or Normal Pageheap?

The pageheap test setting that uses fill patterns only is also referred to as normal pageheap,
whereas its more powerful sibling, full pageheap, uses guard pages to trap programming
mistakes when they happen. Armed with these two options, when should you choose one
over the other? Full pageheap has a much higher chance of catching problems and makes it
much easier to track down problems. On the other hand, it uses so much memory that the
system can become slow enough that some problems (such as synchronization-related prob-
lems) do not even get a chance to occur. Typically, a good strategy is to always have nor-
mal pageheap during development, and at regular checkpoints, enable the more exhaustive
setting to get coverage. To alleviate some pressure from the more exhaustive test setting, you
can also narrow down the source of the potential memory culprit code by setting it to only
perform the tests on, for example, a per-DLL basis or allocation-size basis.

Locks 

The Windows operating system is a preemptive operating system, which in essence
means that any given thread running in a system must be ready to yield processor con-
trol to another thread. This presents a very common dilemma for applications with more
than one thread running simultaneously. The dilemma lies in the fact that any resources
that threads share between themselves must be strictly controlled to avoid the problem
of multiple threads accessing (reading and writing) the resource simultaneously. The
process of controlling access to a resource is called synchronization. One very common
technique used by applications is to use a built-in synchronization object called a critical
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section. A critical section ensures that only one thread at a time can access any resource
protected by the critical section. Prior to accessing a shared resource, a thread will enter
the critical section, use the resource, and then release the critical section. If another
thread tries to enter a critical section while it has been entered by another thread, the
thread blocks on the critical section until it has been released; at which point, the thread
is woken up and allowed to enter it. Before a critical section can be used, it must be ini-
tialized; at which point, the operating system allocates the memory required to success-
fully initialize the object. When the critical section is no longer needed, it must be
deleted to avoid memory leaks. A thread that has entered a critical section can reenter it
any number of times as long as there is an equivalent call to release the critical section
for each time it has been entered. Needless to say, critical sections are very often mis-
used and cause problems, ranging from memory leaks to deadlocks simply due to not fol-
lowing the proper protocol. The Locks test setting provides a range of checks when it
comes to critical sections and can save valuable time otherwise spent on debugging con-
currency problems. Table A.5 lists all the tests that this test setting provides. By default,
all lock-related stop codes cause a break in the debugger if triggered.

Table A.5

Stop Code Test Description

00000200 Thread state does not This stop is triggered when a thread is terminated, 
allow holding critical suspended, or is in a state in which it cannot hold a 
sections critical section.

00000201 Active critical sections If a critical section is found to be active when a DLL
when unloading DLL is unloaded, Application Verifier stops execution. 

00000202 Freeing of a heap When a heap allocation is freed and contains an 
block that contains an active critical section, Application Verifier stops 
active critical section execution. This test avoids the potential leak of a

critical section.
00000203 Initialize only once A critical section can be initialized only once.

Initializing a critical section more than once is unde-
fined behavior and represents errors in the code. 

00000204 Forgetting to free To properly delete or free a critical section, the 
the critical section DeleteCriticalSection API must be used. This

stop is triggered if a block of memory that contains a
critical section has been freed but the critical section
was not deleted using the DeleteCriticalSection
API.

00000205 Invalid DebugInfo This stop is triggered if the DebugInfo field of 
pointer the critical section points to freed memory.
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00000206 Verify correctness Any time a critical section is entered, the thread 
of owner thread ID ID is recorded. If the thread ID is invalid in the cur-

rent context of execution, Application Verifier stops
execution.

00000207 Verify correctness of Threads that enter a critical section more than once 
the recursion count increment the recursion count of a critical section. If

the recursion count is not valid in the current context
of execution, Application Verifier stops execution.

00000208 Delete without If a critical section is deleted without being 
initialization initialized, Application Verifier stops execution.

00000209 Release count matches If a thread releases a critical section more times than
it entered it, Application Verifier stops execution.

00000210 Use prior to If a critical section is used without being 
initialization initialized or used after it was deleted, Application

Verifier stops execution.
00000211 Reinitialization If a critical section is reinitialized by the current

thread, Application Verifier stops execution.
00000212 Invalid deletion of When a block of memory containing an active

critical section critical section is freed using VirtualFree, but 
(VirtualFree) the critical section has not been freed via the

DeleteCriticalSection API, this stop triggers.
00000213 Invalid deletion of When a block of memory containing an active critical 

critical section section is unmapped using the UnmapViewOfFile
(UnmapViewOfFile) API, but the critical section has not been freed via the

DeleteCriticalSection API, this stop triggers.
00000214 Leaving an unowned This stop is triggered when a thread calls

critical section LeaveCriticalSection on a critical section that it
does not own.

00000215 Private locks usage This stop is triggered if a thread tries to enter a private
critical section defined in a different DLL.

All the tests listed in Table A.5 are common programming errors that you might
encounter when working with critical sections. Without this test setting, most of these
errors manifest themselves as memory leaks, dead locks, live locks, and so on and can
cause hours of frustrating debugging to figure out. This test setting catches most of
the problems at the point when they occur rather than at random points postmortem.
Whenever you write code that has to manage synchronization across multiple threads,
this test setting should be enabled.
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Memory

The memory test setting traps numerous programming mistakes related to working
with memory. Problems, such as passing invalid parameters to the memory API(s),
failed object initialization, and module unloading, are all covered in the wide range of
stop codes. Table A.6 details all the stop codes available for this test setting. By
default, all memory-related stop codes cause a break in the debugger if triggered.

Table A.6

Stop Code Test Description

00000600 VirtualFree or This stop triggers when Application Verifier 
Dll unload detects a VirtualFree call with an invalid address or a

DLL unload with an invalid start address.
00000601 VirtualAlloc This stop triggers when Application Verifier detects a

VirtualAlloc call with an invalid start address or size
of allocation.

00000602 MapViewOfFile This stop triggers when Application Verifier detects a
MapViewOfFile call with an invalid base address or
size of the mapping.

00000603 IsBadXXXPtr This stop triggers when Application Verifier detects an
IsBadXXXPtr call with an invalid address.

00000604 IsBadXXXPtr This stop triggers when Application Verifier detects an
IsBadXXXPtr call with a memory location that is free.

00000605 IsBadXXXPtr This stop triggers when Application Verifier detects an
IsBadXXXPtr call with a memory address that contains
a guard page. This can be especially bad in cases in
which the address points to a stack.

00000606 IsBadXXXPtr This stop triggers when Application Verifier detects an
IsBadXXXPtr call with a null address. 

00000607 IsBadXXXPtr This stop triggers when Application Verifier detects an
IsBadXXXPtr call with an invalid address or size of the
memory buffer.

00000608 Dll unload This stop triggers when a DLL is being unloaded with
an invalid start address. 

00000609 VirtualFree This stop triggers when a VirtualFree call is used on an
address that is actually part of the current thread’s stack.
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0000060A VirtualFree This stop triggers when VirtualFree is called with an
incorrect value for the FreeType parameter.

0000060B VirtualFree This stop is triggered when VirtualFree is called with
an address that has already been freed.

0000060C VirtualFree This stop is triggered when VirtualFree is called with
MEM_RELEASE, and the size parameter is greater than 0.

0000060D DllMain This stop is triggered when a DllMain implementation 
exceptions raises an exception. 

0000060E Thread exceptions This stop is triggered when a thread raises an exception.
0000060F IsBadXXXPtr This stop is triggered when a call to IsBadXXXPtr

results in an exception being thrown. 
00000610 VirtualFree This stop is triggered when VirtualFree is called with

MEM_RESET and null as the first parameter.
00000612 HeapFree This stop is triggered when a HeapFree call is made

with a pointer that is part of the current thread’s stack.
00000613 UnmapViewOfFile This stop is triggered when an UnmapViewOfFile call

is made for a block of memory that is part of the current
thread’s stack.

00000614 Incorrect address This stop is triggered if an invalid address is passed to
certain API(s). For example, passing null to
RtlInitializeResource is incorrect.

00000615 Incorrect address This stop is triggered if an invalid address is passed to
certain API(s). For example, passing null to
EnterCriticalSection is incorrect.

00000616 Non executable This stop is triggered when an application tries to run 
code code from a nonexecutable memory address. 

00000617 Failed buffer This stop is triggered when an exception is raised 
initialization while initializing an output parameter passed to the

Win32 or CRT API(s). This usually indicates that the
associated size parameter is incorrect.

00000618 HeapSize This stop is triggered when calling the HeapSize API
with an address to a block of memory that has already
been freed.
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00000619 VirtualFree This stop is triggered when a call is made to VirtualFree
with an invalid base address. Invalid, in this case, means
that the base address specified is not the same as the base
address returned from the corresponding VirtualAlloc
or VirtualAllocEx API(s). 

0000061A UnmapViewOfFile This stop is triggered when a call is made to
UnmapViewOfFile with an invalid base address. Invalid,
in this case, means that the base address specified is not
the same as the base address returned from the correspon-
ding MapViewOfFile or MapViewOfFileEx API(s).

0000061B Thread pool This stop is triggered when the callback function 
thread exceptions for a thread pool thread raises an exception.

0000061C Nonexecutable This stop is triggered when an application tries to run 
code code from a nonexecutable memory address.

0000061D Executable heap This stop is triggered when an application tries to create
an executable heap.

0000061E Executable This stop is triggered when an application tries to 
memory allocate executable memory.

The memory test setting has one adjustable property called ExecWritePage that
allows you to control whether the test setting should check whether an application is
creating or allocating executable and writable memory.

ThreadPool

The native Windows thread pool is a powerful and convenient component to use when
an application requires multiple threads. Rather than creating your own thread pool
and ensuring that it works optimally, you can let the operating system make decisions
on when and how to create threads for you. After all, the operating system has the
most knowledge to make these hard decisions. With using the thread pool, however,
comes a lot of responsibility. There have been numerous hard-to-track-down bugs
stemming from improper usage of the thread pool. For example, changing a thread’s
state and not resetting it before giving the thread back to the thread pool can lead to
serious problems. This test setting traps a lot of these problems and notifies you about

Table A.6 (continued)

Stop Code Test Description
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potential problems in your code. Table A.7 details the stops that are available for this
test setting. By default, all thread pool-related stop codes will cause a break in the
debugger if triggered.

Table A.7

Stop Code Test Description

00000700 Changed thread If an application changes the priority of a thread and 
priority does not reset it before handing it back to the thread

pool, this stop triggers.
00000701 Changed thread If an application changes the affinity of a thread and 

affinity does not reset it before handing it back to the thread
pool, this stop triggers.

00000702 Unprocessed If a thread has any unprocessed messages left before 
messages returning to the thread pool, this stop triggers.

00000703 Active If a thread has any live and active windows when 
windows returned to the thread pool, this stop triggers.

00000704 Exit or termination If either ExitThread or TerminateThread is called on 
of thread a thread pool thread, this stop triggers.

00000705 Impersonation If the thread pool thread impersonates another user
but does not revert the impersonation before returning
the thread to the thread pool, this stop triggers.

00000706 Dedicated thread In some situations, certain API(s) require to be called
on a persistent or dedicated thread (for example, the
RegNotifyChangeKeyValue API), and unless you
requested to be given a dedicated thread from the
thread pool, this stop triggers. 

00000707 Transaction handle If an application forgets to reset the transaction handle
before returning the thread to the thread pool, this
stop triggers.

00000708 COM initialization When initializing COM on a thread, care must be
taken to uninitialize COM before the thread exits. This
stop triggers if there are unbalanced calls to COM ini-
tialize and uninitialize.

The ThreadPool test setting also has one associated property named AsyncCheck,
which enables the verifier to check asynchronous calls that require a persistent
thread. To turn this setting on, specify 1. By default, this property is set to 0 (off).
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TLS

Thread local storage (TLS) is a common mechanism used to allocate local thread-
specific data. To allocate TLS data, an application uses the TLS family of API(s). To
ensure proper usage of these API(s), this test setting traps calls to the API(s) and
stops execution if invalid usage is encountered. Table A.8 details the stops that are
part of this test setting. By default, all TLS-related stop codes cause a break in the
debugger if triggered.

Table A.8

Stop Code Test Description

00000350 TlsIndex leak If a DLL that allocated a TLS index is unloaded
without freeing the index, this stop triggers to avoid
TLS index leaks.

00000351 Corrupted TLS state If the data structure used to store the TLS slots
becomes corrupted, this stop triggers. This is most
likely because of a random memory corruption.

00000352 Invalid TLS If an application uses a TLS index that is considered 
index used invalid, this stop triggers. A common source of this

problem is to use a TLS index that has already been
freed.

FilePaths

Applications that make use of system file paths (such as getting the windows directo-
ry or the system directory) can suffer problems associated with using the wrong paths.
This test setting makes sure that system paths retrieved via the Win32 APIs are cor-
rect. The APIs that this test setting hooks are listed in Table A.9. By default, all file
path-related stop codes will not cause a break in the debugger if triggered, but rather
they will log the stop code in the log file with the offending stack trace. 
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Table A.9

Stop Code Test Description

00002400 Common program This stop is triggered if the application used a 
path common Program directory path that was not obtained

using the proper API(s).
00002401 Common Start menu This stop is triggered if the application used a 

directory path common Start menu directory path that was not
obtained using the proper API(s).

00002402 Programs directory This stop is triggered if the application used a program’s 
path directory path that was not obtained using the proper

API(s).
00002404 Start Menu This stop is triggered if the application used a Start 

directory path Menu Directory Path that was not obtained using the
proper API(s).

00002405 Windows Temp path This stop is triggered if the application used a
Windows Temp path that was not obtained using the
proper API(s).

00002406 Windows directory This stop is triggered if the application used a Windows 
path directory path that was not obtained using the proper

API(s).
00002407 System Windows This stop is triggered if the application used a System 

directory path Windows directory path that was not obtained using
the proper API(s).

00002408 System directory This stop is triggered if the application used a System 
path directory path that was not obtained using the proper

API(s).
0000240A My Documents This stop is triggered if the application used a My 

directory path Documents directory path that was not obtained using
the proper API(s).

HighVersionLie

A very common programming mistake that leads to broken applications is to rely on a
hard-coded Windows version number. Far too often, programmers, who require a spe-
cific version of Windows for their code to function, check against that version and that
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version alone. The net result of that approach is that when a new version of Windows
ships, the application simply fails because it didn’t take into account the increase in ver-
sion number (although the application would have run just fine). To prevent situations
similar to this, this test setting allows the application developer to test his code against
“future” versions of Windows. This works by Application Verifier simply hooking calls to
the GetVersion and GetVersionEx APIs and returning a version that, by default,
supersedes the latest version of Windows. For example, running a simple test applica-
tion that calls GetVersionEx on the Windows XP Professional Service Pack 2 yields the
following results:

Local var @ 0x7fea4 Type _OSVERSIONINFOEXA

+0x000 dwOSVersionInfoSize : 0x9c

+0x004 dwMajorVersion    : 5

+0x008 dwMinorVersion    : 1

+0x00c dwBuildNumber     : 0xa28

+0x010 dwPlatformId      : 2

+0x014 szCSDVersion      : [128]  “Service Pack 2”

+0x094 wServicePackMajor : 2

+0x096 wServicePackMinor : 0

+0x098 wSuiteMask        : 0x300

+0x09a wProductType      : 0x1 ‘’

+0x09b wReserved         : 0 ‘’

where the dwMajorVersion (5) and dwMinorVersion (1) indicate Windows XP (see
GetVersionEx in MSDN for a list of all Windows versions). Turning the
HighVersionLie test on and running the application again yields the following results:

Local var @ 0x7fea4 Type _OSVERSIONINFOEXA

+0x000 dwOSVersionInfoSize : 0x9c

+0x004 dwMajorVersion    : 7

+0x008 dwMinorVersion    : 3

+0x00c dwBuildNumber     : 0xe10

+0x010 dwPlatformId      : 2

+0x014 szCSDVersion      : [128]  “”

+0x094 wServicePackMajor : 2

+0x096 wServicePackMinor : 0

+0x098 wSuiteMask        : 0x300

+0x09a wProductType      : 0x1 ‘’

+0x09b wReserved         : 0 ‘’

This time, the major and minor versions are nonexistent Windows versions and the
application should handle this situation accordingly.
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By default, Application Verifier will use 7 as the Major version, 3 as the minor ver-
sion, and 0xe10 as the build number. You can very easily configure these settings (and
others) by changing the properties for the test setting. Table A.10 explains the avail-
able properties.

Table A.10

Property Description

Major version HighVersionLie uses the value of this property as the major version.
Minor version HighVersionLie uses the value of this property as the minor version.
Build number HighVersionLie uses the value of this property as the build number. 
Service pack HighVersionLie uses the value of this property as the major service 
major pack version. 
Service pack HighVersionLie uses the value of this property as the minor service 
minor pack version.
Suite mask HighVersionLie uses the value of this property as the suite mask. 
Product type HighVersionLie uses the value of this property as the product type.
CSD version HighVersionLie uses the value of this property as the CSD version.

As you can see, in addition to changing the major, minor, and build numbers, you can
change a host of other options. Typically, the standard settings are good enough, as
most of the time, you want to make sure that your application does not break with
new releases of Windows.

The stop codes available for this test setting are all placeholders and serve to indi-
cate that the test setting has been enabled.

InteractiveServices

Services typically run under an account with high privileges. As such, any security com-
promises typically have a much bigger effect on the system in comparison to attacks on
processes running under less privileged accounts. Attacks can, for example, be carried
out using the graphical user interface subsystem of Windows. This type of attack is also
known as a shatter attack. One common mechanism is for the less privileged attacking
process to send certain Windows messages to a more privileged application and gain
unprivileged access (for example, information disclosure or elevation of privilege).
Services are allowed to send user interface elements to other interactive applications or
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simply run as an interactive service themselves. Because special care must be taken to
avoid exploits in these types of services, this test setting enables the user to quickly tell
if the service is interactive or sends user interface elements (such as Windows mes-
sages) to other applications. Table A.11 details the stops that are part of this test setting.
By default, all stop codes for this test setting log the results of the test to the log file and
include the stack trace.

Table A.11

Stop Code Test Description

00002800 Interactive service This stop triggers when an application creates an 
creation interactive service using the CreateService API.

Interactive services can be a security risk.
00002801 Local system The application ran as an interactive service under 

interactive service the local system account, presenting a security risk.
00002802 Usage of Using the MessageBox API to send notifications to 

MessageBox API the interactive desktop might be a security threat. 
00002803 Usage of Using the MessageBoxEx API to send notifications to 

MessageBoxEx API the interactive desktop might be a security threat. 
00002804 Interactive Desktop The application called OpenWindowStation and

OpenDesktop to send UI messages to the interactive
desktop. This can be a security risk.

00002805 Interactive Desktop The application called OpenDesktop in order to
send UI messages to the interactive desktop. This
can be a security risk.

00002806 Interactive Desktop The application called OpenWindowStation and
OpenInputDesktop to send UI messages to the
interactive desktop. This can be a security risk.

00002807 Interactive Desktop The application tried to get the address of the 
function pointer OpenDesktop function in an attempt to send UI

messages to it.

KernelModeDriverInstall 

On Windows, drivers run in kernel mode; therefore, they have access to system-
critical data. When drivers fail, it can have a significant impact on the system and, in
the worst case, blue screen the system. To make sure that drivers are installed using
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the proper channels, developers must use the correct API(s). This test setting ensures
that applications use the proper API(s) when installing drivers. Table A.12 details the
verifier stops that are part of this test setting. By default, all kernel mode driver
install-related stop codes will not cause a break in the debugger if triggered; rather,
the stop code is logged in the log file with the offending stack trace.

Table A.12

Stop Code Test Description

00002305 Driver install CreateServiceA was called to install a kernel mode driver. 
00002306 File system CreateServiceW was called to install a file system 

filter driver filter driver.
00002307 File system CreateServiceA was called to install a file system 

filter driver filter driver.
00002308 Driver install CreateServiceW was called to install a kernel mode driver.
00002309 Driver install The application installed a driver without using the proper 

API API (CreateService).
0000230A File system The application installed a file system driver without 

driver install using the proper API (CreateService).
0000230B Driver install The application installed a driver without using the proper

API API (CreateService), and no image path was specified.
0000230C File system The application installed a file system driver without 

driver install using the proper API (CreateService), and no image path
was specified.

0000230D Driver install The application installed a driver without using the proper 
API API (CreateService), and no service type was specified.

Low Resource Simulation

To ensure the robustness of an application, the application must not only be capable of
running properly under a normal system load, but also when resources are running low.
The canonical example of this is ensuring that an application behaves properly when the
system it is running on is low on memory. Under these circumstances, one of the prob-
lems with ensuring the robustness of an application is simulating an environment in
which resources are low. The Low Resource Simulation test setting aids in testing these
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scenarios by allowing you to define the conditions under which low resource faults
should occur during execution. The test setting does not have stops defined for it, but
instead allows you to modify a number of test setting parameters. Table A.13 details the
various parameters.

Table A.13

Property Description

Include Controls which DLLs faults should occur in. DLLs should be speci-
fied without their paths and one per row. A * can be used to indicate
that all modules should be included in the fault injection.

Exclude A list of DLLs to exclude from the fault injection. DLLs should be
specified one per row.

Timeout Indicates how many milliseconds should elapse at process startup
before fault injection commences.

WAIT A number between 0 and 100 that indicates the probability that the
WaitForXXX API(s) will fail because of fault injection. 

HEAP_ALLOC A number between 0 and 100 that indicates the probability that the
HEAP_ALLOC API(s) will fail because of fault injection. 

VIRTUAL_ALLOC A number between 0 and 100 that indicates the probability that the
VIRTUAL_ALLOC API(s) will fail because of fault injection. 

REGISTRY A number between 0 and 100 that indicates the probability that the
REGISTRY API(s) will fail because of fault injection. 

FILE A number between 0 and 100 that indicates the probability that the
FILE API(s) will fail because of fault injection. 

EVENT A number between 0 and 100 that indicates the probability that the
EVENT API(s) will fail because of fault injection. 

MAP_VIEW A number between 0 and 100 that indicates the probability that the
MAP_VIEW API(s) will fail because of fault injection. 

OLE_ALLOC A number between 0 and 100 that indicates the probability that the
OLE_ALLOC API(s) will fail because of fault injection. 

STACKS If set to TRUE, indicates that the stack growing feature should be dis-
abled to simulate low resources. If set to FALSE, stack growth occurs.
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LuaPriv

The LuaPriv test setting stands for Limited User Account Predictor and serves two
purposes:

■ Predicts whether an application is capable of running with a reduced privilege
set (such as a normal user).

■ Determines possible problems when an application runs with a reduced privi-
lege set (normal user).

Table A.14 lists all the stop codes defined by this test setting. By default, all limited
user account-related stop codes don’t cause a break in the debugger if triggered.
Instead, the stop code is logged in the log file with the offending stack trace.

Table A.14

Stop Code Test Description

00003300 Name canonicalization This stop triggers when Application Verifier attempts 
failure to canonize the name of an object but fails to do so.

00003301 Unable to find This stop triggers when Application Verifier fails to 
canonical name find the canonical name of an object.

00003302 Failure to open This stop triggers when Application Verifier fails to get 
object information about an object because of errors when

attempting to open the object.
00003303 HKEY_CURRENT_ This stop triggers when Application Verifier is unable 

USER to interpret the HKEY_CURRENT_USER registry hive. As
a result, registry keys located under that registry hive
must be flagged as restrictive.

00003304 USERPROFILE This stop is triggered if the USERPROFILE environ-
ment variable is not found. This might lead
Application Verifier to believe that the current user’s
profile was not available and therefore list some of the
files and directories as being restrictive. 

00003305 Safe object This stop is triggered due to Application Verifier
believing that the object was considered safe.

00003306 Listed object This stop is triggered by Application Verifier when an 
namespace object is encountered that is in the listed namespace.

This namespace is not writable by standard users.
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00003307 No namespace The object was created without specifying a name-
space, causing it to be created in a global namespace,
which is not writable by standard users.

00003308 File/directory This stop is generated when Application Verifier tries 
location to locate a file or directory but fails in doing so.

00003309 Failure to open Application Verified fails to open the parent object in 
parent object trying to determine if standard users would be able to

create child objects. 
0000330A Running as Application Verifier detects that the application was 

administrator being run as an administrator. This is simply informa-
tive information to make sure that scenarios being
tested by running as a standard user are not inadver-
tently being run as administrators.

0000330B Failed SID Application Verifier fails to convert a human-readable 
conversion form of a security identifier (SID) to the internal

Windows form. 
0000330C GetTokenInformationAn application calls the GetTokenInformation API

requesting the listed class of information. Although this
might work as a standard user, it generally implies that
the application should run as an administrator.

0000330D Privilege does not The privilege being examined does not exist on the 
exist version of Windows that the application is being run on.

0000330E Privilege lookup Application Verifier fails in looking up a specified 
failure privilege (via the LUID). 

0000330F Successful privilege The application requests and receives a privilege that 
request is not granted to standard users. 

00003310 Failed privilege The application fails in requesting a privilege that is 
request not granted to standard users. 

00003311 Successful access to The application is started as a standard user with 
listed privilege access to the listed privilege.

00003312 Failed access to the The application is started as a user with no access to 
listed privilege the listed privilege, although privilege lookup was suc-

cessful. 
00003313 The application is started as a user with no access to

the listed privilege.

Table A.14 (continued)

Stop Code Test Description
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00003314 Failed registry Application Verifier tries to query a registry value 
query but is unsuccessful.

00003315 INI file registry The application uses an INI file that mapped to a 
mapping registry key, and the syntax of the INI file is unknown.

00003316 Failed profile access The application tries to access a given profile but fails.
00003317 Granted object The application is granted access to the specified 

access object. Standard users should be able to access the
specified object.

00003318 Granted object The application was granted access to the specified 
access object. Standard users might not be able to access the

specified object.
00003319 Failed security Application Verifier attempts to convert a security 

descriptor conversion descriptor to human-readable form but fails in doing so.
0000331A Object access failure Application requests access to an object and is denied.
0000331B Object access Application requests access to an object that only

grants access to trusted users.
0000331C Object access Application requests access to an object that only

grants access to trusted users. This message is always
followed by other messages.

0000331D Object access Application requests access to an object that only grants
access to privileged users and owners of the object. 

0000331E Object access Application requests access to an object that only
grants access to at least one nonprivileged user.

0000331F Object access Application requests access to an object that does not
grant access to anyone.

00003320 Security descriptor Application Verifier tries to analyze an object’s 
analysis security descriptor by dividing it into individual pieces

but fails in doing so.
00003321 Security descriptor Application Verifier tries to analyze an ACL in the 

analysis object’s security descriptor discretionary access list but
fails in doing so. 

00003322 Object access The application requests maximum allowed access to
the object, and Application Verifier decides to analyze
the application as if all object privileges are actually
required.
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00003323 Object access The application requests maximum allowed access to
the object Application Verifier attempts to determine
which privileges are actually required by the applica-
tion but fails in doing so.

00003324 Unknown permissions The application requested permissions that are
unknown to Application Verifier.

00003325 Profiles The application is granted access to the profile.
00003326 Security Identifiers The application queries Windows whether a listed

security identifier is part of a user’s token. This opera-
tion is normally restricted to users in the listed group.

00003327 Security Identifiers The application queries Windows whether a listed
security identifier (SID) is part of a user’s token
although the SID is not identifiable. 

00003328 Profiles The application called the WriteProfile API with
input that might fail when run as a standard user.

DangerousAPIs

Many of the API(s) in Win32 are extremely powerful. They are powerful to the extent
that great care must be taken when using the API(s) to avoid problems that might
arise when using them. This test setting checks for calls to these dangerous API(s).
Table A.15 details the stops available for this test setting. By default, all dangerous
API-related stop codes cause a break in the debugger if triggered.

Table A.15

Stop Code Test Description

00000100 TerminateThread This stop is triggered if the application terminates a thread
using the TerminateThread API. TerminateThread has
a high chance of causing problems, such as deadlocks and
data corruption.

Table A.14 (continued)

Stop Code Test Description
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00000101 Stack commit size This stop is triggered if the stack size of an application is
set to not allow stack growth in cases in which stack over-
flow exceptions might be raised (low memory conditions).

00000102 ExitProcess This stop is triggered if the application terminates a
process with several threads running (using the
ExitProcess API). ExitProcess internally uses the
TerminateThread API, which can cause stability prob-
lems (see stop code 00000100).

00000103 LoadLibrary This stop is triggered if the application calls LoadLibrary
in a DllMain function. Calling this API from the DllMain
function can result in crashes or deadlocks.

00000104 FreeLibrary This stop is triggered if the application calls FreeLibrary
in a DllMain function. Calling this API from the DllMain
function can result in crashes or deadlocks.

The DangerousAPIs test setting has one property (DllMainCheck) that can be
changed. If this property is set to TRUE, the test setting traps any calls from DllMain
to the LoadLibrary or FreeLibrary APIs. 

DirtyStacks

Uninitialized stack variables are a common source of bugs. This holds especially true
for uninitialized stack pointers. To ensure that these types of bugs are caught, this test
setting periodically fills the unused portion of the stack with a specific pattern. When
the application attempts to use the uninitialized variable, it might result in an access
violation due to accessing memory initialized with a fill pattern that is considered an
invalid memory access. This test setting results in exceptions being thrown rather
than a hard stop. 

TimeRollOver

When working with the GetTickCount and TimeGetTime API(s), it is crucial that
the developer handle the cases in which a rollover occurs. In order to test the rollover
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cases, however, it must be possible to quickly trigger the rollover to occur. This test
setting enables you to control when the rollover should occur. No actual stops exist
for this test setting. Instead, a test setting property exists (named Delay) that can be
set to indicate the number of seconds to delay before a rollover occurs.

PrintAPI and PrintDriver

Numerous problems can surface when working with the Print API(s). Both the
PrintAPI test setting and the PrintDriver test setting enable a slew of tests to
ensure proper usage of the API(s).
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Numerics
32-bit applications, WOW64, running in,

598-602
64-bit debugging, 603-624

Application Verifyer, 604
current call stacks, discovering, 609-613
current register values, finding, 605-607
custom debugger extensions, writing, 629
Debugging Tools for Windows, 603-604
Ethereal, 605
interprocess communication, 628-629
Leak Diagnostic tool, 603
local variable values, discovering, 613-614
memory corruption, 625-626
process memory, inspecting, 615
processors, code processing, 609
security, 626-628
WOW64 commands, 607-609

64-bit operating systems, 595-598
32-bit applications, running in, 598-602

64-bit processors, 595-596

A
access, breakpoints, 170-171
access control, Windows Vista, side effects,

712-714
access tokens, 325-330

client server applications
impersonation levels, 337-338
remote authentication, 335-337
security support provider interface 

support, 335-337
token propagation, 334-338

impersonation tokens, dumping, 351
process access tokens, obtaining, 329
thread impersonation tokens, 

displaying, 329

access violation, dump files, analysis, 
646-647

Access violation enumerating registry values
listing (5-12), 232-234

AccessCheck function, 323-324
accessing cell debugging information, 

399-408
ACE (access control entry), 320
ACLs (Access Control Lists), 320-322
activation checks, DCOM, 355-363
activation failures, DCOM, Windows XP2,

371-376
AddEnd option (Heaps test setting), 752
Addr option (Heaps test setting), 752
!address command, 90-91

listing (2-39), 91
!address debugger command example 

listing (2-38), 90
!address extension command, 473
ADDRESS objects, naming conventions,

390
address space layout, Windows Vista, 

716-717
AddrStart option (Heaps test setting), 752
ADPlus, 632

dump files, generating, 639-641
AeDebug key, 638

auto registry value, 638
debugger registry value, 638-639

agestore.exe, 8
algorithms, LIFO (last in first out) 

semantics, 209
aliases, events, 134
All thread stacks currently running in the

process listing (10-7), 512
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allocations
heaps

back end allocators, 263-270, 272-281
front end allocators, 261-263

memory blocks, 269
allocators, LeakDiag tool, 4-5
analysis

custom analysis scripts, authoring, 697-699
dump files

access violation, 646-647
handle leaks, 647-652

handle leaks, Debug Diagnostic tool, 
693-697

memory leaks, Debug Diagnostic tool, 
693-697

network traffic, 413-421
analysis process

memory corruption, 201
avoidance strategies, 209
detection tools, 208
instrument source code, 208
source code analysis, 202-208
state analysis, 201-202

problem synchronization, 505-509
resource leaks, 428-433

analysis scripts, authoring, Debug
Diagnostic Tool, 697-699

!analyze extension command, 691, 699
fault follow-up, 706-708
faulty applications, analyzing, 700
output, 701, 703
results, analyzing, 701-706

anti-debugging techniques, 159
Application crash seen under the debugger

listing (6-5), 283-286
Application Errors section (Dr. Watson 

dialog box), 656-657
Application manifest requesting a high

integrity level listing (15-9), 724
Application option (Dr. Watson dialog box),

656-657
Application that calls a function in a DLL

listing (5-17), 245-247
Application that establishes a connection to

a data source listing (5-9), 223

Application Verifier, 10-16, 604
test settings, 747

DangerousAPIs, 774-775
DirtyStacks, 775
Exceptions, 747
FilePaths, 764-765
Handles, 747-748
Heaps, 749-757
HighVersionLie, 765-767
InteractiveServices, 767-768
KernelModeDriverInstall, 768-769
Locks, 757-759
Low Resource Simulation, 769-770
LuaPriv, 771-774
Memory, 760-762
PrintAPI, 776
PrintDriver, 776
ThreadPool, 762-763
TimeRollOver, 775
TSL, 764

Application verifier reported heap block 
corruption listing (6-8), 295-300

Application Verifyer, heap block corruption
reports, 295-299

applications
crashes, 200
deadlocks, 510-516, 519
exceptions, 516-522
handle leaks, 436-460
multithreading, 550
resource leaks, memory leaks, 460-492
unpredictable behavior, 200

architecture, Windows Error Reporting,
662-682

assembly code
ProcA procedure, 214-216
Sum function, 217-219

Assembly code for ProcA listing (5-5), 
215-216

Assembly code of the ThreadProcedure
function listing (5-4), 213

Assembly code representing the Function5
function listing (12-7), 610

Assembly instructions right after our call to
Sum listing (5-7), 219
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Assembly listing generated for the function
from Listing 324 listing (3-26), 163

asynchronous operations, stack corruptions,
231-240

attaching
debuggers

to running processes, 35
to running processes nonintrusively, 36

processes to debuggers, 281
Attempt at manually constructing the stack

listing (5-18), 248-255
authentication, remote authentication, 423

client server applications, 335-337
authoring custom analysis scripts, Debug

Diagnostic Tool, 697-699
auto registry value, AeDebug key, 638
avoidance strategies

memory corruption, 209
memory leaks, 491-492
resource leaks, 433
stack corruptions, 255-258

B
ba command, 89
back end allocators, heaps, 263-281
Backward option (Heaps test setting), 751
BCD (Boot Configuration Data) objects,

715-716
binary files, debug information, 

finding in, 51
Binary folder tree listing (4-3), 182
Binary representation of a security 

descriptor listing (7-3), 324
binary trees, C++ binary trees, 

implementing, 556, 559-562
Binplace file content listing (4-1), 181
Binplace.exe file, 181
Binplacing the symbol files listing (4-2), 182
blocks (memory)

allocating, 269
freeing, 269
PEB (process environment block), locating,

270-272
boundaries (system), security checks, 

338-340

breaking cell paths, 421-422
breakpoints (code), 168-170

access, 170-171
conditional breakpoints, 107
reference releases, detecting, 107
setting, 79-81

on access, 88-89
breaks, events

adjusting, 136-140
inspecting, 135

BSTREE.EXE Using the Binary Tree
Implementation listing (11-2), 559-562

BUFFER_OVERFLOW_CHECKS 
environment variable, 210

building debugger extensions, 593

C
-c parameter, 137
-c2 parameter, 137
C++ binary trees, implementing, 556-562
caches, symbol caches, 54-55
call access checks, DCOM, 364-367
call stacks

current call stacks
discovering, 609-613
displaying, 73-79

function calls, 210
threads, displaying, 212

Call-stack function parameter 
listing (12-8), 612

calling conventions, 243
cdecl, 243
fastcall, 243
functions

cdecl, 240-243
stdcall, 240-243

stack corruptions, 240-255
stdcall, 243
thiscall, 243

CallProc function, 250-255
calls

client call information, attaining, 407-408
DCOM calls, impersonating, 395-396
information, attaining, 404-407
LRPC calls, impersonating, 395-396
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cancellations, commands, implementing,
589-590

CCALL objects, naming conventions, 389
CDB (cdb.exe) tool (Debugging Tools for

Windows), 31
cdb.exe, 8
cdecl calling convention, 240-243
cell debugging

configuring, 396-398
information, 398-399, 408-412

accessing, 399-408
cell paths, breaking, 421-422
Changing file integrity level using built in

icacls.exe tool listing (15-12), 731
Changing kernel flags using command line

gflags.exe listing (3-21), 150
Changing the current thread 

listing (3-36), 176
Changing the default register mask 

listing (2-20), 69
Client stack containing the activation call

listing (7-33), 372
Client’s thread waiting on LPC request to

complete listing (8-1), 384
code

execution, 96-97
Microsoft Detours library, 7
processors, execution, 72
source code, Fibonacci, 75-76

code breakpoints
conditional breakpoints, 107
reference releases, detecting, 107
setting, 79-81

code execution, tracing, 94-95
Code exercising the exception dispatching

logic listing (3-22), 154
code organization, debugger extensions,

567-570
COM interfaces, initializing, 572-573
Command Line mode (gflags), 19-21
Command to delete the symbol files from

the symbol servers listing (4-8), 187
Command to store the symbols on the 

symbol servers listing (4-6), 184

commands
!address, 90
!address extension command, 473
!analyze extension, 691, 699-701, 703-708
ba, 89
cancellations, implementing, 589-590
!cs, 500
d, 85
d s, 87
debuggers, 32-33

context changing commands, 94-104
entering, 46
exploratory commands, 66-94
helper commands, 104-107

dt, 82, 617
.dump, 635-636
dumptree command, implementing, 

580-585
dv, 82
extensions, 553-554

building, 593
C++ binary tree implementation, 556-562
code organization, 567-570
command cancellations, 589-590
DebugExtensionNotify function, 577
dumptree command, 580-585
examining, 554
general extensions, 554
header files, 567-570
Help command, 579-580
initialization, 570-576
KnownStructOutput function, 578, 

585-589
models, 563, 565
requirements, 565-570
session state changes, 577
uninitializing, 578
user mode extensions, 554
versioning, 592

!getcallinfo extension, 404-406
!getdbgcell extension, 406-407
!getendpointinfo extension, 400-403
!handle, 496-497, 502-503
!heap extension commands, 474-491
Help command, implementing, 579-580
!htrace extension command, 455-459
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k, 78
.lastevent, 66
!lpc extension, 385-386
p, 95-96
!rpctime extension, 400
!sd extension, 324
.sleep 1000, 44
t, 94-95
!token extension command, failures, 

368-371
u, 72
uf, 215
WOW64 commands, 607-609
wt, 98

communication
interprocess communication, 379-380

64-bit debugging, 628-629
communication mechanisms, 380-382
local communications, 382-393, 395-396
network traffic analysis, 413-421
remote communications, 396-422
RPC extended error information, 424-425

remote communication, remote 
authentication, 423

threads, 387
communication mechanisms, interprocess

communications, 380-382
communication protocols, LPC protocol,

382-383
debugging, 384-388
development of, 383-384

condition variables, synchronization, 739
conditional breakpoints, 107
configuration

cell debugging, 396-398
Corporate Error Reporting, 683-687

GP (Group Policy) settings, 683-687
debuggers

kernel mode debuggers, 37-41
user mode debuggers, 34-36

file tree configuration, source servers, 
194-196

Configuring the kernel mode debugger 
for the running configuration 
listing (15-6), 716

connections, kernel debuggers, 39-41

Contents of the stack at the point of crash
listing (5-13), 235

Context, changing, 98-103
context changing commands, debuggers, 

94-104
CONTEXT structure (exceptions), 146
CONTEXT structure, as defined in MSDN

listing (3-17), 146
controlling

events, user mode debuggers, 133-144
exceptions, user mode debuggers, 144-166
targets, debuggers, 168-177

Corporate Error Reporting, 633, 682-683
configuring, 683-687
errors, reporting, 687-690
GP (Group Policy) settings, 683-687

corruption (memory), 199-201, 259
application crashes, 200
detection process, 201

avoidance strategies, 209
detection tools, 208
instrument source code, 208
source code analysis, 202-208
state analysis, 201-202

heap corruptions, 281
handle mismatches, 300-305
heap overruns, 286-300
heap reuse after deletion, 306-314
heap underruns, 286-300
uninitiated state, 282-286

stack corruptions, 209-222
asynchronous operations, 231-240
avoidance strategies, 255-258
calling conventions mismatch, 240-255
stack overruns, 223-231
stack pointers, 231-240

unpredictable behavior, 200
cpr (create a process) event, creating, 141
Crash Dump section (Dr. Watson dialog

box), 655
Crash Dump Type section (Dr. Watson 

dialog box), 655
Crash reproduced in the debugger 

listing (5-10), 225
crash rule (Debug Diagnostic Tool), 692
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Creating a kernel mode dump file 
listing (13-2), 644

Critical section class that handles the 
lifetime of a critical section 
listing (10-10), 521

critical sections
fields, direct usage, 545
orphaned critical sections, 516-529
synchronization, 497-502

managing, 545-550
unlocked critical sections, 543-545

CritSecInfo object, 697-698
!cs extension command, 500
ct (create a thread) event, creating, 143
current call stacks

discovering, 609-613
displaying, 73-79

current register values
debuggers, displaying, 68-71
finding, 64-bit debuggers, 605-607

current threads, changing, 175
current time stamps, attaining, 400
custom analysis scripts, authoring with

Debug Diagnostic tool, 697-699
custom debugger extensions, writing

64-bit debuggers, 629
Windows Vista, 741

D
d command, 85
d*s command, 87
DACLs (discretionary access control 

lists), 318
DangerousAPIs test setting (Application

Verifyer), 774-775
dbengprx.exe, 8
dbgrpc.exe, 8
DCE/RPC (DCE Remote Procedure 

Call), 380
DCOM (Distributed Common Object

Model), 381
activation checks, 355-363
activation failures, Windows XP SP2, 

371-376
call access checks, 364-367
calls, impersonating, 395-396

errors, 354-367
local communication, debugging, 388-396

deadlocks, 510-516, 519
Debug Diagnostic Tool, 691, 693

crash rule, 692
custom analysis scripts, authoring, 697-699
handle leaks, analyzing, 693-697
hang rule, 692
Host component, 692
leak tracker component, 692
leaks rule, 692
memory leaks, analyzing, 693-697
Service component, 692
starting, 692
User Interface component, 692

Debug Diagnostics Tool, 691
Debug directories after bin place operation

listing (4-5), 183
Debug directories immediately after 

building the binaries listing (4-4), 183
Debug Flags field (!heap extension 

command), 478
debug information, binary files, 

finding in, 51
Debug registers on a normal processor 

listing (3-31), 171
debug servers, 110-113
DebugDiag, 27, 697
DebugDiag custom analysis script metadata

listing (14-1), 697
DebugExtensionNotify function, 577
Debugger COM interfaces initialization 

listing (11-3), 573
Debugger events generated a WOW64

process execution (xcopy.exe) 
listing (12-14), 620-622

Debugger events generated by a simple
process execution (xcopy.exe) 
listing (3-7), 131

debugger extensions, 33
custom 64-bit debugger extensions, 

writing, 629
writing, Windows Vista, 741

debugger registry value, AeDebug key, 
638-639
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Debugger Tools for Windows
KD (kd.exe) tool, 32
WinDbg (windbg.exe) tool, 32

debuggers, 30, 45, 123-124
64-bit debuggers, 605-624

code processing, 609
current call stack, 609-613
current register values, 605-607
custom debugger extensions, 629
interprocess communication, 628-629
local variable values, 613-614
memory corruption, 625-626
process memory, 615
security, 626-628
WOW64 commands, 607-609

address space layout, Windows Vista, 
716-717

code breakpoints
conditional breakpoints, 107
setting, 79-81, 88-89

code execution, 96-97
tracing, 94-95

commands, 32-33
context changing commands, 94-104
entering, 46
exploratory commands, 66-94
helper commands, 104-107

context, changing, 98-103
current call stacks, displaying, 73-79
current register values, displaying, 68-71
dump files, generating, 634-639
events, 140-144

cpr (create a process) event, 141
ct (create a thread) event, 143
epr (exit a process) event, 142
et (exit a thread) event, 144
ibp (initial breakpoint) event, 141
ld (load a module) event, 142
ud (unload a module) event, 143

exceptions, structured exception dispatching
mechanism, 144-153

extensions, 553-554
building, 593
C++ binary tree implementation, 556,

559-562
code organization, 567-570

command cancellations, 589-590
DebugExtensionNotify function, 577
dumptree command, 580-585
examining, 554
general extensions, 554
header files, 567-570
Help command, 579-580
initialization, 570-576
KnownStructOutput function, 578, 

585-589
models, 563, 565
requirements, 565-570
session state changes, 577
uninitializing, 578
user mode extensions, 554
versioning, 592

function execution, stepping over, 95-96
kernel mode debuggers, 32

choosing, 44-45
configuring, 37-41
connecting, 39-41
enabling Virtual PC for, 40
event handling, 166-167
output, 48-49
thread suspension, 176-177
Windows Vista, 715-716

last events, displaying, 66
memory, inspecting, 84-87
memory locations, contents, 89-90
postmortem setups, 637
processes

attaching to, 281
starting under, 281
task trees, 34-35

prompts, interpreting, 47-49
reference releases, detecting, 107
running processes

attaching nonintrusively to, 36
attaching to, 35

source files, 64-66
symbols, 49

caches, 54-55
loaded modules, 57-60
paths, 52, 55-57
reloading, 60-61
symbol files, 49-51, 57-60
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symbol servers, 52-54
utilizing, 62-64
validating, 61

target systems, discovering, 67
targets, controlling, 168-177
user mode debuggers, 30-31, 124

configuring, 34-36
event control, 133-144
event order, 131-133
event processing, 126-130
exception control, 144-166
loops, 125-126
operating system support, 124-130
output, 47
redirecting through kernel debuggers, 

41-44
starting processes, 125
target creation, 124-125
u command, 72
version output, 67
Windows Vista, 712-714

value, entering, 103-104
variable values, displaying, 81-84
Windows Vista, 711

Debuggers for Windows, commands, 32-33
debugging

64-bit debugging, 595-596, 603-624
Application Verifyer, 604
custom debugger extensions, 629
Debugging Tools for Windows, 603-604
Ethereal, 605
interprocess communication, 628-629
Leak Diagnostic tool, 603
memory corruption, 625-626
security, 626-628

Application Verifyer, test settings, 747
live debugging, thread state management,

172-176
LPC communication, 384-388
memory dumps, 36
multiple remote systems, 48
noninteractive processes, 118-119

without kernel mode debugger, 119-120
postmortem debugging, 631-632

Corporate Error Reporting, 682-690
dump files, 632-641, 645-652

kernel dumps, 642-644
Windows Error Reporting, 653-682
Windows Vista, 741-745

remote debugging, 109
debug servers, 110-113
kernel servers, 113-114
process servers, 113-114
remote.exe, 109-110
source resolution, 117
symbol resolution, 115-116

scenarios, 117-118
security failures, 340-378

deferred initiation problems, 347-354
local security failures, 340-347

source files, managing for, 188-196
symbols, managing, 180-188
Windows Vista, security, 723-727, 729-735

Debugging a memory dump listing (2-4), 36
Debugging a service non-intrusive 

listing (2-3), 36
Debugging a service process from an 

elevated console listing (15-4), 714
Debugging a service process from the 

command prompt listing (15-1), 712
Debugging a service process from 

the normal command prompt 
listing (15-2), 712

Debugging a service process from 
the normal command prompt 
listing (15-3), 714

Debugging Tools for Windows, 7-9, 29-30,
123, 603-604

CDB (cdb.exe) tool, 31
NTSD (ntsd.exe) tool, 31
remote.exe, 109-110
WinDbg (windbg.exe) tool, 31

DebugInfo field (RTL_CRITICAL_
SECTION structure), 498-500

Deciphering kernel global flags 
listing (3-20), 150

declaring gGlobal variable, 88-89
Decoding a security descriptor using the !sd

extension command listing (7-4), 325
DeCommit option (Heaps test setting), 751
default process heaps, detailed views, 

273-280
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deferred initiation problems, security 
problems during, 347-354

Detailed view of the default process heap
listing (6-3), 273-280

detection process, memory corruption, 201
avoidance strategies, 209
detection tools, 208
instrument source code, 208
source code analysis, 202-208
state analysis, 201-202

detection tools, memory corruption, 208
dialog boxes

Dr. Watson, 653-659
Options (LeakDialog), 6

Digital Rights Management (DRM) systems,
44, 139

directories, SDK directories, 568
Directory structure on the symbol servers

listing (4-7), 185
DirtyStacks test setting (Application

Verifyer), 775
discretionary access control lists 

(DACLs), 318
dispatching exceptions, 149-153
DisplayError function, 240
displaying

current call stacks, 73-79
current register values, debuggers, 68-71
debugger last events, 66
thread impersonation tokens, 329
variable values, debuggers, 81-84

Displaying information about a loaded 
module listing (2-15), 58

Displaying primary token’s security 
descriptor listing (7-32), 370

Displaying the call stack listing (2-24), 76
Displaying the call stack of newly created

thread listing (5-3), 212
Displaying the current event handling state

listing (3-8), 135
Displaying the first three parameters used

by the five functions from the call
stack listing (2-26), 77

Displaying the module headers 
listing (2-16), 59

Displaying the parameters used by the 
last five functions from the call stack
listing (2-25), 76

Displaying the stack size used by the 
five functions from the call stack 
listing (2-27), 78

Displaying the thread from listing 736 using
a kernel mode debugger in local mode
listing (7-37), 375

Displaying the thread impersonation token
listing (7-7), 329

Displaying the thread in the RPCSS 
service part of the activation path 
listing (7-36), 374

Displaying the thread not impersonating 
listing (7-8), 330

Distributed Common Object Model
(DCOM), 381

DllMain function, 529-537
DLLs (Dynamic Link Libraries), 529, 

716-717
debugger extensions, 33

DLLs loaded in the 08cli.exe sample (after
reboot) listing (15-8), 717

DLLs loaded in the 08cli.exe sample (before
reboot) listing (15-7), 716

Dlls option (Heaps test setting), 750
double frees, memory blocks, 308-314
Dr. Watson dialog box, 199, 653-654

Application Errors section, 656-657
Application option, 656-657
Crash Dump section, 655
Crash Dump Type section, 655
Log File Path section, 654
Module List section, 658
Number of Errors to Save section, 655
Number of Instructions section, 655
Raw Stack Dump section, 660-662
Stack Back Trace section, 659
State Dump for Thread ID X section, 658
System Information section, 657
Task List section, 658

DRM (Digital Rights Management) systems,
44, 139
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dt command, 82
WOW 64 applications

PEB, 617
TEB, 617

.dump command, 635-636
dump files, 645-646

analysis
access violation, 646-647
handle leaks, 647-652

generating
Windows Vista, 743
with ADPlus, 639-641
with debuggers, 634-639

postmortem debugging, 632-634
dumpchk.exe, 8
dumping

impersonation tokens, 351
kernel thread information, 391
thread state, 173
threads, 506-507

Dumping the impersonating token 
listing (7-22), 351

Dumping the kernel thread information 
listing (8-9), 392

Dumping the security descriptor for an
object created while impersonating
listing (7-23), 353

Dumping the thread state listing (3-33), 173
dumptree command, implementing, 580-585
dv command, 82

E
endpoint information, attaining, 400-402
EnterCriticalSection API, 513-514
entering commands, debuggers, 46
Enumerating all BCD objects from an 

elevated console listing (15-5), 715
Enumerating all the client call info cells 

listing (8-23), 409
environment variables

BUFFER_OVERFLOW_CHECKS, 210
Win x64, 601

epr (exit a process) event, creating, 142
error information, sending, importance 

of, 664

errors
DCOM (Distributed COM) errors, 354-367
reporting, Corporate Error Reporting, 

687-690
et (exit a thread) event, creating, 144
Ethereal, 26, 605
Evaluating a ct event listing (3-14), 144
Evaluating an et event listing (3-15), 144
Evaluating an ud event listing (3-13), 143
Event Log system, Windows Vista, 710-711
event primitive, synchronization, 494-497
events

aliases, 134
breakpoints, 168-170
breaks

adjusting, 136-140
inspecting, 135

controlling, user mode debuggers, 133-144
debuggers, 140-144

cpr (create a process) event, 141
ct (create a thread) event, 143
epr (exit a process) event, 142
et (exit a thread) event, 144
ipb (initial breakpoint) event, 141
ld (load a module) event, 142
ud (unload a module) event, 143

exceptions, compared, 135
handling

adjusting, 136-140
inspecting, 135
kernel mode debuggers, 166-167

last events, displaying, 66
order, user mode debuggers, 131-133
processing, user mode debuggers, 126-130

Examine explorer.exe process running 
at medium integrity level (UAC) 
listing (15-11), 729-730

Examine one process running at system
integrity level listing (15-10), 727, 729

Examine the component specific
AccessCheck performed by RPCSS
listing (7-27), 360

Examine the first AccessCheck performed
by RPCSS listing (7-25), 357

Examine the second AccessCheck per-
formed by RPCSS listing (7-26), 359
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Examining a registry key’s object header 
listing (7-11), 333

Examining the process memory from a non-
invasive debugger listing (3-30), 169

Examining the process object security
descriptor listing (7-21), 350

Examining the thread and connection object
info cell listing (8-27), 411

Example of heap handle mismatch 
listing (6-9), 300-305

Example of symbol paths with local cache
listing (2-11), 54

Example of symbol server paths 
listing (2-10), 54

Example of the !handle extension command
on an instance of notepad.exe 
listing (10-1), 495

Example run of registry enumeration appli-
cation listing (5-11), 231-232

Examples of using the __cdecl and __stdcall
calling conventions listing (5-15), 
240-242

Exception dispatched to the user mode
debugger listing (3-19), 147

exception events, processing, user mode
debuggers, 129-130

exception handlers, frame-based exception
handlers, 159-166

Exception handling code for a very simple
function (tryexcept in 02sample.exe)
listing (12-15), 622-625

exception models, Windows x64, 622-625
exceptions

applications, utilization, 516-522
breakpoints, 168-170
controlling, user mode debuggers, 144-166
dispatching, 149-153
events, compared, 135
life cycles, 147-149
structured exception dispatching 

mechanisms, 144-153
structures, 145-146

Exceptions test setting (Application
Verifyer), 747

EXCEPTION_DEBUG_EVENT, 
processing, 129-130

EXCEPTION_RECORD structure, 145
EXCEPTION_RECORD structure, 

as defined in winnt.h header 
listing (3-16), 145

Exception|Event|*, 137
exploratory commands, debuggers, 66-94
Exploring the impersonation token after

SSPI impersonation listing (7-13), 337
extension commands, debuggers, 33
extensions

custom 64-bit debugger extensions, writing,
629

debuggers, 553-554
building, 593
C++ binary tree implementation, 556,

559-562
code organization, 567-570
command cancellations, 589-590
DebugExtensionNotify function, 577
dumptree command, 580-585
examining, 554
general extensions, 554
header files, 567-570
Help command, 579-580
initialization, 570-576
KnownStructOutput function, 578-589
models, 563-565
requirements, 565-570
session state changes, 577
uninitializing, 578
user mode extensions, 554
versioning, 592

F
fastcall calling convention, 243
fault follow-up, !analyze extension command,

706-708
FaultRate option (Heaps test setting), 752
Faults option (Heaps test setting), 752
faulty applications, analyzing, !analyze 

extension command, 700
Fibonacci function, source code, 75-76
fields, critical sections, direct usage, 545
file dumps, generating, tools, 632
file redirection, side effects, 601



788 Index

file tree configuration, source servers, 
194-196

file virtualization, Windows Vista, 732-735
FilePaths test setting (Application Verifyer),

764-765
files

binary files, debug information, 51
Binplace.exe file, 181
PDB files, stored information, 191
source files, 64-66, 179

managing, 188-196
symbol files, 49-51, 179

checking, 57-60
Final event for any process started under

debugger listing (3-11), 142
Finding additional information about the

LPC message listing (8-10), 393
Finding the PEB for a process listing (6-2),

270-272
Finding the stack that released a specific

handle listing (2-43), 108
flags, KnownStructOutput function, 586
Flags field (!heap extension command), 478
Follow up ownership for scenario1.exe 

listing (14-4), 707
FPO (frame pointer omission) 

optimization, 74
frame pointer omission, 217
frame-based exception handlers, 159-166
freeing memory blocks, 269
FreeMem function, 305
freezing threads, 174
front end allocators, heaps, 261-263
Full option (Heaps test setting), 750
full pageheap (Heaps test setting), 750, 

754, 757
function calls, call stacks, 210
function execution

monitoring, 98
tracing, 98

function prologs, 221
Function with five parameters, calling

another function with five parameters
listing (12-6), 610

functions
AccessCheck, 323-324
calling conventions, 243

cdecl, 240-243
fastcall, 243
stdcall, 240-243
thiscall, 243

CallProc, 250-255
DebugExtensionNotify, 577
DisplayError, 240
DllMain, 529-537
execution, stepping over, 95-96
FreeMem, 305
InitModule, 245, 250-255
InOrderTraversal, 582
KnownStructOutput, 578
KnownStructOutput function, 

implementing, 585-589
Sum, 217, 219
ThreadProcedure, 212-213

G
general extensions, debuggers, 554
Generated code for a simple function 

using __try/__except support 
listing (3-25), 162

generating
dump files

Windows Vista, 743
with ADPlus, 639-641
with debuggers, 634-639

file dumps, tools, 632
public symbols, 180-183

Generating annotated assembly file from the
source file listing (3-27), 165

!getcallinfo extension command, 404-406
!getdbgcell extension command, 406-407
!getendpointinfo extension command, 

400-403
Getting more details about the call target

listing (8-25), 410
Getting more details from the client cell info

listing (8-24), 410
Getting the call info from the endpoint

information listing (8-26), 411
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gflags, 16
Command Line mode, 19-21
GUI mode, 16-18
option abbreviations, 19-20

gflags.exe, 8
gGlobal declaration listing (2-36), 88
gGlobal variable, declaring, 88-89
Global Flags, 16

Command Line mode, 19-21
GUI mode, 16-18
option abbreviations, 19-20

GP (Group Policy) settings, Corporate Error
Reporting, 683-687

GUI mode (gflags), 16-18
GUI view (Process Explorer), 22

H
-h parameter, 137
!handle extension command, 496-497, 

502-503
handle leaks

analyzing, Debug Diagnostic tool, 693-697
dump files, analysis, 647-652

handles
handle leaks, 434-460
injection, 455-459
mismatches, heaps, 300-305

Handles test setting (Application Verifyer),
747-748

handling events
adjusting, 136-140
inspecting, 135
kernel mode debuggers, 166-167

hang rule (Debug Diagnostic Tool), 692
header files, debugger extensions, 567-570
headers

kernel object headers, obtaining, 331
registry key object headers, examining, 332

Heap block address field (!heap extension
command), 477

heap coalescing, 268
Heap corruption analysis using the heap

debugger command listing (6-7), 
289-294

heap corruptions, 281
handle mismatches, 300-305
heap overruns, 286-300
heap reuse after deletion, 306-314
heap underruns, 286-300
uninitiated state, 282-286

!heap extension command
heap searching, 480-484
heap statistics, 475-480
leak detection, 484-485
memory leaks, identifying, 474-491
Pageheap, 485-486

heap manager (Windows), 261, 717-723
heap searching, !heap extension command,

480-484
heap statistics, !heap extension command,

475-480
Heap-based string copy application 

listing (6-6), 287-289
heaps, 259-260

back end allocators, 263-281
default process heap, detailed view, 273-280
front end allocators, 261-263
heap coalescing, 268
low fragmentation heaps, 718-721
memory corruption, 625-626
segments, layout, 266
subsegments, 721

Heaps test setting (Application Verifyer),
749-757

full pageheap, 750, 754, 757
normal pageheap, 750, 753, 757

Help command, implementing, 579-580
helper commands, debuggers, 104-107
Heuristic used by debugger to find the 

symbol file listing (2-9), 52
HighVersionLie test setting (Application

Verifyer), 765-767
Host component (Debug Diagnostic 

Tool), 692
How to Freeze or Unfreeze threads 

listing (3-35), 175
How to suspend and resume threads 

listing (3-34), 174
!htrace extension command, handle 

injection, 455-459
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htrace leak detection tool, 432
HTTP servers, public symbols, storing on,

187-188

I–J
ibp (initial breakpoint) event, creating, 141
identifying

memory leaks, 462-464
leak detection tools, 465-491

potential resource leaks, 428-430
Identifying Rpcss and DcomLaunch services

on Windows XP SP2 listing (7-24), 356
Identifying the caller listing (7-29), 366
Identifying the owning thread of the 

problematic critical section 
listing (10-13), 527

Identifying the thread identity 
listing (7-34), 372

ImpersonateSelf invocation, debugger 
targets, simulating, 340-341

impersonation
DCOM calls, 395-396
LRPC calls, 395-396
security implications, 354

impersonation levels, client server 
applications, 337-338

impersonation tokens, 351
information

calls, attaining, 404-407
cell debugging, 398-412

accessing, 399-408
client calls, attaining, 407-408
endpoints, attaining, 400-402
source information

gathering, 188-191
using, 192-193

threads, attaining, 402-403
information sources (security), 328

access tokens, 328-330
SDs (security descriptors), 330-333

Information stored in the PDB file 
listing (4-8), 191

Initial breakpoint stack trace for any 
process started under debugger 
listing (3-10), 141

initialization
COM interfaces, 572-573
debugger extensions, 570-576

type information, 574-575
version information, 572

WinDbg extension, extension data, 576
Initialization of type information 

listing (11-4), 575
Initializing the WinDbg extension data 

listing (11-5), 577
InitModule function, 245, 250-255
injection, handles, 455-459
InOrderTraversal function, 582
input parameters, local variables, 

compared, 84
Inspecting the command line and the 

identity of the server about to be start-
ed listing (7-28), 363

Inspecting the security descriptor of another
thread object running in the same
process listing (7-19), 346

Inspecting the security descriptor of the
thread object running the failing code
listing (7-18), 345

installation, WDK (Windows Driver Kit), 24
instrument source code, memory 

corruption, 208
integrity levels, Windows Vista, 724
InteractiveServices test setting (Application

Verifyer), 767-768
interprocess communication

64-bit debugging, 628-629
remote authentication, 423
Windows Vista, 736

interprocess communications, 379-380
communication mechanisms, 380-382
local communications, troubleshooting, 

382-396
network traffic, analyzing, 413-421
remote communications, troubleshooting,

396-422
RPC extended error information, 424-425

Investigating x86 exception handler list 
listing (3-23), 160
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K
k command, 78
KD (kd.exe) tool (Debugger Tools for

Windows), 8, 32
kdbgctrl.exe, 8
kdsrv.exe, 8
kernel, thread information, dumping, 391
kernel dumps, creating, 642-644
kernel mode debuggers, configuring, 37-41
Kernel mode debugger output 

listing (2-7), 48
kernel mode debuggers, 32

choosing, 44-45
code breakpoints, setting, 80
connecting, 39-41
events, handling, 166-167
output, 48-49
threads, suspending, 176-177
user mode debuggers, redirecting through,

41-44
Virtual PC, enabling for, 40

kernel objects
object headers, obtaining, 331
SDs (security descriptors), obtaining, 331

kernel servers, remote debugging, 113-114
KernelModeDriverInstall test setting

(Application Verifyer), 768-769
kill.exe, 8
KnownStructOutput function, 578

flags, 586
implementing, 585-589

L
LAL (look aside list) front end allocator,

heaps, 261
last events, debuggers, displaying, 66
last in first out (LIFO) semantics, 

algorithms, 209
.lastevent command, 66
.lastevent output listing (2-17), 67
layouts, heap segments, 266
ld (load a module) event, creating, 142
leak detection tools, 432-433, 465

!heap extension command, 474-491
LeakDiag, 4-6, 432, 470-474
UMDH, 465-469

Leak Diagnostic tool, 603
leak tracker component (Debug Diagnostic

Tool), 692
LeakDiag tool, 4-6, 432

allocators, 4-5
memory leaks, identifying, 470-474
Options dialog box, 6
Stat screen, 5
UMDH.exe, 4

leaks
detecting

!heap extension command, 484-485
PUT MEMORY LEAKS and HANDLE

LEAKS, 693
resource leaks, 430-431

analysis process, 428-433
avoidance strategies, 433
handle leaks, 434-460
leak detection tools, 432-433
memory leaks, 460-466, 468-492
reproducibility, 433-434

leaks rule (Debug Diagnostic Tool), 692
LF (low fragmentation) front end allocators,

heaps, 261
libraries, Microsoft Detours, 7
life cycles, exceptions, 147-149
LIFO (last in first out) semantics, 

algorithms, 209
link.exe utility, binary files, finding debug

information in, 51
listing

processes, task trees, 34-35
thread summary information, 391

Listing all processes as task tree 
listing (2-1), 34

Listing all symbol files unused since a 
specific date listing (2-12), 55

Listing all the interfaces registered on 
the local system, identified by \\. 
listing (8-31), 426

Listing all the interfaces registered on
\PIPE\winreg endpoint on the local
system listing (8-30), 425

Listing of all threads in the culprit process
listing (10-16), 532
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Listing thread summary information 
listing (8-8), 391

listings
2-1 (Listing all processes as task tree), 34
2-2 (Options for attaching the debugger to a

running process), 35
2-3 (Debugging a service non-intrusive), 36
2-4 (Debugging a memory dump), 36
2-5 (Switching from user mode to kernel

mode debugger), 43
2-6 (User mode debugger output), 47
2-7 (Kernel mode debugger output), 48
2-8 (Using the link.exe utility to find debug

information stored in the binary file), 51
2-9 (Heuristic used by debugger to find the

symbol file), 52
2-10 (Example of symbol server paths), 54
2-11 (Example of symbol paths with local

cache), 54
2-12 (Listing all symbol files unused since a

specific date), 55
2-13 (Two methods of setting up the symbol

path at debugger startup), 55
2-14 (Using the .sympath and .symfix 

commands), 56
2-15 (Displaying information about a loaded

module), 58
2-16 (Displaying the module headers), 59
2-17 (.lastevent output), 67
2-18 (Version output from a user mode

debugger), 67
2-19 (Registers value using the default 

register mask), 69
2-20 (Changing the default register 

mask), 69
2-21 {Pseudo-register used on user mode

debugger break (x86)}, 71
2-22 {u command used in user mode 

debugger (x86)}, 72
2-23 (Source of Fibonacci function 

implemented in the 02sample.exe 
sample), 75

2-24 (Displaying the call stack), 76
2-25 (Displaying the parameters used 

by the last five functions from the call
stack), 76

2-26 (Displaying the first three parameters
used by the five functions from the call
stack), 77

2-27 (Displaying the stack size used by the
five functions from the call stack), 78

2-28 (Manual stack reconstruction using the
k command), 78

2-29 (Using breakpoints in the user mode
debugger), 79

2-30 (Using breakpoints in the kernel mode
debugger), 80

2-31 (Using breakpoints in the user mode
debugger), 80

2-32 (Use of dv command), 82
2-33 (Use of dt command), 83
2-34 (Use of d command), 85
2-35 (Use of d s command), 87
2-36 (gGlobal declaration), 88
2-37 (Typical use of the ba command), 89
2-38 (!address debugger command 

example), 90
2-39 (!address command), 91
2-40 (Obtaining the process PEB), 92
2-41 (Obtaining the thread TEB), 93
2-42 (Trace and watch function 

execution), 98
2-43 (Finding the stack that released a 

specific handle), 108
2-44 (Remoting the console using

remote.exe), 109
2-45 (Starting the debugger server), 111
3-1 (Sample code used to start a process

under user mode debugger), 125
3-2 (Standard user mode debugger 

loop), 126
3-3 (Simple debugger events 

processing), 127
3-4 (Processing output debug string 

event), 128
3-5 (Read a specific length string from the

debugger target space), 128
3-6 (Processing exception debug event), 130
3-7 {Debugger events generated by a simple

process execution (xcopy.exe)}, 131
3-8 (Displaying the current event handling

state), 135
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3-9 (Tools.ini content), 140
3-10 (Initial breakpoint stack trace for any

process started under debugger), 141
3-11 (Final event for any process started

under debugger), 142
3-12 (stack trace after loading a dynamic

link library), 142
3-13 (Evaluating an ud event), 143
3-14 (Evaluating a ct event), 144
3-15 (Evaluating an et event), 144
3-16 (EXCEPTION_RECORD structure,

as defined in winnt.h header), 145
3-17 (CONTEXT structure, as defined in

MSDN), 146
3-18 (x86 context flags values), 146
3-19 (Exception dispatched to the user

mode debugger), 147
3-20 (Deciphering kernel global flags), 150
3-21 (Changing kernel flags using command

line gflags.exe), 150
3-22 (Code exercising the exception 

dispatching logic), 154
3-23 (Investigating x86 exception handler

list), 160
3-24 (Simple function using __try/__except

constructs), 162
3-25 (Generated code for a simple function

using __try/__except support), 162
3-26 (Assembly listing generated for the

function from Listing 324), 163
3-27 (Generating annotated assembly file

from the source file), 165
3-28 (Thread environment block on two dif-

ferent threads in the same process), 166
3-29 (Using kls flag for detecting a user

mode module mapping), 167
3-30 (Examining the process memory from

a noninvasive debugger), 169
3-31 (Debug registers on a normal 

processor), 171
3-32 (Simulating code tracing after attaching

to a running project), 172
3-33 (Dumping the thread state), 173
3-34 (How to suspend and resume 

threads), 174
3-35 (How to Freeze or Unfreeze 

threads), 175

3-36 (Changing the current thread), 176
3-37 (Simulating a kernel32!Sleep call), 177
4-1 (Binplace file content), 181
4-2 (Binplacing the symbol files), 182
4-3 (Binary folder tree), 182
4-4 (Debug directories immediately after

building the binaries), 183
4-5 (Debug directories after bin place 

operation), 183
4-6 (Command to store the symbols on the

symbol servers), 184
4-7 (Directory structure on the symbol

servers), 185
4-8 (Command to delete the symbol files

from the symbol servers), 187
4-9 (Information stored in the PDB 

file), 191
4-10 (SourceServer information stored in

the PDB file), 191
4-11 (Source server file tree 

configuration), 194
5-1 (Simple console-based application 

that simulates a memory corruption),
203-207

5-2 (Sample application showing the 
creation of a new thread), 210-211

5-3 (Displaying the call stack of newly 
created thread), 212

5-4 (Assembly code of the ThreadProcedure
function), 213

5-5 (Assembly code for ProcA), 215-216
5-6 (Preamble assembly code for calling the

Sum function), 217
5-7 (Assembly instructions right after our

call to Sum), 219
5-8 (ProcA function epilog), 220
5-9 (Application that establishes a 

connection to a data source), 223
5-10 (Crash reproduced in the 

debugger), 225
5-11 (Example run of registry enumeration

application), 231-232
5-12 (Access violation enumerating registry

values), 232-234
5-13 (Contents of the stack at the point of

crash), 235
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5-14 (Walking the stack back in time), 
236-239

5-15 (Examples of using the __cdecl and
__stdcall calling conventions), 240-242

5-16 (Simple application that declares a
number of functions), 244-245

5-17 (Application that calls a function in a
DLL), 245-247

5-18 (Attempt at manually constructing the
stack), 248-255

6-1 (Simple application that performs heap
allocations), 270

6-2 (Finding the PEB for a process), 
270, 272

6-3 (Detailed view of the default process
heap), 273-280

6-4 (Simple application that uses 
uninitialized memory), 282-283

6-5 (Application crash seen under the
debugger), 283-286

6-6 (Heap-based string copy application),
287-289

6-7 (Heap corruption analysis using the
heap debugger command), 289-294

6-8 (Application verifier reported heap
block corruption), 295-300

6-9 (Example of heap handle mismatch),
300, 302-305

6-10 (Simple example of double free), 
308-312, 314

7-1 (SID structure definition), 319
7-2 (Sample code exercising the

AccessCheck function), 323-324
7-3 (Binary representation of a security

descriptor), 324
7-4 (Decoding a security descriptor using

the !sd extension command), 325
7-5 (Using the !token extension command 

to display a token in the user mode
debugger), 326

7-6 (Obtaining the process access 
token), 329

7-7 (Displaying the thread impersonation
token), 329

7-8 (Displaying the thread not 
impersonating), 330

7-9 (Obtaining the object header for a 
kernel object), 331

7-10 (Obtaining kernel objects security
descriptor), 332

7-11 (Examining a registry key’s object
header), 333

7-12 (Tracing the remote authentication
from the server process), 336

7-13 (Exploring the impersonation token
after SSPI impersonation), 337

7-14 (Sample function calling
GetComputerNameEx at different
impersonation levels), 338

7-15 (Simulating ImpersonateSelf 
invocation in the debugger target), 341

7-16 (Obtaining the process object security
descriptor), 343

7-17 (Obtaining the primary token object
security descriptor), 344

7-18 (Inspecting the security descriptor of
the thread object running the failing
code), 345

7-19 (Inspecting the security descriptor of
another thread object running in the
same process), 346

7-20 (Sample initialization function), 348
7-21 (Examining the process object security

descriptor), 350
7-22 (Dumping the impersonating 

token), 351
7-23 (Dumping the security descriptor 

for an object created while 
impersonating), 353

7-24 (Identifying Rpcss and DcomLaunch
services on  Windows XP SP2), 356

7-25 (Examine the first AccessCheck 
performed by RPCSS), 357

7-26 (Examine the second AccessCheck 
performed by RPCSS), 359

7-27 (Examine the component 
specific AccessCheck performed by
RPCSS), 360

7-28 (Inspecting the command line and 
the identity of the server about to be
started), 363

7-29 (Identifying the caller), 366
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7-30 (Watching the error code returned by
OpenThreadToken/
OpenProcessToken, 369

7-31 (Obtaining the token information using
local KD), 370

7-32 (Displaying primary token’s security
descriptor), 370

7-33 (client stack containing the activation
call), 372

7-34 (Identifying the thread identity), 372
7-35 (Stopping the DcomLaunch code after

impersonating the client), 373
7-36 (Displaying the thread in the RPCSS

service part of the activation path), 374
7-37 (Displaying the thread from Listing

736 using a kernel mode debugger in
local mode), 375

8-1 (Client’s thread waiting on LPC request
to complete), 384

8-2 (Using !lpc extension to get message
information), 385

8-3 (Using !lpc extension to get port 
information), 386

8-4 (Using !lpc extension to obtain the
entire LPC activity on the system), 386

8-5 (Starting the client and listing a partial
call stack for each thread), 388

8-6 (Typical stack of clients using DCOM
over LRPC), 389

8-7 (Typical stack of a server thread waiting
for a new request on DCOM over
LRPC), 390

8-8 (Listing thread summary 
information), 391

8-9 (Dumping the kernel thread 
information), 392

8-10 (Finding additional information about
the LPC message), 393

8-11 (Server’s thread processing the LPC
message), 394

8-12 (Reading ImpersonationInfo
ImpersonationInfo stored on the server
thread), 395

8-13 (Using !rpctime to obtain the current
time stamp used by troubleshooting
infrastructure), 400

8-14 (Using !getendpointinfo to list all 
endpoints known by RPC), 401

8-15 (Using !getendpointinfo to list all 
endpoint known by RPC), 402

8-16 (Using !getthreadinfo to list all thread
from RPC thread pool), 402

8-17 (Using !getthreadinfo to obtain a 
specific thread RPC information), 403

8-18 (Using !getcallinfo to obtain the 
call information maintained by the 
server), 405

8-19 (Using !getcallinfo to filter call 
information to a specific process), 405

8-20 (Using !getdbgcell to obtain the 
cell information maintained by the 
server), 406

8-21 (Using !getclientcallinfo to obtain the
call information maintained by the
client), 408

8-22 (Typical client stack waiting on remote
call made using a connection-based 
protocol), 409

8-23 (Enumerating all the client call info
cells), 409

8-24 (Getting more details from the client
cell info), 410

8-25 (Getting more details about the call
target), 410

8-26 (Getting the call info from the 
endpoint information), 411

8-27 (Examining the thread and connection
object info cell), 411

8-28 (Server thread call stack), 412
8-29 (Server breakpoints encountered using

SSPI), 423
8-30 (Listing all the interfaces registered 

on \PIPE\winreg endpoint on the local
system), 425

8-31 (Listing all the interfaces registered on
the local system, identified by \\.), 426

10-1 (Example of the !handle extension
command on an instance of
notepad.exe), 495

10-3 (Using the !cs command to list all 
critical sections of a process), 501



796 Index

10-4 (Using the !handle extension 
command to find mutex object in
notepad.exe), 502

10-5 (Using the *kb command to Dump all
threads and associated stacks), 506

10-6 (Sample application that results in a
deadlock), 510

10-7 (All thread stacks currently running in
the process), 512

10-8 (Sample application that utilizes 
exceptions), 516

10-9 (Sample application thread state), 519
10-10 (Critical section class that handles the

lifetime of a critical section), 521
10-11 (Simple application utilizing the

TerminateThread API), 523
10-12 (Thread list and associated stacks of

hung application), 525
10-13 (Identifying the owning thread of the

problematic critical section), 527
10-16 (Listing of all threads in the culprit

process), 532
10-17 (Sample application that suffers from

lock convoys), 540
10-18 (Unlocked Critical Section), 543
10-19 (Locked Critical Section with no

Waiters), 543
10-20 (Locked Critical Section with

Waiters), 544
10-21 (Properly initialized critical 

section), 546
11-1 (Simple C++ Binary Tree

Implementation), 556, 559
11-2 (BSTREE.EXE Using the Binary Tree

Implementation), 559-562
11-3 (Debugger COM interfaces 

initialization), 573
11-4 (Initialization of type information), 575
11-5 (Initializing the WinDbg extension

data), 577
12-1 (Native stack on a WOW64 

process), 599
12-2 (x86-64-bit general purposes 

register), 606
12-3 {True 32 bit Stack in WOW64 Process

(hidden in Listing 121)}, 608

12-4 (Obtaining WOW64 structures), 608
12-5 (Unassembly code is dependent on the

processor execution mode), 609
12-6 (Function with five parameters, 

calling another function with five
parameters), 610

12-7 (Assembly code representing the
Function5 function), 610

12-8 (Call-stack function parameter), 612
12-9 (Unassembled non-optimized 

function), 613
12-10 (Local variable), 614
12-11 (WOW64 applications PEB), 615, 617
12-12 (WOW64 application’s PEB using the

dt command), 617
12-13 (WOW64 threads’ TEB using 

!teb extension command and dt 
commands), 618

12-14 {Debugger events generated a
WOW64 process execution (xcopy.exe)},
620-622

12-15 {Exception handling code for a 
very simple function (tryexcept in
02sample.exe)}, 622, 624-625

12-16 (Security information on 
Windows x64), 626

13-1 (Simple crashing application), 633
13-2 (Creating a kernel mode dump 

file), 644
14-1 (DebugDiag custom analysis script

metadata), 697
14-2 (Using the CritSec object), 698
14-3 (Output of the !analyze extension 

command), 701-703
14-4 (Follow up ownership for

scenario1.exe), 707
15-1 (Debugging a service process from the

command prompt), 712
15-2 (Debugging a service process from the

normal command prompt), 712
15-3 (Debugging a service process from the

normal command prompt), 714
15-4 (Debugging a service process from an

elevated console), 714
15-5 (Enumerating all BCD objects from an

elevated console), 715



Index 797

15-6 (Configuring the kernel mode debug-
ger for the running configuration), 716

15-7 {DLLs loaded in the 08cli.exe sample
(before reboot)}, 716

15-8 {DLLs loaded in the 08cli.exe sample
(after reboot)}, 717

15-9 (Application manifest requesting a high
integrity level), 724

15-10 (Examine one process running at 
system integrity level), 727, 729

15-11 {Examine explorer.exe process 
running at medium integrity level
(UAC)}, 729-730

15-12 (Changing file integrity level using
built in icacls.exe tool), 731

15-13 (Setting and retrieving application 
settings from UAC administrator), 732

15-14 (Retrieving application settings from
an elevated prompt), 733

live debugging, thread state management,
172-176

loaded modules, checking, 57-60
local communication, troubleshooting, 

382-396
Local Procedure Call (LPC), 381
local security failures, investigating, 

340-344, 347
Local variable listing (12-10), 614
local variables

input parameters, compared, 84
values, discovering, 613-614

lock contention, synchronization, 538-545
LockCount field (RTL_CRITICAL_

SECTION structure), 498
Locked Critical Section with no Waiters 

listing (10-19), 543
Locked Critical Section with Waiters 

listing (10-20), 544
Locks test setting (Application Verifyer),

757-759
LockSemaphore field (RTL_CRITICAL_

SECTION structure), 499
Log File Path section (Dr. Watson dialog

box), 654
logger.exe, 8
logviewer.exe, 8

look aside list (LAL) front end allocators,
heaps, 261

loops, user mode debuggers, 125-126
low fragmentation (LF) front end allocator,

heaps, 261
low fragmentation heaps, 718-721
Low Resource Simulation test setting

(Application Verifyer), 769-770
LPC (Local Procedure Call), 381
!lpc extension command, 385-386
LPC protocol, 382-383

debugging communication, 384-388
development of, 383-384

LRPC calls, impersonating, 395-396
LuaPriv test setting (Application Verifyer),

771-774

M
managing critical sections, 545-550
Manual stack reconstruction using the 

k command listing (2-28), 78
manually constructing, stacks, 247, 249-252
mapping binaries to products, Windows

Error Reporting, 673-677
memory

heaps
back end allocators, 263-281
front end allocators, 261-263

inspecting, 84-87
kernel dumps, creating, 642-644
memory leaks, 460-492

avoidance strategies, 491-492
identifying, 462-464
leak detection tools, 465-491

process memory, inspecting, 615
memory blocks

allocating, 269
double frees, 308-314
freeing, 269

memory corruption, 199-201, 259
application crashes, 200
detection process, 201

avoidance strategies, 209
detection tools, 208
instrument source code, 208
source code analysis, 202-208
state analysis, 201-202
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heap corruptions, 281
handle mismatches, 300-305
heap overruns, 286-300
heap reuse after deletion, 306-314
heap underruns, 286-300
uninitiated state, 282-286

heaps, 625-626
stack corruptions, 209-222

asynchronous operations, 231-240
avoidance strategies, 255-258
calling conventions mismatch, 240-255
stack overruns, 223-231
stack pointers, 231-240

stacks, 625
unpredictable behavior, 200

memory dumps, debugging, 36
memory leak detection

LeakDiag (Leak Diagnosis) tool, 4-6
UMDH, 9

memory leaks, 460-492
analyzing, Debug Diagnostic tool, 693-697
avoidance strategies, 491-492
identifying, 462-464
leak detection tools, 465

!heap extension command, 474-491
LeakDiag, 470-474
UMDH, 465-469

memory locations, contents, displaying, 
89-90

Memory test setting (Application Verifyer),
760-762

Microsoft Application Verifier, 10-16
Microsoft Detours, 7
mismatches, handles, heaps, 300-305
models, debugger extensions, 563-565
Module List section (Dr. Watson dialog 

box), 658
modules, loaded modules, checking, 57-60
monitoring function execution, 98
mov edi,edi instruction, 222
MSRPC, communication, debugging, 

388-396
multiple remote systems, debugging, 48
multithreading, 493, 550
mutex kernel mode synchronization 

construct, 502-504

N
naming conventions

ADDRESS objects, 390
CCALL objects, 389

Native stack on a WOW64 process 
listing (12-1), 599

network protocols, analyzing, Ethereal, 26
network traffic, analyzing, 413-421
NoLock option (Heaps test setting), 751
noninteractive processes, debugging, 

118-119
without kernel mode debugger, 119-120

normal pageheap (Heaps test setting), 
750-753, 757

npipe protocol, 111
NTSD (ntsd.exe) tool (Debugging Tools for

Windows), 31
ntsd.exe, 8
Number of Errors to Save section (Dr.

Watson dialog box), 655
Number of Instructions section (Dr. Watson

dialog box), 655
NX enabled systems, Windows support 

for, 255

O
object headers

kernel objects, obtaining, 331
registry keys, examining, 332

object security, 317-319
access tokens, 325-328
ACLs (Access Control Lists), 320-322
client server applications

impersonation levels, 337-338
remote authentication, 335-337
security support provider interface 

support, 335-337
token propagation, 334-338

SDs (security descriptors), 322-325
security checks, 334

system boundaries, 338-340
security failures

deferred initiation problems, 347-354
investigating, 340-378
local security failures, 340-347
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security information sources, 328
access tokens, 328-330
SDs (security descriptors), 330-333

SIDs (security identifiers), 319-320, 325-328
types, 327
well-known SIDs, 327

object security descriptors, process object
security descriptors, 342-344

objects
ADDRESS objects, naming 

conventions, 390
BCD (Boot Configuration Data), 715-716
CCALL objects, naming conventions, 389
CritSecInfo, 697-698

Obtaining kernel objects security descriptor
listing (7-10), 332

Obtaining the object header for a kernel
object listing (7-9), 331

Obtaining the primary token object security
descriptor listing (7-17), 344

Obtaining the process access token 
listing (7-6), 329

Obtaining the process object security
descriptor listing (7-16), 343

Obtaining the process PEB listing (2-40), 92
Obtaining the thread TEB listing (2-41), 93
Obtaining the token information using local

KD listing (7-31), 370
Obtaining WOW64 structures 

listing (12-4), 608
one-time initialization APIs, 

synchronization, 740
operating systems

64-bit operating systems, 595-598
user mode debuggers, support, 124-130
Windows Vista, 709

custom debugger extensions, 741
debuggers, 711-717
debugging security, 723-735
Event Log system, 710-711
heap manager, 717-723
interprocess communication, 736
one-time initialization, 740
postmortem debugging, 741-745
resource leaks, 736
synchronization, 737-740

tools, 710
user access control side effects, 712-714

Options dialog box (LeakDialog), 6
Options for attaching the debugger to a 

running process listing (2-2), 35
order, events, user mode debuggers, 131-133
orphaned critical sections, 516-529
output

!analyze extension command, 701-703
kernel mode debuggers, 48-49
user mode debuggers, 47

version output, 67
Output of the !analyze extension command

listing (14-3), 701-703
OUTPUT_DEBUG_STRING_EVENT, 

processing, 127-129
overruns

heaps, 286-300
stacks, 223-231

OwningThread field (RTL_CRITICAL_
SECTION structure), 499

P
p command, 95-96
Pageheap, !heap extension command, 

485-486
paths, symbols, 52

setting, 55-57
PDB files, stored information, 191
PEB (process environment block)

locating, 270, 272
obtaining, 93
WOW64 applications, 615

dt command, 617
pointers (stacks), 231-240
postmortem debugging, 631-632

Corporate Error Reporting, 682-683
configuring, 683-687
error reporting, 687-690
GP (Group Policy) settings, 683-687

dump files, 632-634, 645-646
access violation analysis, 646-647
generating, 634-641
handle leak analysis, 647-652

kernel dumps, creating, 642-644
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Windows Error Reporting, 653-662
architecture, 662-682

Windows Vista, 741-745
Preamble assembly code for calling the Sum

function listing (5-6), 217
Previous size field (!heap extension 

command), 478
primary token object security descriptor,

obtaining, 344
primitives, synchronization, event primitive,

494-497
PrintAPI test setting (Application 

Verifyer), 776
PrintDriver test setting (Application

Verifyer), 776
private symbols, 591
ProcA function epilog listing (5-8), 220
ProcA procedure, 214, 220

assembly code, 214-216
procedures, ProcA, 214, 220

assembly code, 214-216
process access tokens, obtaining, 329
Process Explorer, 22-23
process health, analyzing, Process Explorer,

22-23
process memory, inspecting, 615
Process Monitor, 23
process object security descriptors

examining, 350
obtaining, 342-344

process servers, remote debugging, 113-114
processes

64-bit processes, 595-596
debuggers, attaching to, 281
interprocess communication

64-bit debugging, 628-629
Windows Vista, 736

interprocess communications, 379-380
communication mechanisms, 380-382
local communications, 382-396
network traffic analysis, 413-421
remote communications, 396-422
RPC extended error information, 424-425

listing task trees, 34-35
noninteractive processes, 118-119

without kernel mode debugger, 119-120

PEB (process environment block)
locating, 270, 272
obtaining, 93

running processes
attaching debuggers nonintrusively to, 36
attaching debuggers to, 35

starting under debuggers, 281
user mode debuggers, starting, 125

Processing exception debug event 
listing (3-6), 130

Processing output debug string event 
listing (3-4), 128

processors
code execution, 72
code processing, discovering, 609
tracing, 172

product rollup page, Windows Error
Reporting, 672

programming errors, memory corruption,
199-200

application crashes, 200
detection process, 201-209
stack corruptions, 209-258
unpredictable behavior, 200

prologs, functions, 221
prompts, debuggers, interpreting, 47-49
propagation, token propagation, client server

applications, 334-338
Properly initialized critical section 

listing (10-21), 546
Protect option (Heaps test setting), 751
protocols

communication protocols, 380-382
LPC protocol, 382-384

npipe protocol, 111
TCP, 112-113

Pseudo-register used on user mode 
debugger break (x86) listing (2-21), 71

public symbols, 591
generating, 180-183
HTTP servers, storing on, 187-188

Q–R
Random option (Heaps test setting), 750
RandRate option (Heaps test setting), 751
Raw Stack Dump section (Dr. Watson dialog

box), 660-662
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Read a specific length string from 
the debugger target space 
listing (3-5), 128

reader/writer locks, synchronization, 737-738
Reading ImpersonationInfo

ImpersonationInfo stored on the 
server thread listing (8-12), 395

RecursionCount field (RTL_CRITICAL_
SECTION structure), 499

redirecting user mode debuggers through
kernel debuggers, 41-44

redirection, files, side effects, 601
reference releases, detecting, 107
register values

current register values, finding, 605-607
debuggers, displaying, 68-71

Registers value using the default register
mask listing (2-19), 69

registry keys, object headers, examining, 332
registry virtualization, Windows Vista, 

732-735
reloading symbols, 60-61
remote authentication, 423

client server applications, 335-337
remote communication

cell paths, breaking, 421-422
remote authentication, 423
RPC extended error information, 424-425
troubleshooting, 396-422

remote debugging, 109
debug servers, 110-113
kernel servers, 113-114
process servers, 113-114
remote.exe, 109-110
source resolution, 117
symbol resolution, 115-116

remote systems, multiple remote systems,
debugging, 48

remote.exe, 8
remote.exe utility, remote debugging, 

109-110
Remoting the console using remote.exe 

listing (2-44), 109
reporting errors, Corporate Error Reporting,

687-690
reproducibility, resource leaks, 433-434

requirements, debugger extensions, 565-570
resolving

sources, remote debugging, 117
symbols, remote debugging, 115-116

resource leaks, 427, 430-431
analysis process, 428-433
avoidance strategies, defining, 433
handle leaks, 434-460
leak detection tools, 432-433
memory leaks, 460-492

avoidance strategies, 491-492
identifying, 462-464
leak detection tools, 465-491

potential resource leaks, identifying, 
428-430

PUT MEMORY LEAKS and HANDLE
LEAKS, 693

reproducibility, 433-434
Windows Vista, 736

resources, 427-428
results, analyzing, !analyze extension 

command, 701, 703-706
resuming threads, 174
Retrieving application settings from an 

elevated prompt listing (15-14), 733
reuse, heaps after deletion, 306-314
rollup page, Windows Error Reporting, 672
RPC troubleshooting state information, 396

cell debugging
configuring, 396-398
information, 398-412

extended error information, 424-425
!rpctime extension command, 400
rtlist.exe, 8
RTL_CRITICAL_SECTION structure, 498
running processes, debuggers

attaching nonintrusively to, 36
attaching to, 35

S
Sample application showing the creation of a

new thread listing (5-2), 210-211
Sample application that results in a deadlock

listing (10-6), 510
Sample application that suffers from lock

convoys listing (10-17), 540
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Sample application that utilizes exceptions
listing (10-8), 516

Sample application thread state 
listing (10-9), 519

Sample code exercising the AccessCheck
function listing (7-2), 323-324

Sample code used to start a process under
user mode debugger listing (3-1), 125

Sample function calling
GetComputerNameEx at different
impersonation levels listing (7-14),
338

Sample initialization function 
listing (7-20), 348

scenarios, debugging scenarios, 117-118
scripts, custom analysis scripts, authoring,

697-699
!sd extension command, 324
SDDL (security descriptor definition 

language), 323
SDK directories, 568
SDs (security descriptors), 322-325, 330-333

kernel object SD, obtaining, 331
primary token object security descriptor,

obtaining, 344
process object security descriptors

examining, 350
obtaining, 342-344

security, 317
!token extension commands, failures, 

368-371
64-bit debugging, 626, 628
client server applications

impersonation levels, 337-338
remote authentication, 335-337
security support provider interface 

support, 335-337
token propagation, 334-338

DCOM (Distributed COM) errors, 354-367
debugging, Windows Vista, 723-735
impersonation, implications, 354
information sources, 328

access tokens, 328-330
SDs (security descriptors), 330-333

object security, 317-319
access tokens, 325-328
ACLs (Access Control Lists), 320-322

SDs (security descriptors), 322-325
SIDs (security identifiers), 319-320, 

325-328
security checks, system boundaries, 338-340
security failures

deferred initiation problems, 347-354
investigating, 340-378
local security failures, 340-344, 347

security checks, 334
security checks, 334

system boundaries, 338-340
security descriptor definition language

(SDDL), 323
security failures, investigating, 340-378

deferred initiation problems, 347-354
local security failures, 340-347

Security information on Windows x64 
listing (12-16), 626

Security Reference Monitor. See SRM
(Security Reference Monitor)

security support provider interface support,
client server applications, 335-337

segments, heaps, layout, 266
semaphore kernel mode synchronization

object, 504
sending error information, importance 

of, 664
Server breakpoints encountered using SSPI

listing (8-29), 423
Server thread call stack listing (8-28), 412
Server’s thread processing the LPC message

listing (8-11), 394
servers

debug servers, 110-113
kernel servers, remote debugging, 113-114
process servers, remote debugging, 113-114
symbol servers, 52-54

Service component (Debug Diagnostic
Tool), 692

session states, debuggers
changes, 577
DebugExtensionNotify function, 577

setting code breakpoints, 88-89
Setting and retrieving application 

settings from UAC administrator 
listing (15-13), 732
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SID structure definition listing (7-1), 319
side effects

access control, Windows Vista, 712-714
file redirection, 601

SIDs (security identifiers), 319-320, 325-328
types, 327
well-known SIDs, 327

Simple application that declares a number of
functions listing (5-16), 244-245

Simple application that performs heap 
allocations listing (6-1), 270

Simple application that uses uninitialized
memory listing (6-4), 282-283

Simple application utilizing the
TerminateThread API 
listing (10-11), 523

Simple C++ Binary Tree Implementation
listing (11-1), 556, 559

Simple console-based application that 
simulates a memory corruption 
listing (5-1), 203-207

Simple crashing application 
listing (13-1), 633

Simple debugger events processing 
listing (3-3), 127

Simple example of double free 
listing (6-10), 308-312, 314

Simple function using __try/__except 
constructs listing (3-24), 162

simulating ImpersonateSelf invocation,
debugger targets, 340-341

Simulating a kernel32!Sleep call 
listing (3-37), 177

Simulating code tracing after attaching to a
running project listing (3-32), 172

Simulating ImpersonateSelf invocation in
the debugger target listing (7-15), 341

Size field (!heap extension command), 478
Size option (Heaps test setting), 750
SizeEnd option (Heaps test setting), 750
SizeStart option (Heaps test setting), 750
.sleep 1000 command, 44
source code

Fibonacci function, 75-76
instrument source code, memory corruption

analysis, 208

source code analysis, memory corruption,
202-208

source files, 64-66, 179
information

gathering, 188-191
using, 192-193

managing for debugging, 188-196
Source of Fibonacci function implemented

in the 02sample.exe sample 
listing (2-23), 75

Source server file tree configuration 
listing (4-10), 194

source servers
file tree configuration, 194-196
without source revision control, 194-196

sources (security information), 328
access tokens, 328-330
resolving, remote debugging, 117
SDs (security descriptors), 330-333

SourceServer information stored in the PDB
file listing (4-9), 191

SpinCount field (RTL_CRITICAL_
SECTION structure), 499

SRM (Security Reference Monitor), 318
sse (single step exception), 138
ssec (single step exception 

continuation), 138
Stack Back Trace section (Dr. Watson dialog

box), 659
stack corruptions, 209-222

asynchronous operations, 231-240
avoidance strategies, 255-258
calling conventions mismatch, 240-255
stack overruns, 223-231
stack pointers, 231-240

stack overruns, 223-231
stack pointers, stack corruptions, 231-240
Stack trace after loading a dynamic link

library listing (3-12), 142
stacks

call stacks
displaying, 212
function calls, 210

manually constructing, 247-252
memory corruption, 625
ProcA procedure, 214

assembly code, 214-216
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Standard user mode debugger loop 
listing (3-2), 126

starting
Debug Diagnostic Tool, 692
processes under debuggers, 281

Starting the client and listing a partial call
stack for each thread listing (8-5), 388

Starting the debugger server 
listing (2-45), 111

Stat screen (LeakDiag), 5
state analysis, memory corruption, 201-202
State Dump for Thread ID X section (Dr.

Watson dialog box), 658
state transition, kernel mode prompts, 42
Status field (!heap extension command), 478
stdcall calling convention, 240-243
stepping over, function execution, 95-96
stop codes

DangerousAPIs test setting, 774
FilePath test setting, 765
Handles test setting, 748
Heaps test setting, 756
Locks test setting, 758-759
LuaPriv test setting, 772-774
Memory test setting, 761-762
ThreadPool test setting, 763
TLS test setting, 764

Stopping the DcomLaunch code 
after impersonating the client 
listing (7-35), 373

storing
public symbols, HTTP servers, 187-188
symbols in symbol stores, 184-186

string events, processing, user mode 
debuggers, 127-129

stripped symbols. See symbols
structured exception dispatching methods,

144-153
structures

exceptions, 145-146
WOW64 structures, obtaining, 608

subsegments, 721
Sum function, assembly code, 217-219
summary information, threads, listing, 391
suspending threads, 174

kernel mode debuggers, 176-177

Switching from user mode to kernel mode
debugger listing (2-5), 43

sxd (set exceptions disable), 136
sxe (set exceptions enable), 136
sxi (set exceptions ignore), 137
sxn (set exceptions notify), 137
symbol caches, 54-55
symbol files, 49-51, 179

checking, 57-60
symbol servers, 52-54
symbol stores, 184-186
symbols, 591

debuggers, 49
caches, 54-55
loaded modules, 57-60
paths, 52, 55-57
reloading, 60-61
symbol files, 49-51, 57-60
symbol servers, 52-54
utilizing, 62-64
validating, 61

managing, 180-188
private symbols, 591
public symbols, 591

generating, 180-183
sharing on HTTP servers, 187-188

resolving, remote debugging, 115-116
symbol stores, storing in, 184-186

symchk.exe, 8
symstore.exe, 8
synchronization, 493

critical sections
managing, 545-550
orphaned critical sections, 516-529
unlocked, 543-545

deadlocks, 510-519
DllMain function, 529-537
lock contention, 538-545
problem analysis process, 505-509
threads, 493

critical sections, 497-502
event primitive, 494-497
mutex, 502-504
problem analysis, 507-509
semaphore, 504
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Windows Vista, 737
condition variables, 739
one-time initialization, 740
reader/writer locks, 737-738
thread pools, 740

system boundaries, security checks, 338-340
system health, analyzing, Process Explorer,

22-23
System Information section (Dr. Watson 

dialog box), 657
system targets, controlling, debuggers, 

168-177

T
t command, 94-95
target systems

debuggers, discovering, 67
kernel debuggers, connecting to, 39-41

targets
controlling, debuggers, 168-177
ImpersonateSelf invocation, simulating, 

340-341
user mode debuggers, creating, 124-125

Task List section (Dr. Watson dialog 
box), 658

task trees, processes, listing in, 34-35
TCP (Transmission Control Protocol), 

112-113
TEB (thread environment block)

obtaining, 93
WOW64 applications, dt command, 617

TerminateThread API, 523, 525-528
termination, threads, 523-529
test settings, Application Verifyer, 747

DangerousAPIs, 774-775
DirtyStacks, 775
Exceptions, 747
FilePaths, 764-765
Handles, 747-748
Heaps, 749-757
HighVersionLie, 765-767
InteractiveServices, 767-768
KernelModeDriverInstall, 768-769
Locks, 757-759
Low Resource Simulation, 769-770
LuaPriv, 771-774

Memory, 760-762
PrintAPI, 776
PrintDriver, 776
ThreadPool, 762-763
TimeRollOver, 775
TSL, 764

thiscall calling convention, 243
Thread environment block on two 

different threads in the same 
process listing (3-28), 166

thread impersonation tokens, displaying, 329
Thread list and associated stacks of hung

application listing (10-12), 525
thread local storage (TLS), 764
thread pools, synchronization, 740
thread state, dumping, 173
thread state management, live debugging,

172-176
ThreadPool test setting (Application

Verifyer), 762-763
ThreadProcedure function, 212-213
threads

call stacks, displaying, 212
communication, 387
current threads, changing, 175
dumping out, 506-507
freezing, 174
information, attaining, 402-403
kernel threads, dumping, 391
multithreading, 493, 550
resuming, 174
summary information, listing, 391
suspending, 174

kernel mode debuggers, 176-177
synchronization, 493

critical sections, 497-502
event primitive, 494-497
mutex, 502-504
semaphore, 504

synchronization problems, analyzing, 
507-509

TEB (thread environment block), 
obtaining, 93

termination, 523-529
unfreezing, 174
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time stamps, current time stamps, 
attaining, 400

TimeOut option (Heaps test setting), 752
TimeRollOver test setting (Application

Verifyer), 775
tlist.exe, 8
TLS (thread local storage), 764
!token extension command, failures, 368-371
token propagation, client server applications,

334-338
impersonation levels, 337-338
remote authentication, 335-337
security support provider, 335-337

tools, 3-4
!analyze extension command, 691, 699-708
Application Verifier, 10-16
Debug Diagnostic Tool, 691-693

crash rule, 692
custom analysis script analysis, 697-699
handle leak analysis, 693-697
hang rule, 692
Host component, 692
leak tracker component, 692
leaks rule, 692
memory leak analysis, 693-697
Service component, 692
starting, 692
User Interface component, 692

Debug Diagnostics Tool, 691
DebugDiag, 27
Debugging Tools for Windows, 7-9, 29-30

CDB (cdb.exe) tool, 31
commands, 32-33
KD (kd.exe) tool, 32
NTSD (ntsd.exe) tool, 31
WinDbg (windbg.exe) tool, 31-32

Ethereal, 26
for Windows Vista, 710
Global Flags, 16

Command Line mode, 19-21
GUI mode, 16-18
option abbreviations, 19-20

leak detection tools, 432-433
LeakDiag (Leak Diagnosis) tool, 4-6
Process Explorer, 22-23

Process Monitor, 23
UMDH, 9
WDK (Windows Driver Kits), 23-26

installing, 24
Tools.ini content listing (3-9), 140
Trace and watch function execution 

listing (2-42), 98
Traces option (Heaps test setting), 751
tracing

code execution, 94-95
function execution, 98
processors, 172

Tracing the remote authentication from the
server process listing (7-12), 336

tracing tools, security failures, investigating,
376-378

traffic (network), analyzing, 413-421
troubleshooting

local communication, 382-396
remote communication, 396-422
RPC troubleshooting state information, 396

cell debugging, 396-412
True 32 bit Stack in WOW64 Process (hid-

den in Listing 121) listing (12-3), 608
TSL test setting (Application Verifyer), 764
Two methods of setting up the symbol path

at debugger startup listing (2-13), 55
type information, debugger extensions, 

initializing, 574-575
Typical client stack waiting on remote call

made using a connection-based 
protocol listing (8-22), 409

Typical stack of a server thread waiting for a
new request on DCOM over LRPC
listing (8-7), 390

Typical stack of clients using DCOM over
LRPC listing (8-6), 389

Typical use of the ba command 
listing (2-37), 89

U
u command, 72
u command used in user mode debugger

(x86) listing (2-22), 72
UAC (User Access Control), Windows Vista,

725-731
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uf command, 215
uld (unload a module) event, creating, 143
UMDH leak detection tool, 9, 432

BSTRs, 469
memory leaks, identifying, 465-469

UMDH.exe LeakDiag tool, 4, 8
Unalign option (Heaps test setting), 751
Unassembled non-optimized function 

listing (12-9), 613
Unassembly code is dependent on 

the processor execution mode 
listing (12-5), 609

underruns, heaps, 286-300
unfreezing threads, 174
uninitializing debugger extensions, 578
uninitiated state, heap corruptions, 282-286
Unlocked Critical Section 

listing (10-18), 543
unlocked critical sections, 543-545
Use of d command listing (2-34), 85
Use of d*s command listing (2-35), 87
Use of dt command listing (2-33), 83
Use of dv command listing (2-32), 82
UseLFHGuardPages option (Heaps test 

setting), 752
User allocation size field (!heap extension

command), 478
User Interface (Debug Diagnostic Tool), 692
user mode debuggers, configuring, 34-36
User mode debugger output listing (2-6), 47
user mode debuggers, 30-31, 124

code breakpoints, setting, 79-81
event processing, 126-130
events

controlling, 133-144
order, 131, 133

exceptions
controlling, 144-166
structured exception dispatching 

mechanism, 144-153
kernel debuggers, redirecting through, 

41-44
loops, 125-126
operating systems, support for, 124-130
output, 47
processes, starting, 125

targets, creating, 124-125
u command, 72
version output, 67
Windows Vista, 712-716

user mode extensions, debuggers, 554
Using !getcallinfo to filter call information to

a specific process listing (8-19), 405
Using !getcallinfo to obtain the call 

information maintained by the server
listing (8-18), 405

Using !getclientcallinfo to obtain the call
information maintained by the client
listing (8-21), 408

Using !getdbgcell to obtain the cell 
information maintained by the server
listing (8-20), 406

Using !getendpointinfo to list all endpoint
known by RPC listing (8-15), 402

Using !getendpointinfo to list all endpoints
known by RPC listing (8-14), 401

Using !getthreadinfo to list all thread from
RPC thread pool listing (8-16), 402

Using !getthreadinfo to obtain a 
specific thread RPC information 
listing (8-17), 403

Using !lpc extension to get message 
information listing (8-2), 385

Using !lpc extension to get port information
listing (8-3), 386

Using !lpc extension to obtain the 
entire LPC activity on the system 
listing (8-4), 386

Using !rpctime to obtain the current time
stamp used by troubleshooting 
infrastructure listing (8-13), 400

Using breakpoints in the kernel mode
debugger listing (2-30), 80

Using breakpoints in the user mode 
debugger listing (2-29), 79

Using breakpoints in the user mode 
debugger listing (2-31), 80

Using kls flag for detecting a user mode
module mapping listing (3-29), 167

Using the !cs command to list all critical 
sections of a process listing (10-3), 501
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Using the !handle extension command to
find mutex object in notepad.exe 
listing (10-4), 502

Using the !token extension command to 
display a token in the user mode
debugger listing (7-5), 326

Using the *kb command to Dump all 
threads and associated stacks 
listing (10-5), 506

Using the .sympath and .symfix commands
listing (2-14), 56

Using the CritSec object listing (14-2), 698
Using the link.exe utility to find debug 

information stored in the binary file
listing (2-8), 51

V
validating symbols, 61
values

entering, 103-104
local variables, discovering, 613-614

variable values, debuggers, displaying, 81-84
variables

condition variables, synchronization, 739
environment variables

BUFFER_OVERFLOW_CHECKS 
environment variable, 210

Windows x64, 601
gGlobal variable, declaring, 88-89
local variables, discovering, 613-614

version information, debugger extensions,
initializing, 572

version output, user mode debuggers, 67
Version output from a user mode debugger

listing (2-18), 67
versioning debugger extensions, 592
Virtual Memory Manager (VMM). See VMM

(Virtual Memory Manager)
Virtual PC, kernel debugger, enabling for, 40
VMM (Virtual Memory Manager), 461

W
Walking the stack back in time listing (5-14),

236-239
Watching the error code returned by

OpenThreadToken/OpenProcessToken
listing (7-30), 369

WDbgExts APIs, 564-565
WDbgExts extension, 563-565

APIs, 564
code organization, 567-570
header files, 567-570
initialization, 570-575

COM interfaces, 572-573
extension data, 576
type information, 574-575
version information, 572

requirements, 565-570
WDK (Windows Driver Kits), 23-26

installing, 24
well-known SIDs, 327
WinDbg (windbg.exe) tool (Debugging Tools

for Windows), 31-32
Windbg GUI

event breaks, adjusting, 138
event handling, adjusting, 138

windbg.exe, 8
Windows Advanced Option menu, 38
Windows Driver Kits (WDK). See WDK

(Windows Driver Kits)
Windows Error Reporting, 633

architecture, 662-682
binaries, mapping to products, 673-677
Dr. Watson dialog box, 653-654

Application Errors section, 656-657
Application option, 656-657
Crash Dump section, 655
Crash Dump Type section, 655
Log File Path section, 654
Module List section, 658
Number of Errors to Save section, 655
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Number of Instructions section, 655
Raw Stack Dump section, 660-662
Stack Back Trace section, 659
State Dump for Thread ID X section, 658
System Information section, 657
Task List section, 658

postmortem debugging, 653-662
product rollup page, 672
software options, 672
web site, navigating, 671

Windows heap manager, 261
Windows Vista, 709

custom debugger extensions, writing, 741
debuggers, 711

access control side effects, 712-714
address space layout, 716-717
kernel mode debuggers, 715-716
user mode debuggers, 712-714

debugging, postmortem debugging, 741-745
debugging security, 723-725

file virtualization, 732-735
registry virtualization, 732-735
UAC (User Access Control), 725-731

dump files, generating, 743
Event Log system, 710-711
heap manager, 717-723
integrity levels, 724
interprocess communication, 736
resource leaks, 736
synchronization, 737

condition variables, 739
one-time initialization, 740
reader/writer locks, 737-738
thread pools, 740

tools, 710
Windows x64

Application Verifier, 604
changes to, 602-605
Debugging Tools for Windows, 603-604
environment variables, 601

Ethereal, 605
exception models, 622-625
Leak Diagnostic tool, 603

working set sizes, adjustments, 464
WOW64

32-bit applications, running in, 598-602
applications, 615-617
commands, 607-609
structures, obtaining, 608

WOW64 application’s PEB using the dt
command listing (12-12), 617

WOW64 applications PEB listing (12-11),
615-617

WOW64 threads’ TEB using !teb extension
command and dt commands listing
(12-13), 618

writing custom 64-bit debugger 
extensions, 629

wt command, 98

X–Z
x86 context flags values listing (3-18), 146
x86-64-bit general purposes register 

listing (12-2), 606
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